Nothing Special   »   [go: up one dir, main page]

JPS6411577B2 - - Google Patents

Info

Publication number
JPS6411577B2
JPS6411577B2 JP58247519A JP24751983A JPS6411577B2 JP S6411577 B2 JPS6411577 B2 JP S6411577B2 JP 58247519 A JP58247519 A JP 58247519A JP 24751983 A JP24751983 A JP 24751983A JP S6411577 B2 JPS6411577 B2 JP S6411577B2
Authority
JP
Japan
Prior art keywords
acicular
cobalt
acid
fatty acid
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58247519A
Other languages
Japanese (ja)
Other versions
JPS60141624A (en
Inventor
Tsuneo Ishikawa
Eiji Nomura
Makoto Ogasawara
Toshihiko Kawamura
Kazuya Haga
Shigeru Takatori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP58247519A priority Critical patent/JPS60141624A/en
Publication of JPS60141624A publication Critical patent/JPS60141624A/en
Publication of JPS6411577B2 publication Critical patent/JPS6411577B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、磁気記録媒体用磁性材料として有用
なコバルト含有針状磁性酸化鉄の製造方法に関す
る。 コバルト含有磁性酸化鉄は、高保磁力を有し、
また、高周波領域での忠実度が優れていることか
ら、オーデイオ、ビデオなどの磁気記録媒体の分
野でさかんに使用されているが、近年、この磁気
記録媒体の記録密度の向上の要求は著しく、低ノ
イズへの改良などの性能の向上も一層要求されて
いる。 一つの方向として、コバルト含有磁性酸化鉄の
粒子サイズは微細化の方向を辿つているが、微細
化とともに粒子の耐熱性が低くなり、熱処理過程
で焼結しやすくなつて粒子表面の均質性が損われ
ること、また、形状保持を目的とした各種耐熱剤
の使用により表面の反応性が低下し、コバルト化
合物を多く必要とすることにより、ひいては他の
磁気特性を低下させることなど、問題点が多い。 一方、従来磁性酸化鉄の製法として、針状含水
酸化第2鉄を空気中、450〜750℃で脱水し、次い
で水素等の還元雰囲気中、300〜450℃で還元して
Fe3O4とし、さらに酸化性雰囲気中150〜450℃で
酸化してγ−Fe2O3とする方法が知られている
が、この還元工程において、水素等の強還元雰囲
気中で還元すると、粒子の崩れ、粒子間の焼結な
どの欠点を生ずることから、有機物の存在下に還
元する方法が数多く提案されている。 例えば、非磁性酸化鉄を短鎖カルボン酸の塩で
処理する方法(ドイツ特許第801352号)、非磁性
α酸化鉄をワツクス、澱粉、燈油、軽油などで処
理する方法(米国特許第2900236)、非磁性α酸化
鉄に炭素数8〜24の疎水性脂肪酸モノカルボン酸
を被覆し、空気中で加熱して還元と酸化とを一工
程で行なう方法(米国特許第3498748)、針状非磁
性酸化鉄()或は酸化鉄()水酸化鉄を有機
化合物と不活性ガスとからなる過熱蒸気混合物で
処理する方法(特開昭55−104924、同57−
118035)などがある。 しかしながら、いずれの方法においても、粒子
の崩れ、粒子間焼結などを防止することを主目的
とし、できるだけ良好な磁気特性を有するγ−
Fe2O3を得ようとしたものであつて、コバルト化
合物の被覆に適したγ−Fe2O3を考慮したもので
はない。 本発明者等は、コバルト含有針状磁性酸化鉄の
性能の改善について磁性酸化鉄にコバルトを含有
させるには、種々の方法が知られているが、通
常、磁性酸化鉄の粒子表面にコバルト化合物を被
着させる方法が採られていることから、コバルト
化合物と均質な反応をするような表面性を有する
針状磁性γ−Fe2O3、即ち前駆体を得るべく、有
機化合物の存在下に還元する方法に着目して検討
を重ね、針状オキシ水酸化鉄を特定の脂肪酸の水
分散液に浸漬して該脂肪酸を被着した後、還元を
行なう前に予め非酸化性雰囲中特定の温度で充分
な脱水を行ない、同時に特定の脂肪酸を加熱分解
し、次いで非酸化性雰囲気中特定の温度、時間で
還元を行ない、続いて酸化すると、コバルト化合
物と均質な反応をするような表面性を有する針状
磁性γ−Fe2O3、即ちコバルト化合物の被覆に適
した前駆体が得られるとの知見を得、本発明を完
成した。 即ち、本発明は、針状オキシ水酸化鉄を炭素数
8〜24の脂肪酸の水分散液に浸漬して該粒子表面
に該脂肪酸を被着した後、非酸化性雰囲気中250
〜300℃の温度で脱水し、次いで、非酸化性雰囲
気中370〜500℃の温度で1時間以上該脂肪酸の分
解物により還元し、さらに、このものを酸化して
針状γ−Fe2O3を得、得られた針状γ−Fe2O3
少くともコバルト化合物を被着することを特徴と
する、コバルト含有針状磁性酸化鉄の製造方法で
ある。 本発明方法に用いる針状オキシ水酸化鉄として
は、種々の方法によつて製造された針状α、β、
γ−FeOOHのいずれでもよいが、製造工程で乾
燥を経ていないもの、例えば反応終了後、反応液
を過、水洗した後、本発明方法を適用していく
のが好ましい。 また、針状性、即ち軸比(L/W)については
約4〜15程度のものが望ましく、粒径については
小粒径、即ちγ−Fe2O3としたときのBET比表面
積が30m2/g程度以上となるようなものが望まし
い。 本発明方法において、まず針状オキシ水酸化鉄
に炭素数8〜24の脂肪酸を被着する。この被着す
る方法は、針状オキシ水酸化鉄の粒子表面に上記
の脂肪酸を均一に被着する方法であり、上記の脂
肪酸の水分散液に針状オキシ水酸化鉄を浸漬する
ことによつておこなわれる。 この浸漬被着において、水分散液のPHを通常8
以下、望ましくは4〜7に調整すると、粒子間の
凝結や凝集を避ける上から好ましい。 ここで用いる炭素数8〜24の脂肪酸としては、
カプリル酸、ペラルゴン酸、カプリン酸、ウンデ
カン酸、ラウリン酸、トリデカン酸、ミリスチン
酸、ペンタデカン酸、パルミチン酸、マルガリン
酸、ステアリン酸、オレイン酸、リノール酸、リ
ノレイン酸、ノナデシル酸、アラキン酸、アラキ
ドン酸、リグノセリン酸などの飽和或は不飽和の
脂肪酸又はそれらのアンモニウム塩、アミン塩な
どが挙げられ、中でもオレイン酸、リノール酸な
どの不飽和脂肪酸或いはそれらのアンモニウム
塩、アミン塩などが望ましい。 ここで、炭素数8〜24の脂肪酸のアルカリ金属
塩、アルカリ土類金属塩などを用いると、粒子中
にアルカリ金属或は、アルカリ土類金属が残存
し、除去困難であり、また、熱処理時に焼結を促
進するなど好ましくない。この使用量は、針状オ
キシ水酸化鉄に対して通常1〜20重量%、望まし
くは2〜10重量%であり、この使用量が上記範囲
より少なすぎると、本発明方法でいう効果が奏せ
られず、一方多すぎると、粒子表面の有機物の被
覆状態が変つたり、残存する有機物量が多くなつ
たりして効果が減少する。 続いて、その表面に特定の脂肪酸を被着した針
状オキシ水酸化鉄を、非酸化性雰囲気中250〜300
℃の温度で脱水する。 この工程では、実質的に還元が生じないよう
に、留意しながら脱水を行ない、もし若干の還元
が生じるとしても、Fe/トータルFeの比率が
5〜10%程度以下に抑えるのが好ましい。 この脱水温度が、上記範囲より低すぎると、脱
水反応が完結するまで、長時間を要し、一方、高
すぎると、還元反応が生じて所望の効果が得られ
なくなる。脱水の時間は、脱水反応が完結するま
ででよく、使用する針状オキシ水酸化鉄の形状、
比表面積値、被着する脂肪酸の種類などによつて
一概にいえないが、通常10分〜24時間、望ましく
は30分〜6時間である。この工程の雰囲気として
は、非酸化性雰囲気、例えば、不活性ガスの存在
下の方が好ましい。 次いで、前段工程で得られた脱水化物を、非酸
化性雰囲気中370〜500℃の温度で1時間以上還元
する。前段工程の脱水反応の完結した脱水化物の
表面には、特定の脂肪酸の分解物が存在してお
り、この分解物により還元反応を行なう。 前段の脱水反応を充分完結させずに還元反応を
行なつたり、脱水反応不充分で還元反応が生じる
温度域へ一気に昇温したりすると、得られるγ−
Fe2O3の粒子表面の均質性が損われるためか、こ
のような前駆体を用いて製造されたコバルト含有
針状磁性酸化鉄は、保磁力分布が広くなり、反転
磁界分布(SFD)を悪くする。この還元反応の
温度は、370〜500℃、望ましくは、400〜460℃で
あり、この温度が上記範囲より低すぎると、還元
反応が遅く、長時間を要し、一方高すぎると、粒
子の崩れ、粒子間焼結などを生じて好ましくな
い。還元の時間は、1時間以上、望ましくは2〜
3時間である。この工程の雰囲気としては非酸化
性雰囲気、例えば、不活性ガスの存在下がよい。 さらに、前段工程で得られた還元化物を酸化し
て、γ−Fe2O3を得る。この酸化工程は通常方法
でよく、例えば、酸化反応に用いられる酸素含有
ガスとしては、空気、酸素ガスなどが挙げられ、
酸化反応の温度は150〜450℃である。 前記の各工程を経て得られる針状γ−Fe2O3
は、コバルト化合物の被覆に適した前駆体であ
り、後記説明例におけるγ−Fe2O3のBET比表面
積値とσs(飽和磁化)との関係を第1図に示した
ところ、K点付近からD点付近間のものが望まし
く、屈曲点C付近のものが最も望ましい前駆体で
あることが判明した。 このL点付近からD点付近のσsは、用いた針状
オキシ水酸化鉄から誘導されるγ−Fe2O3のσsの
最大値は80〜95%であり、また、屈曲点C点付近
のσsは最大値の約90〜95%であることがわかつ
た。 さらに、屈曲点C点付近のBET比表面積値を
100とした場合、BET比表面積値の比率が90〜
120となるのが望ましいことも判明した。ここで、
第1図において、K→Aの方向に移行すると、保
磁力が上昇しにくく、反転磁界分布(SFD)が
大きくなるなどの欠点が、一方、D付近に到達し
ないところではσsが不足し、出力がとりにくく、
コバルト被着後のコバルト含有針状磁性酸化鉄の
保磁力が上がりにくくなるなどの欠点が生じてく
ることがわかつた。 従つて、本発明方法においては、上記の事項を
念頭において諸条件を選択すればよい。 次に、前記の各工程を経て得られた針状γ−
Fe2O3に少くともコバルト化合物が被着される。
この被着は種々の方法によつて行なうことができ
る。例えば、(1)前記γ−Fe2O3を少くともコバル
ト化合物水溶液に分散させ、これにアルカリ水溶
液を加える方法、(2)前記γ−Fe2O3を少くともコ
バルト化合物とアルカリ水溶液との混合液に分散
させる方法、(3)前記γ−Fe2O3を水に分散させ、
これに少くともコバルト化合物とアルカリ水溶液
とを添加する方法、(4)前記γ−Fe2Oを3アルカリ
水溶液に分散させ、これに少くともコバルト化合
物を添加する方法、(5)前記γ−Fe2O3を少くとも
コバルト化合物水溶液に分散させ、このの分散液
をアルカリ水溶液中に滴下する方法などがあり、
また、その際第1鉄、その他の金属化合物をコバ
ルト化合物と同時にまたは、それらを適宜順次被
着したりすることができる。いずれにしても、ア
ルカリを添加されたコバルトなどの金属化合物に
対して当量もしくは、当量以上を添加して中和
し、それらの反応生成物がが前記γ−Fe2O3粒子
表面に被着される。 被着処理時の雰囲気や温度は、特に限定される
ものではないが、例えば、コバルトなどの金属が
実質的に酸化されない非酸化性雰囲気中で沸点以
下の温度で行なわれる。この処理時間は通常0.1
〜10時間である。 前記の被着処理について、用いられるアルカリ
としては、水酸化ナトリウム、水酸化カリウム、
炭酸ナトリウム、炭酸カリウムなどがある。コバ
ルト化合物としては、コバルトの無機塩あるいは
有機塩、例えば硫酸コバルト、塩化コバルト、酢
酸コバルトなどがある。 なお、コバルト化合物に組合わせて、コバルト
以外の金属化合物を被着させる場合には、例え
ば、硫酸第1鉄、塩化第1鉄、硫酸第1鉄マンガ
ン、塩化第1鉄マンガン、塩化第1ニツケル、塩
化亜鉛などを併せ使用することができる。これら
の化合物の添加量は、通常コバルト化合物単独の
場合は、前記γ−Fe2O3の全Fe量に対して、Co
として0.5〜10%、また、例えば、コバルト化合
物と第1鉄化合物とを組合わせて被着する場合に
は、前者をCoとして0.5〜10%、後者をFeとして
1〜20%とするのが適当である。 上記被着処理が施された磁性酸化鉄を含む被着
スラリーは、さらに必要に応じ熱処理が施されて
もよい。例えば、この被着スラリーをオートクレ
ーブ中で100〜250℃で湿式加熱処理するか、或は
このスラリーを過、水洗して湿ケーキとしたも
のを再び水中に分散させたスラリーとオートクレ
ーブ中で100〜250℃で湿式加熱処理するか、前記
の湿ケーキを60〜250℃で水蒸気の存在下で加熱
処理するか、または前記湿ケーキを乾燥後100〜
300℃で乾式加熱処理を施すことにより、一層好
ましい磁気特性を有するものとすることもでき
る。 本発明方法により得られたコバルト含有針状磁
性酸化鉄は、分散性に優れ、このものを用いて製
作した磁気テープは、良好な角形比、配向性と同
時に、均一な保磁力分布による良好な反転磁界分
布、消去特性などを有している。 本発明方法の詳細については、次記する説明例
よりさらに理解できるであろう。 説明例 硫酸第1鉄の水溶液の一部をアルカリで中和し
た後、空気を溶液中へ導入することによつて針状
α−FeOOHを含むスラリーを得、このものを
過、水洗して針状α−FeOOHを得た。 この針状α−FeOOH〔軸比(L/W);10〜
15、平均長軸長;0.2μ、BET比表面積(マイク
ロメリテイツクス社製#2200で測定);70m2/g〕
を水に加えて100g/のスラリーとし、このス
ラリーのPHをアンモニア水により約5とした。こ
のスラリーに5%相当(α−FeOOH重量基準)
のオレイン酸を撹拌しながら少しずつ加え、添加
終了後、過、水洗、乾燥してオレイン酸被着針
状α−FeOOHを得た。 上記で得られたα−FeOOHを5等分し、それ
ぞれについてN2ガス雰囲気中で、下記第1表に
示す熱処理を施し、得られた還元化物をさらに空
気中250℃で酸化して、各々の針状γ−Fe2O3
得た。 各々の針状γ−Fe2O3について、常法により保
磁力(Hc)、BET比表面積(SG)及び飽和磁化
(σs)を測定し、第1表の結果を得た。
The present invention relates to a method for producing cobalt-containing acicular magnetic iron oxide useful as a magnetic material for magnetic recording media. Cobalt-containing magnetic iron oxide has high coercive force,
In addition, due to its excellent fidelity in the high frequency range, it is widely used in the field of magnetic recording media such as audio and video, but in recent years there has been a significant demand for improved recording density of these magnetic recording media. There is also a growing demand for improved performance such as lower noise. One direction is that the grain size of cobalt-containing magnetic iron oxide is becoming finer, but as the grain size becomes finer, the heat resistance of the grains decreases, and they become more likely to sinter during the heat treatment process, resulting in less homogeneous grain surfaces. In addition, the use of various heat-resistant agents for the purpose of shape retention reduces surface reactivity, and the need for a large amount of cobalt compounds, which in turn reduces other magnetic properties. many. On the other hand, the conventional method for manufacturing magnetic iron oxide is to dehydrate acicular hydrated ferric oxide in air at 450 to 750°C, and then reduce it at 300 to 450°C in a reducing atmosphere such as hydrogen.
A known method is to convert Fe 3 O 4 into γ-Fe 2 O 3 by further oxidizing it at 150 to 450°C in an oxidizing atmosphere, but in this reduction process, if it is reduced in a strongly reducing atmosphere such as hydrogen, However, many methods have been proposed for reduction in the presence of organic matter, since this causes drawbacks such as particle collapse and sintering between particles. For example, a method in which non-magnetic iron oxide is treated with a salt of a short-chain carboxylic acid (German Patent No. 801352), a method in which non-magnetic alpha iron oxide is treated with wax, starch, kerosene, light oil, etc. (US Patent No. 2900236); A method in which nonmagnetic alpha iron oxide is coated with a hydrophobic fatty acid monocarboxylic acid having 8 to 24 carbon atoms and heated in air to perform reduction and oxidation in one step (US Patent No. 3498748), acicular nonmagnetic oxidation A method of treating iron () or iron oxide () iron hydroxide with a superheated steam mixture consisting of an organic compound and an inert gas (Japanese Unexamined Patent Publications No. 55-104924, No. 57-
118035). However, in either method, the main purpose is to prevent particle collapse, interparticle sintering, etc., and to obtain γ-
This is an attempt to obtain Fe 2 O 3 and does not take into consideration γ-Fe 2 O 3 suitable for coating with cobalt compounds. Regarding improving the performance of cobalt-containing acicular magnetic iron oxide, various methods are known for incorporating cobalt into magnetic iron oxide, but usually a cobalt compound is added to the particle surface of magnetic iron oxide. In order to obtain acicular magnetic γ-Fe 2 O 3 , i.e., a precursor, which has surface properties that allow it to react homogeneously with cobalt compounds, it is necessary to After repeated studies focused on the reduction method, acicular iron oxyhydroxide was immersed in an aqueous dispersion of a specific fatty acid to coat it with the fatty acid, and then, before reduction, it was placed in a non-oxidizing atmosphere. If sufficient dehydration is carried out at a temperature of , at the same time specific fatty acids are thermally decomposed, then reduction is carried out at a specific temperature and time in a non-oxidizing atmosphere, and then oxidized, a surface that reacts homogeneously with cobalt compounds is created. The present invention was completed based on the finding that a precursor suitable for coating with acicular magnetic γ-Fe 2 O 3 , that is, a cobalt compound, can be obtained. That is, in the present invention, acicular iron oxyhydroxide is immersed in an aqueous dispersion of a fatty acid having 8 to 24 carbon atoms to coat the particle surface with the fatty acid, and then immersed in a non-oxidizing atmosphere at 250° C.
It is dehydrated at a temperature of ~300°C, then reduced with a decomposition product of the fatty acid at a temperature of 370~500°C in a non-oxidizing atmosphere for over 1 hour, and further oxidized to form acicular γ-Fe 2 O. 3 and coating the obtained acicular γ-Fe 2 O 3 with at least a cobalt compound. The acicular iron oxyhydroxide used in the method of the present invention includes acicular α, β,
Although any γ-FeOOH may be used, it is preferable to apply the method of the present invention to one that has not been dried during the manufacturing process, for example, after the reaction is completed, the reaction solution is filtered and washed with water. In addition, the acicularity, that is, the axial ratio (L/W), is preferably about 4 to 15, and the particle size is small, that is, the BET specific surface area when γ-Fe 2 O 3 is 30 m. 2 /g or more is desirable. In the method of the present invention, first, a fatty acid having 8 to 24 carbon atoms is coated on acicular iron oxyhydroxide. This deposition method involves uniformly depositing the above-mentioned fatty acids on the surface of the particles of acicular iron oxyhydroxide, by immersing the acicular iron oxyhydroxide in an aqueous dispersion of the above-mentioned fatty acids. It is carried out at In this immersion deposition, the pH of the aqueous dispersion is usually 8.
Below, it is preferable to adjust it to 4 to 7 in order to avoid coagulation and agglomeration between particles. The fatty acids having 8 to 24 carbon atoms used here are:
Caprylic acid, pelargonic acid, capric acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, margaric acid, stearic acid, oleic acid, linoleic acid, linoleic acid, nonadecylic acid, arachidic acid, arachidonic acid , saturated or unsaturated fatty acids such as lignoceric acid, or their ammonium salts or amine salts. Among them, unsaturated fatty acids such as oleic acid or linoleic acid, or their ammonium salts or amine salts are desirable. If an alkali metal salt or alkaline earth metal salt of a fatty acid having 8 to 24 carbon atoms is used, the alkali metal or alkaline earth metal will remain in the particles and will be difficult to remove. This is undesirable as it promotes sintering. The amount to be used is usually 1 to 20% by weight, preferably 2 to 10% by weight based on the acicular iron oxyhydroxide. If this amount is less than the above range, the effect of the method of the present invention will not be achieved. On the other hand, if the amount is too high, the coating state of the organic matter on the particle surface may change or the amount of remaining organic matter may increase, reducing the effect. Next, acicular iron oxyhydroxide coated with a specific fatty acid on its surface is heated at 250 to 300% in a non-oxidizing atmosphere.
Dehydrate at a temperature of °C. In this step, dehydration is carried out with care so that substantially no reduction occurs, and even if some reduction occurs, it is preferable to suppress the Fe/total Fe ratio to about 5 to 10% or less. If the dehydration temperature is too low than the above range, it will take a long time to complete the dehydration reaction, while if it is too high, a reduction reaction will occur, making it impossible to obtain the desired effect. The dehydration time may be until the dehydration reaction is completed, depending on the shape of the acicular iron oxyhydroxide used,
Although it cannot be absolutely determined depending on the specific surface area value, the type of fatty acid to be deposited, etc., it is usually 10 minutes to 24 hours, preferably 30 minutes to 6 hours. The atmosphere for this step is preferably a non-oxidizing atmosphere, for example in the presence of an inert gas. Next, the dehydrated product obtained in the previous step is reduced in a non-oxidizing atmosphere at a temperature of 370 to 500° C. for one hour or more. A decomposed product of a specific fatty acid is present on the surface of the dehydrated product after the dehydration reaction in the first step is completed, and a reduction reaction is performed using this decomposed product. If the reduction reaction is performed without fully completing the dehydration reaction in the previous stage, or if the temperature is suddenly raised to a temperature range where the reduction reaction occurs due to insufficient dehydration reaction, the resulting γ-
Perhaps because the homogeneity of the Fe 2 O 3 particle surface is impaired, the cobalt-containing acicular magnetic iron oxide produced using such a precursor has a broader coercive force distribution and a switching field distribution (SFD). make it worse The temperature of this reduction reaction is 370-500°C, preferably 400-460°C; if this temperature is too low than the above range, the reduction reaction will be slow and take a long time; on the other hand, if it is too high, the particles will This is undesirable because it causes collapse and interparticle sintering. The reduction time is 1 hour or more, preferably 2 to 2 hours.
It is 3 hours. The atmosphere for this step is preferably a non-oxidizing atmosphere, for example in the presence of an inert gas. Furthermore, the reduced product obtained in the previous step is oxidized to obtain γ-Fe 2 O 3 . This oxidation step may be carried out by a normal method. For example, the oxygen-containing gas used in the oxidation reaction may include air, oxygen gas, etc.
The temperature of the oxidation reaction is 150-450°C. Acicular γ-Fe 2 O 3 obtained through the above steps
is a precursor suitable for coating with a cobalt compound. Figure 1 shows the relationship between the BET specific surface area value and σs (saturation magnetization) of γ-Fe 2 O 3 in the example described below. It has been found that the precursor that lies between and around the point D is desirable, and that around the inflection point C is the most desirable precursor. The maximum value of σs of γ-Fe 2 O 3 derived from the acicular iron oxyhydroxide used is 80 to 95%, and the σs from around point L to around point D is 80% to 95%. It was found that σs is about 90-95% of the maximum value. Furthermore, the BET specific surface area value near the bending point C is
When set to 100, the ratio of BET specific surface area values is 90 ~
It was also found that 120 is desirable. here,
In Figure 1, when moving from K to A, the coercive force is difficult to increase and the switching field distribution (SFD) becomes large. It is difficult to remove,
It has been found that defects such as difficulty in increasing the coercive force of cobalt-containing acicular magnetic iron oxide after coating with cobalt arise. Therefore, in the method of the present invention, various conditions may be selected keeping the above matters in mind. Next, the acicular γ-
At least a cobalt compound is deposited on the Fe 2 O 3 .
This deposition can be done in various ways. For example, (1) the γ-Fe 2 O 3 is dispersed in at least an aqueous cobalt compound solution and an alkali aqueous solution is added thereto; (2) the γ-Fe 2 O 3 is dispersed in at least a cobalt compound and an aqueous alkali solution; A method of dispersing in a mixed liquid, (3) dispersing the γ-Fe 2 O 3 in water,
A method of adding at least a cobalt compound and an aqueous alkali solution to this, (4) a method of dispersing the γ-Fe 2 O in an aqueous alkali solution, and adding at least a cobalt compound thereto, (5) a method of dispersing the γ-Fe 2 O in an aqueous alkali solution, and There are methods such as dispersing at least 2 O 3 in an aqueous cobalt compound solution and dropping this dispersion into an aqueous alkaline solution.
Further, in this case, ferrous iron and other metal compounds can be deposited simultaneously with the cobalt compound, or they can be deposited sequentially as appropriate. In any case, the alkali is added to the metal compound such as cobalt in an amount equal to or more than the equivalent amount to neutralize it, and the reaction products are deposited on the surface of the γ-Fe 2 O 3 particles. be done. The atmosphere and temperature during the deposition process are not particularly limited, but for example, the deposition process is carried out at a temperature below the boiling point in a non-oxidizing atmosphere in which the metal such as cobalt is not substantially oxidized. This processing time is usually 0.1
~10 hours. Regarding the above-mentioned adhesion treatment, the alkalis used include sodium hydroxide, potassium hydroxide,
These include sodium carbonate and potassium carbonate. Examples of the cobalt compound include inorganic or organic salts of cobalt, such as cobalt sulfate, cobalt chloride, and cobalt acetate. In addition, when a metal compound other than cobalt is deposited in combination with a cobalt compound, for example, ferrous sulfate, ferrous chloride, ferrous manganese sulfate, ferrous manganese chloride, nickel chloride, etc. , zinc chloride, etc. can be used in combination. Usually, when a cobalt compound is used alone, the amount of these compounds added is determined by the Co
For example, when depositing a combination of a cobalt compound and a ferrous compound, the former should be 0.5 to 10% as Co and the latter should be 1 to 20% as Fe. Appropriate. The deposition slurry containing magnetic iron oxide that has been subjected to the deposition treatment described above may be further subjected to heat treatment as necessary. For example, this adhering slurry may be subjected to a wet heat treatment at 100 to 250°C in an autoclave, or this slurry may be filtered and washed with water to form a wet cake, which is then redispersed in water and heated at 100 to 250°C in an autoclave. Wet heat treatment at 250°C, or heat treatment of the wet cake at 60~250°C in the presence of water vapor, or drying the wet cake after drying at 100~250°C.
By performing a dry heat treatment at 300°C, it is possible to obtain more preferable magnetic properties. The cobalt-containing acicular magnetic iron oxide obtained by the method of the present invention has excellent dispersibility, and magnetic tapes manufactured using this material have good squareness ratio and orientation, as well as good coercive force distribution. It has switching magnetic field distribution, erasing characteristics, etc. The details of the method of the present invention can be further understood from the following illustrative examples. Explanation example: After neutralizing a portion of an aqueous solution of ferrous sulfate with an alkali, air is introduced into the solution to obtain a slurry containing acicular α-FeOOH, which is filtered and washed with water to form needles. α-FeOOH was obtained. This acicular α-FeOOH [axial ratio (L/W); 10~
15, Average major axis length: 0.2μ, BET specific surface area (measured with Micromeritics #2200): 70m 2 /g]
was added to water to make a 100 g slurry, and the pH of this slurry was adjusted to about 5 with aqueous ammonia. Equivalent to 5% of this slurry (based on α-FeOOH weight)
of oleic acid was added little by little with stirring, and after the addition was completed, the mixture was filtered, washed with water, and dried to obtain acicular α-FeOOH coated with oleic acid. The α-FeOOH obtained above was divided into five equal parts, each was subjected to the heat treatment shown in Table 1 below in an N2 gas atmosphere, and the obtained reduced product was further oxidized in air at 250°C. Acicular γ-Fe 2 O 3 was obtained. The coercive force (Hc), BET specific surface area (SG), and saturation magnetization (σs) of each acicular γ-Fe 2 O 3 were measured by conventional methods, and the results shown in Table 1 were obtained.

【表】 次に本発明方法の実施例及び比較例を示す。 実施例1〜2並びに実施例1〜3 前記説明例のサンプル(A)〜(E)について、以下の
コバルト被着処理及び熱処理を行なつた。 サンプル100gを水1に分散させてスラリー
とし、液中にN2ガスを吹き込みながら、45℃で
0.85モル/の硫酸コバルト水溶液70mlと1モ
ル/の硫酸第1鉄水溶液125mlとを加え、次い
で撹拌下に10モル/のNaOH水溶液175mlを加
え、さらに45℃で5時間撹拌した。 次いで、このスラリーを過、水洗し、得られ
た湿ケーキを別容器に入れた水と共に、オートレ
ーブに入れて、N2ガスで置換した後、密閉し、
130℃で6時間水蒸気の存在下で加熱処理した。
処理後、大気中で60℃で15時間乾燥し、目的のコ
バルト含有針状γ−Fe2O3(イ)〜(ホ)を得た。 上記サンプル(イ)〜(ホ)について、通常の方法によ
り保磁力(Hc)及び飽和磁化(σs)を測定した
結果を第2表に示す。 さらに、サンプル(イ)〜(ホ)について、下記の配合
割合に従つて配合物を調整し、ボールミルで混練
して磁性塗料を製造した。 (1) コバルト含有針状γ−Fe2O3 25重量部 (2) ポリウレタン樹脂 5.4 〃 (3) 分散剤 1.0 〃 (4) 混合溶剤(トルエン/MEK=1/1)
68.2 〃 次いで、各々の磁性塗料をポリエステルフイル
ムに通常の方法により塗布、配向した後乾燥さら
にカレンダ仕上げして約5μの磁性塗膜を有する
磁気テープを作成した。それぞれのテープについ
て通常の方法により、保磁力(Hc)、角形比
(Br/Bm)、配向性(OR)、反転磁界分布
(SFD)及び消去特性(Er)を測定し、第2表の
結果を得た。
[Table] Next, Examples and Comparative Examples of the method of the present invention are shown. Examples 1 to 2 and Examples 1 to 3 Samples (A) to (E) of the above-mentioned illustrative examples were subjected to the following cobalt adhesion treatment and heat treatment. Disperse 100 g of the sample in 1 part water to make a slurry, and heat it at 45°C while blowing N2 gas into the liquid.
70 ml of a 0.85 mol/aqueous cobalt sulfate solution and 125 ml of a 1 mol/aqueous ferrous sulfate solution were added, and then 175 ml of a 10 mol/aqueous NaOH solution was added with stirring, followed by further stirring at 45°C for 5 hours. Next, this slurry was filtered and washed with water, and the resulting wet cake was placed in an autolave together with water in a separate container, and after purging with N 2 gas, it was sealed.
Heat treatment was performed at 130° C. for 6 hours in the presence of steam.
After the treatment, it was dried in the air at 60°C for 15 hours to obtain the desired cobalt-containing acicular γ-Fe 2 O 3 (a) to (e). Table 2 shows the results of measuring the coercive force (Hc) and saturation magnetization (σs) of the above samples (A) to (E) by a conventional method. Further, for Samples (A) to (E), compositions were adjusted according to the following composition ratios and kneaded in a ball mill to produce magnetic paints. (1) Cobalt-containing acicular γ-Fe 2 O 3 25 parts by weight (2) Polyurethane resin 5.4 (3) Dispersant 1.0 (4) Mixed solvent (toluene/MEK = 1/1)
68.2 Next, each magnetic coating material was applied to a polyester film by a conventional method, oriented, dried, and calendered to produce a magnetic tape having a magnetic coating film of about 5 μm. The coercive force (Hc), squareness ratio (Br/Bm), orientation (OR), reversal magnetic field distribution (SFD), and erasure characteristic (Er) of each tape were measured using the usual methods, and the results are shown in Table 2. I got it.

【表】 実施例 3 前記説明例において、5%相当(α−FeOOH
重量基準)のオレイン酸を8%相当(α−
FeOOH重量基準)のオレイン酸に代える以外は
前記説明例Cの場合と同様にして針状γ−Fe2O3
(F)を得、このものを前記実施例1の場合と同様に
して、目的のコバルト含有針状γ−Fe2O3(ヘ)を得
た。なお、脱水化物のFe/トータルFeは4%
であつた。 比較例 4 前記実施例3において、脱水反応条件である
280℃、2時間を230℃、3時間に代える以外は、
前記実施例3の場合と同様にして、比較の針状γ
−Fe2O3(G)及び比較のコバルト含有針状γ−
Fe2O3(ト)を得た。なお、脱水化物のFe/トータ
ルFeは0%であつた。 比較例 5 前記実施例3において、脱水反応条件である
280℃、2時間を330℃、2時間に代える以外は、
前記実施例3の場合と同様にして、比較の針状γ
−Fe2O3(H)のコバルト含有針状γ−Fe2O3(チ)を得
た。なお、脱水化物のFe/トータルFeは13%
であつた。 比較例 6 前記実施例3において、還元反応条件である
470℃、2時間を340℃、4時間に代える以外は、
前記実施例3の場合と同様にして、比較の針状γ
−Fe2O3(I)及びコバルト含有針状γ−Fe2O3(リ)を
得た。なお、脱水化物のFe/トータルFeは2
%であつた 比較例 7 前記実施例3において、還元反応条件である
470℃、2時間を530℃、1時間に代える以外は、
前記実施例3の場合と同様にして、比較の針状γ
−Fe2O3(J)及び比較のコバルト含有針状γ−
Fe2O3(ヌ)を得た。なお、脱水化物のFe/トータ
ルFeは2%であつた。 実施例 4 前記実施例3において、8%相当(α−
FeOOH重量基準)のオレイン酸を7%相当(α
−FeOOH重量基準)のラウリル酸に代える以外
は、前記実施例3の場合と同様にして、目的の針
状γ−Fe2O3(K)及び目的のコバルト含有針状γ−
Fe2O3(ル)を得た。なお、脱水化物のFe/ト
ータルFeは2%であつた。 上記針状γ−Fe2O3のサンプル(F)〜(K)につい
て、保磁力(Hc)、BET比表面積(SG)及び飽
和磁化(σs)を測定し、結果を第3表に示す。 上記コバルト含有針状γ−Fe2O3サンプル(ヘ)〜
(ル)について通常の方法によに保磁力(Hc)及
び飽和磁化(σs)を測定した結果を第3表に示
す。 さらに、サンプル(ヘ)〜(ル)について、前述と
同様の方法によりテープを作成し、それぞれのテ
ープについて通常の方法により、保磁力(Hc)
角形比(Br/Bm)、配向性(OR)、反転磁界分
布(SFD)及び消去特性(Er)を測定し、第3
表の結果を得た。
[Table] Example 3 In the above explanation example, 5% equivalent (α-FeOOH
(weight basis) oleic acid equivalent to 8% (α-
Acicular γ- Fe2O3
(F) was obtained, and this product was treated in the same manner as in Example 1 to obtain the desired cobalt-containing acicular γ-Fe 2 O 3 (F). In addition, Fe/total Fe of dehydrated product is 4%
It was hot. Comparative Example 4 In Example 3, the dehydration reaction conditions are
Except for replacing 280℃, 2 hours with 230℃, 3 hours.
In the same manner as in Example 3, comparative acicular γ
−Fe 2 O 3 (G) and comparative cobalt-containing acicular γ−
Fe 2 O 3 (g) was obtained. Note that Fe/total Fe in the dehydrated product was 0%. Comparative Example 5 In Example 3, the dehydration reaction conditions are
Except for replacing 280℃, 2 hours with 330℃, 2 hours.
In the same manner as in Example 3, comparative acicular γ
Cobalt-containing acicular γ-Fe 2 O 3 (H) of −Fe 2 O 3 (H) was obtained. In addition, Fe/total Fe of dehydrated product is 13%
It was hot. Comparative Example 6 In Example 3, the reduction reaction conditions are
Except for replacing 2 hours at 470℃ with 4 hours at 340℃.
In the same manner as in Example 3, comparative acicular γ
-Fe 2 O 3 (I) and cobalt-containing acicular γ-Fe 2 O 3 (I) were obtained. Note that the dehydrated Fe/total Fe is 2
% Comparative Example 7 In Example 3, the reduction reaction conditions were
Except for replacing 2 hours at 470℃ with 1 hour at 530℃.
In the same manner as in Example 3, comparative acicular γ
−Fe 2 O 3 (J) and comparative cobalt-containing acicular γ−
Fe 2 O 3 (nu) was obtained. Note that Fe/total Fe in the dehydrated product was 2%. Example 4 In Example 3, 8% equivalent (α-
FeOOH weight basis) oleic acid equivalent to 7% (α
The desired acicular γ-Fe 2 O 3 (K) and the desired cobalt-containing acicular γ-
Fe 2 O 3 (L) was obtained. Note that Fe/total Fe in the dehydrated product was 2%. The coercive force (Hc), BET specific surface area (SG), and saturation magnetization (σs) of the acicular γ-Fe 2 O 3 samples (F) to (K) were measured, and the results are shown in Table 3. The above cobalt-containing acicular γ-Fe 2 O 3 sample (f) ~
Table 3 shows the results of measuring the coercive force (Hc) and saturation magnetization (σs) of (L) using the usual method. Furthermore, tapes were made for samples (F) to (R) in the same manner as described above, and the coercive force (Hc) of each tape was determined by the usual method.
The squareness ratio (Br/Bm), orientation (OR), switching field distribution (SFD) and erasure characteristic (Er) were measured, and the third
Obtained the results in the table.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、各々の実施例及び比較例で得られた
針状γ−Fe2O3粉末のBET比表面積値(m2/g)
と飽和磁化(σs)との関係を示したものである。
Figure 1 shows the BET specific surface area values (m 2 /g) of the acicular γ-Fe 2 O 3 powder obtained in each example and comparative example.
This figure shows the relationship between σ and saturation magnetization (σs).

Claims (1)

【特許請求の範囲】[Claims] 1 針状オキシ水酸化鉄を炭素数8〜24の脂肪酸
の水分散液に浸漬して該粒子表面に該脂肪酸を被
着した後、非酸化性雰囲気中250〜300℃の温度で
脱水し、次いで非酸化性雰囲気中370〜500℃の温
度で1時間以上該脂肪酸の分解物により還元し、
さらに、このものを酸化して針状γ−Fe2O3
得、得られた針状γ−Fe2O3に少くともコバルト
化合物を被着することを特徴とする、コバルト含
有針状磁性酸化鉄の製造方法。
1. Acicular iron oxyhydroxide is immersed in an aqueous dispersion of a fatty acid having 8 to 24 carbon atoms to coat the particle surface with the fatty acid, and then dehydrated at a temperature of 250 to 300°C in a non-oxidizing atmosphere, Then, the fatty acid is reduced by a decomposition product of the fatty acid at a temperature of 370 to 500°C for 1 hour or more in a non-oxidizing atmosphere,
Furthermore, a cobalt-containing acicular magnetic material characterized by oxidizing this material to obtain acicular γ-Fe 2 O 3 and depositing at least a cobalt compound on the obtained acicular γ-Fe 2 O 3 Method for producing iron oxide.
JP58247519A 1983-12-27 1983-12-27 Manufacture of acicular magnetic iron oxide containing cobalt Granted JPS60141624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58247519A JPS60141624A (en) 1983-12-27 1983-12-27 Manufacture of acicular magnetic iron oxide containing cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58247519A JPS60141624A (en) 1983-12-27 1983-12-27 Manufacture of acicular magnetic iron oxide containing cobalt

Publications (2)

Publication Number Publication Date
JPS60141624A JPS60141624A (en) 1985-07-26
JPS6411577B2 true JPS6411577B2 (en) 1989-02-27

Family

ID=17164689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58247519A Granted JPS60141624A (en) 1983-12-27 1983-12-27 Manufacture of acicular magnetic iron oxide containing cobalt

Country Status (1)

Country Link
JP (1) JPS60141624A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089486B2 (en) * 1986-01-30 1996-01-31 石原産業株式会社 Cobalt-containing ferromagnetic iron oxide powder and method for producing the same
JPH0613407B2 (en) * 1986-04-26 1994-02-23 戸田工業株式会社 Method for producing acicular magnetic iron oxide particle powder
JP2746369B2 (en) * 1987-09-09 1998-05-06 株式会社神戸製鋼所 Method for producing magnetic iron oxide powder for magnetic recording
JP4677734B2 (en) * 2004-04-19 2011-04-27 Dowaエレクトロニクス株式会社 Magnetic powder for magnetic recording media
JP5639371B2 (en) * 2010-03-10 2014-12-10 ゼネラル株式会社 Aqueous magnetic dispersion and magnetic inkjet ink

Also Published As

Publication number Publication date
JPS60141624A (en) 1985-07-26

Similar Documents

Publication Publication Date Title
US5968226A (en) Process of making goethite or iron-based alloy particles
JPS6411577B2 (en)
JP3264374B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
US5989516A (en) Spindle-shaped geothite particles
KR0125939B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
JPH08165501A (en) Fusiform metallic magnetic-grain powder consisting essentially of cobalt and iron and its production
JP2965606B2 (en) Method for producing metal magnetic powder
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPH05310431A (en) Iron alpha-oxyhydroxide and production of magnetic metal powder for magnetic recording using the compound
JP4929473B2 (en) Magnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JP2945458B2 (en) Acicular ferromagnetic iron oxide powder and method for producing the same
JP3244830B2 (en) Cobalt-containing magnetic iron oxide powder and method for producing the same
JPH05140620A (en) Production of powdery ferromagnetic metal powder
JP5082045B2 (en) Method for producing magnetic powder for magnetic recording medium
JPH0755827B2 (en) Manufacturing method of spindle-shaped iron-based metallic magnetic particle powder
JPH0568843B2 (en)
JPS60181209A (en) Manufacture of magnetic powder
JPH0569048B2 (en)
JPH06124827A (en) Manufacture of cobalt adhesive magnetic iron oxide particle powder
JPH0574533B2 (en)