Nothing Special   »   [go: up one dir, main page]

JPS59164739A - Process for continuous hydrogenation - Google Patents

Process for continuous hydrogenation

Info

Publication number
JPS59164739A
JPS59164739A JP58038978A JP3897883A JPS59164739A JP S59164739 A JPS59164739 A JP S59164739A JP 58038978 A JP58038978 A JP 58038978A JP 3897883 A JP3897883 A JP 3897883A JP S59164739 A JPS59164739 A JP S59164739A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
aldehyde
aqueous solution
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58038978A
Other languages
Japanese (ja)
Other versions
JPH0457654B2 (en
Inventor
Hidetaka Kojima
秀隆 小島
Katsumi Miwa
三輪 克美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP58038978A priority Critical patent/JPS59164739A/en
Publication of JPS59164739A publication Critical patent/JPS59164739A/en
Publication of JPH0457654B2 publication Critical patent/JPH0457654B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To restore the declining catalytic activity to the level comparable to that of the fresh catalyst in the preparation of an alcohol by the continuous hydrogenation of an aldehyde in an aqueous solution in the presence of Raney-Ni catalyst, by adding a part of the fresh catalyst to the system during the reaction. CONSTITUTION:An alcohol (e.g. butanediol) is prepared by the continuous hydrogenation of an aldehyde (e.g. hydroformylated product of allyl alcohol) in an aqueous solution in the presence of Raney-Ni catalyst. The reaction is carried out by adding a part of the fresh catalyst to the system during the reaction. The catalyst is conventional Raney-Ni catalyst which may contain trace of other metals (e.g. Ti, Cr, Mo, Mn, etc.), and is used in the form developed with an aqueous solution of sodium hydroxide. The amount of the catalyst charged to the reaction system at the start is 2-7% in terms of concentration in the liquid; and 1/50-1/2pts. (preferably 1/10-1/3) pts., based on 1pt. of the above amount, of the fresh catalyst is added to the system when the conversion begins to decline.

Description

【発明の詳細な説明】 本発明はラネーニッケル触妹を用いた連続水素化法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous hydrogenation process using a Raney nickel catalyst.

ラネーニッケル触媒はアルデヒド類の水素化触媒として
高い活性?示すので、従来がら広(用いられているが、
(り返し、あるいは連続して使用することにより、短時
間で活性が低下してしまうという欠点がある。再生を行
なう為に失活触媒をアルカリ液で洗い、新しいラネー合
金を加えてアルカリ液中で加熱する方法(@開明5l−
84792)なども考案されているが、触媒の分離回収
、強アルカリ液処理、水洗などの煩雑な操作が必要とさ
れ、特に連続反応で使用される触媒の再生法としては十
分渦電できるものでない。
Is Raney nickel catalyst highly active as a hydrogenation catalyst for aldehydes? Because it shows, it is traditionally wide (used, but
(The disadvantage is that the activity decreases in a short period of time if used repeatedly or continuously. To regenerate, wash the deactivated catalyst with alkaline solution, add new Raney alloy, and add it to the alkaline solution.) Method of heating with (@Kaimei 5l-
84792) have been devised, but they require complicated operations such as separation and recovery of the catalyst, treatment with a strong alkaline solution, and washing with water, and are not suitable for regenerating catalysts used in continuous reactions. .

本発明者は、アリルアルコールのヒドロホルミル化物か
ら得られる4−ヒドロキシブチルアルデヒドと2−メチ
ル−3−ヒドロキシプロピオンアルデヒドとを含む水溶
液を連続的に水素化してブタンジオール類を製造する方
法につき検討をおこなったが、このような連続反応に用
いたラネーニッケル触媒の活性保持時間が比較的短かく
、問題があることを知った。新触媒の仕込量を増せば活
性保持時間も延びるが、はy仕込量に比例した延長なの
で連続反応の中析を避ける利点はあるものの、触媒コス
トの改善にはならない。
The present inventor investigated a method for producing butanediols by continuously hydrogenating an aqueous solution containing 4-hydroxybutyraldehyde and 2-methyl-3-hydroxypropionaldehyde obtained from a hydroformylated product of allyl alcohol. However, it was discovered that the Raney nickel catalyst used in such continuous reactions had a relatively short activation retention time, which caused a problem. If the amount of new catalyst charged is increased, the activity retention time will be extended, but since y is extended in proportion to the amount charged, although there is an advantage of avoiding interruption of the continuous reaction, it does not improve the catalyst cost.

そこで更に検討を進めたところ、使用する新触媒(ラネ
ーニッケルの展開品)の一部分を反応途中で添加すれば
、低下しかけた触媒活性が初期活性とほとんど同程度に
まで回復し、しかも途中添加触媒量に比して著るしく長
時間高活性を保持することを見出し、この発明を完成し
た。
Further investigation showed that by adding a portion of the new catalyst (a developed product of Raney Nickel) during the reaction, the catalytic activity, which had begun to decline, could be restored to almost the same level as the initial activity. The present invention was completed based on the discovery that the compound retains high activity for a significantly longer period of time than the conventional method.

新触媒の添加量は初めに仕込んだ触媒に対して1150
〜1/2、好ましくは1/10〜1/3で十分であり、
アルカリ処理など添加以外の操作を何ら必要としない極
めて簡便な方法である。従って、連続運転中であっても
スラリーポンプ圧入法、同圧法などにより反応器内に新
触媒を添加することにより、活性の回復を計ることが可
能なので、運転を停止する必要がす(、非常に効率的で
あり、工業的に有利である。新触媒を反応途中で添加す
る時期は、転化率が低下し始め活性保持手段をとるべき
時期を知った段階が好ましい。活性低下が進んで、はと
んど失活してから行なうのは水素化生成物の品質管理上
好ましくない。
The amount of new catalyst added is 1150 compared to the initially charged catalyst.
~1/2, preferably 1/10 to 1/3 is sufficient,
This is an extremely simple method that does not require any operations other than addition, such as alkali treatment. Therefore, even during continuous operation, it is possible to recover activity by adding new catalyst into the reactor using the slurry pump injection method, isopressure method, etc. It is efficient and industrially advantageous.It is preferable to add the new catalyst in the middle of the reaction when the conversion rate starts to decrease and you know when to take measures to maintain the activity.As the activity decreases, It is undesirable to carry out the process after the hydrogenation process has been mostly deactivated in terms of quality control of the hydrogenated product.

ラネーニッケル触媒を用℃・たアルテヒド類の水素化反
応は、通常1〜110気圧、常Y晶〜125℃の条件下
に行なわれる。
The hydrogenation reaction of altehydes using a Raney nickel catalyst is usually carried out under the conditions of 1 to 110 atm and normal Yc to 125°C.

アリルアルコールのヒドロホルミル化と水抽出で得たア
ルデヒド水溶液の水素化の場合についても、公知の反応
条件を用いろことができる。この場合、副生成物の生成
を抑制するためにも水素圧20〜80気圧、温間70〜
120°Cが好ましい。
Known reaction conditions can also be used for hydroformylation of allyl alcohol and hydrogenation of an aqueous aldehyde solution obtained by water extraction. In this case, in order to suppress the formation of by-products, the hydrogen pressure is 20 to 80 atm, and the warm temperature is 70 to 80 atm.
120°C is preferred.

水素圧は80気圧以上でも反応上は問題ないが、装置コ
ストの而よりみて、あまり有利でない。
Although a hydrogen pressure of 80 atm or higher does not cause any problem in terms of reaction, it is not very advantageous in terms of equipment cost.

触媒としては通常のラネーニッケルの他に微量の他種金
属(T 11 Cr I Mo + Mnなど)を含む
ものであってもよ((11触媒調製1白崎高保、藤堂尚
之編p80〜83、講談社、549)、通常カセイソー
ダ水溶液で展開したものを用いる。触媒の初めの仕込量
は液中濃度として0.5〜10%、好ましくは2〜7%
量使用した方がよい。
The catalyst may contain trace amounts of other metals (T 11 Cr I Mo + Mn, etc.) in addition to ordinary Raney nickel ((11 Catalyst Preparation 1 edited by Takayasu Shirasaki and Naoyuki Todo p80-83, Kodansha, 549), which is usually developed with an aqueous solution of caustic soda.The initial amount of catalyst charged is 0.5 to 10% as a concentration in the liquid, preferably 2 to 7%.
It is better to use the amount.

アルデヒドを多量(たとえば、50%以上)の水を含む
水溶液中で水素化する場合、液は酸性側になりやすい。
When an aldehyde is hydrogenated in an aqueous solution containing a large amount (for example, 50% or more) of water, the solution tends to be acidic.

ソルビトールの製造にみもれるようにアルカリを加える
ことのできる例もあるが、アルカリを加えるとアルデヒ
ドの縮合反応が起って不都合な場合も多い。本発明はこ
のようなアルデヒドの水溶液を連続的に水素化する場合
、例えば71Jルアルコールのヒドロホルミル化で得た
4−ヒドロキシブチルアルデヒドと2−メチル−3−ヒ
ドロキシプロピオンアルデヒドとを含む反応液の水抽出
で得られるアルデヒド水溶液をラネーニッケル触媒を用
いて連続的に水素化し、1.4−− ブタンジオール類
を得る方法において特に有用である。以下具体例により
本発明を説明する。
In some cases, as in the production of sorbitol, it is possible to add alkali, but in many cases, adding alkali causes a condensation reaction of aldehydes, which is disadvantageous. In the case of continuous hydrogenation of such an aqueous solution of aldehyde, the present invention is effective in hydrogenating a reaction solution containing 4-hydroxybutyraldehyde and 2-methyl-3-hydroxypropionaldehyde obtained by hydroformylation of 71J alcohol, for example. It is particularly useful in a method in which an aqueous aldehyde solution obtained by extraction is continuously hydrogenated using a Raney nickel catalyst to obtain 1,4-butanediols. The present invention will be explained below using specific examples.

参考例1 水素ガス及び液仕込み口、フィルター付液抜取口、電磁
攪拌機を備えた内容積500罰のオートクレーブにカセ
イソーダ水溶液により90℃で展開したラネーニッケル
触媒47gを加えプロピオンアルデヒド1%、3−ヒド
ロキシ−2−メチルプロピオンアルデヒド1.5%、4
−ヒドロキシブチルアルデヒド12%を含む水溶液を3
15 me/ Hr の速度で仕込み、100℃ 5− で反応を行なわせた。水素ガスは全圧が50 kg/c
4を保つように供給した。第1図に示すように34時間
まではアルデヒド転化率が999%以上であったが、以
後活性が急激に低下した。
Reference Example 1 47 g of Raney nickel catalyst developed at 90°C with aqueous caustic soda solution was added to an autoclave with an internal volume of 500 mm equipped with a hydrogen gas and liquid inlet, a liquid outlet with a filter, and an electromagnetic stirrer, and 1% propionaldehyde and 3-hydroxy- 2-methylpropionaldehyde 1.5%, 4
- 3 ml of an aqueous solution containing 12% hydroxybutyraldehyde
The mixture was charged at a rate of 15 me/Hr, and the reaction was carried out at 100°C. The total pressure of hydrogen gas is 50 kg/c
4 was maintained. As shown in FIG. 1, the aldehyde conversion rate was 999% or more until 34 hours, but the activity rapidly decreased after that.

触媒1gあたりの活性持続時間は723時間である。The duration of activity per gram of catalyst is 723 hours.

実施例1゜ ラネーニッケル量を945gとした以外は参考例1と同
じ条件で反応を行なわせたところ、活性は74時間(7
83時間/g)持続したが、以後急激に低下した(第2
図A点)。この反応液に新触媒を2g添加したところ、
活性は回復しくB点)、さらに0点まで92時間持続し
た(46時間/g途中添加量)。再び2gの新触媒を添
加すると、活性が回復しくD点)94時間持続した。(
47時間/g) 第3図、第4図は第1図、第2図と時間軸を共通にする
イソブチルアルコール副生率(モル%)の変化を示し、
この図から新触媒の添加による触媒活性回復は副生成物
の生成抑制の点で 6− も効果あることがわかる。
Example 1 A reaction was carried out under the same conditions as Reference Example 1 except that the amount of Raney nickel was 945 g.
83 hours/g), but after that it rapidly decreased (second
Figure point A). When 2g of new catalyst was added to this reaction solution,
The activity recovered (point B) and continued for 92 hours until it reached point 0 (46 hours/g intermediate addition amount). When 2 g of new catalyst was added again, the activity recovered and continued for 94 hours (point D). (
47 hours/g) Figures 3 and 4 show changes in the isobutyl alcohol by-product rate (mol%), which share the same time axis as Figures 1 and 2,
From this figure, it can be seen that the recovery of catalytic activity by the addition of a new catalyst is as effective as 6- in terms of suppressing the production of by-products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はアルデヒドの水素化反応の転化率を経
時的に示した図であり、第3図、第4図はイソブチルア
ルコール副生率を経時的に示した図である。 特許出願人 ダイセル化学工業株式会社 −7ユh
FIGS. 1 and 2 are diagrams showing the conversion rate of aldehyde hydrogenation reaction over time, and FIGS. 3 and 4 are diagrams showing the isobutyl alcohol by-product rate over time. Patent applicant: Daicel Chemical Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)  アルデヒドを水溶液中、ラネーニッケル触媒
の存在下に連続的に水素化してアルコールを製造する方
法において使用する新触媒(展開品)の一部分を反応途
中に添刃口することを特徴とする連続水素化法。
(1) A continuous method characterized by adding a part of the new catalyst (developed product) used in the method for producing alcohol by continuously hydrogenating aldehyde in an aqueous solution in the presence of a Raney nickel catalyst during the reaction. Hydrogenation method.
(2)  アルデヒドの水素化反応がアリルアルコール
のヒドロホルミル化物から得たアルデヒド水浴液からブ
タンジオール類への水素化反応である特許請求の範囲第
1項記載の方法d(3)新触媒の途中添加量が初めに仕
込んだ触媒の量に対してユ〜ユ量である特許請求の範囲
0  2 第1項又は第2項記載の方法。
(2) Method d according to claim 1, wherein the aldehyde hydrogenation reaction is a hydrogenation reaction of an aldehyde water bath solution obtained from a hydroformylated allyl alcohol to butanediols (3) Midway addition of a new catalyst 2. The method according to claim 02, wherein the amount is between 1 and 20 ml with respect to the amount of catalyst initially charged.
JP58038978A 1983-03-11 1983-03-11 Process for continuous hydrogenation Granted JPS59164739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58038978A JPS59164739A (en) 1983-03-11 1983-03-11 Process for continuous hydrogenation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58038978A JPS59164739A (en) 1983-03-11 1983-03-11 Process for continuous hydrogenation

Publications (2)

Publication Number Publication Date
JPS59164739A true JPS59164739A (en) 1984-09-17
JPH0457654B2 JPH0457654B2 (en) 1992-09-14

Family

ID=12540236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58038978A Granted JPS59164739A (en) 1983-03-11 1983-03-11 Process for continuous hydrogenation

Country Status (1)

Country Link
JP (1) JPS59164739A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010551A1 (en) * 1994-09-30 1996-04-11 Shell Internationale Research Maatschappij B.V. Process for preparing 1,3-alkanediols and 3-hydroxyaldehydes
JP2008524326A (en) * 2004-12-20 2008-07-10 ライオンデル ケミカル テクノロジー、 エル.ピー. Production of butanediol

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246109A (en) * 1999-02-26 2000-09-12 Japan Energy Corp Hydrorefining catalyst, hydrorefining method and production of catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010551A1 (en) * 1994-09-30 1996-04-11 Shell Internationale Research Maatschappij B.V. Process for preparing 1,3-alkanediols and 3-hydroxyaldehydes
JP2008524326A (en) * 2004-12-20 2008-07-10 ライオンデル ケミカル テクノロジー、 エル.ピー. Production of butanediol
JP4913752B2 (en) * 2004-12-20 2012-04-11 ライオンデル ケミカル テクノロジー、 エル.ピー. Production of butanediol

Also Published As

Publication number Publication date
JPH0457654B2 (en) 1992-09-14

Similar Documents

Publication Publication Date Title
JP4690627B2 (en) Method for producing saturated C3- to C20-alcohol
EP0089569B1 (en) Process for preparation of guerbet alcohols
US5037793A (en) Catalyst for the hydrogenation of unsaturated aliphatic compounds
JP2000508304A (en) Preparation of amine and amino nitrile
JPH01299239A (en) Production of neopentyl glycol
US5789621A (en) Preparation of amines and aminonitriles
EP0204046B1 (en) Process and catalyst for the conversion of cyclohexanol to cyclohexanone
JPS59164739A (en) Process for continuous hydrogenation
SA00201006B1 (en) A catalytic hydrogenation method in the liquid phase to convert aldehydes into corresponding alcohols.
EP0971877B1 (en) Production of 1,3-diaminopentane by hydrogenation of 3-aminopentanenitrile
US5039648A (en) Process for the preparation of cobalt catalysts
JPS58219944A (en) Supported catalyst containing cobalt and production thereof
JPH02188542A (en) Production of phenol
JP2766040B2 (en) Production method of saturated alcohol
US4717696A (en) Regeneration of a supported palladium catalyst used in the conversion of cyanohydrins to their aldoses
JP2955866B2 (en) Method for producing dialkyl carbonate
US20100210881A1 (en) Supported Noble Metal Catalyst
KR19980079986A (en) Zirconium Oxide-containing Catalyst
JP4717207B2 (en) Method for producing compound having carboxyl group and / or carbonyl group
CN111875497B (en) Method for synthesizing ethyl glyoxylate by catalytic hydrogenation of diethyl maleate
JP3939042B2 (en) Method for producing saturated ketone compound
JP3760543B2 (en) Method for producing alkylene glycol
JPH055820B2 (en)
SU573471A1 (en) Method of preparing dimethylvinylcarbinol
JPH10287628A (en) Production of n-substituted amine