Nothing Special   »   [go: up one dir, main page]

JPS5872071A - Thin film magnetic sensor - Google Patents

Thin film magnetic sensor

Info

Publication number
JPS5872071A
JPS5872071A JP17231081A JP17231081A JPS5872071A JP S5872071 A JPS5872071 A JP S5872071A JP 17231081 A JP17231081 A JP 17231081A JP 17231081 A JP17231081 A JP 17231081A JP S5872071 A JPS5872071 A JP S5872071A
Authority
JP
Japan
Prior art keywords
film
thin film
magnetic
deposited
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17231081A
Other languages
Japanese (ja)
Other versions
JPH0372949B2 (en
Inventor
Masuzo Hattori
服部 益三
Mitsuhiro Otani
光弘 大谷
Tomu Sato
佐藤 富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17231081A priority Critical patent/JPS5872071A/en
Publication of JPS5872071A publication Critical patent/JPS5872071A/en
Publication of JPH0372949B2 publication Critical patent/JPH0372949B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To obtain a minute magnetic sensor having thickness of several microons-several tens microns, by forming a strip-shaped magnetic thin film, which consists of two layers different in coersive force, on a substrate. CONSTITUTION:Magnetic materials having a composition ratio of Fe:Co:V=35- 52:41-63:1-8 (weight ratio) are used for a soft film 2, and magnetic materials having a composition ratio of Fe:Co:V=25-51:40-63:2-5 (wt%) are used for a hard film 3, and borosilicate glass is used for a substrate 1. The soft film 2 is deposited on the substrate 1 by electron beam vapor-deposition, and the hard film 3 is deposited on the soft film 2. This two-layered film is formed to a shape like a strip by photolithography, and an aqueous ferric chloride solution is used for etching. An SiO2 film is deposited on all of the surface of the strip-staped magnetic thin film by the sputtering method. Al is deposited on all of the surface of the substrate by vacuum depostion to form a coil 5. This device is cut and is made into a chip and is mounted on a reed frame, and Al wires of 25 microns are connected to electrode pads 6 and 6' of the coil and onto the reed frame by wire bonding, and finally, this device is molded.

Description

【発明の詳細な説明】 本発明は、真空蒸着、電子線蒸着あるいはスパッタリン
グ蒸着により、保磁力の異なる2種類の磁性薄膜を重ね
て形成し、これにピックアップ用コイルを巻線、あるい
は薄膜のフ〕トリソ技術を用いて作成したコイルを設け
てなる薄膜磁気センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves forming two types of magnetic thin films with different coercive forces over each other by vacuum evaporation, electron beam evaporation, or sputtering evaporation, and then winding a pickup coil around the magnetic thin films or by winding the pickup coil around the magnetic thin films. [This invention relates to a thin film magnetic sensor equipped with a coil made using triso technology.]

すなわち、ガラス、磁器、あるいは表面に非磁性の酸化
膜を設けたたとえばシリコン(Sl)ウェハの上に、F
e−Go−Vの組成からなり2層の磁性薄膜を、成分比
を変えて重ねて形成し、その上に絶縁膜を介してピック
アップ用コイルを巻線、あるいは、薄膜のフォトリソ技
術を用いて作成したコイルを設けてのち、モールドして
構成した薄膜磁気センサである。
That is, F is applied on glass, porcelain, or a silicon (Sl) wafer with a non-magnetic oxide film on its surface.
Two layers of magnetic thin films made from the composition of e-Go-V are stacked with different component ratios, and a pickup coil is wound on top of the layers through an insulating film, or by using thin film photolithography technology. This is a thin film magnetic sensor constructed by installing the created coil and then molding it.

従来、外部磁場の変化量、あるいは変化を検出する磁気
センサには、半導体材料、磁性材料などを用いた多くの
センサが開発され、実用化されている。たとえば、半導
体材料を用いたものでは、ホール素子、FIT素子があ
る。これらはIn5l) 。
Conventionally, many sensors using semiconductor materials, magnetic materials, etc. have been developed and put into practical use as magnetic sensors that detect the amount of change or change in an external magnetic field. For example, devices using semiconductor materials include Hall elements and FIT elements. These are In5l).

CT2LAs等のm−v化合物、 SiあるいはcTe
などが主に使用されている。磁性材料を用いたものでは
メモリ素子、磁気抵抗素子、磁気ヘッドなどがあり、パ
ーマロイ、センダスト、Ni−ZnやMn−Znnフチ
イトなどが使用されている。
m-v compounds such as CT2LAs, Si or cTe
etc. are mainly used. There are memory elements, magnetoresistive elements, magnetic heads, etc. that use magnetic materials, and permalloy, sendust, Ni-Zn, Mn-Znn fluorite, etc. are used.

また、特開昭53−137641号公報には線状の磁性
体を機械的、熱的処理を加え、磁性線の表面近くの層(
第2の磁気的部分)の磁気的特性を変え、内部(第1の
磁気的部分)の磁気特性より保磁力を太きくシ、これに
巻線してなる磁気デバイスが開示されている。これは第
2の磁気的部分の保磁力が、第1の磁気的部分の保磁力
より大きくなっている。すなわち、保磁力の小さい磁気
的部分が保磁力の大きい磁気的部分によって、円周方向
におおわれている構造である。
Furthermore, in Japanese Patent Application Laid-Open No. 53-137641, a magnetic wire is subjected to mechanical and thermal treatment, and a layer near the surface of the magnetic wire (
A magnetic device is disclosed in which the magnetic properties of the second magnetic part (second magnetic part) are changed to have a larger coercive force than the internal (first magnetic part), and a wire is wound around this. This is because the coercive force of the second magnetic portion is greater than the coercive force of the first magnetic portion. That is, it has a structure in which a magnetic portion with a small coercive force is covered in the circumferential direction by a magnetic portion with a large coercive force.

この磁気デバイスはたとえば外部磁場の大きさ。This magnetic device measures the magnitude of an external magnetic field, for example.

方向を線の長手方向において変えるとき、保磁力の大き
い部分は、保磁力の小さい部分と磁気的に相互作用が働
いているから、両者の磁化方向が同一方向で外部磁場と
逆方向をとっている場合、保磁力の小さい部分が磁化反
転するのはその保磁力Hc1より大きく保磁力の大きい
部分の保磁力■c2より小さい外部磁場でおこる。まだ
、外部磁場と保磁力の大きい部分の磁化方向が同じで、
保磁力の小さい部分の磁化方向のみがそれらと逆方向を
とっている場合は、保磁力の小さい部分の磁化反転を保
磁力の大きい部分が助けることに、なり、Hc1程度の
磁場で、より急しゅんに保磁力の小さい部分の磁化反転
を生じる。これら保磁力の小さい部分の外部磁場の影響
による磁化反転により電磁誘導現象が生じ、線に巻いで
あるピックアップ用コイルに電流が発生し、コイル両端
に、前者の場合は小さいパルス電圧、後者の場合は、大
きいパルス電圧が得られる。このパルス電圧の大きさ、
急峻さは単一磁性体よりなるものよりはるかに優れてい
る。また単一磁性体からなるものは、ピックアップコイ
ルに発生するパルスの幅は外部磁場の変化の速度に依存
し、遅ければ広く、速ければ狭くなるという様に一定し
たパルス電圧が得られない。
When changing the direction in the longitudinal direction of the wire, the part with a large coercive force interacts magnetically with the part with a small coercive force, so the magnetization direction of both is the same direction and opposite to the external magnetic field. In this case, the magnetization reversal of the portion with a small coercive force occurs in an external magnetic field that is greater than the coercive force Hc1 and smaller than the coercive force ■c2 of the portion with a large coercive force. Still, the magnetization direction of the external magnetic field and the part with large coercive force are the same,
If only the magnetization direction of the part with a small coercive force is opposite to those, the part with a large coercive force will help the magnetization reversal of the part with a small coercive force, and a magnetic field of about Hc1 will cause the magnetization to change more rapidly. Suddenly, magnetization reversal occurs in areas with low coercive force. Magnetization reversal due to the influence of an external magnetic field in these parts with low coercive force causes an electromagnetic induction phenomenon, and a current is generated in the pickup coil wound on a wire, and a small pulse voltage is applied to both ends of the coil in the former case, and a small pulse voltage in the latter case. A large pulse voltage can be obtained. The magnitude of this pulse voltage,
The steepness is much better than that made of a single magnetic material. Furthermore, in the case of a pickup coil made of a single magnetic material, the width of the pulse generated in the pickup coil depends on the speed of change of the external magnetic field, and a constant pulse voltage cannot be obtained; the slower the change, the wider the change, and the faster the change, the narrower the pulse voltage becomes.

このように特開昭53−137641号公報のものは、
優れた特性をもった磁気デバイスであるがその製造方法
は複雑なものであり、歩留り良く製造することが困難で
ある。また、直径が260ミクロンの細線を用いている
が、より小さいデバイスを作成することは非常に困難で
あるというよりできなくなる。さらには、このようなデ
バイスを多数ならべてマトリックスを作成したり、微小
な磁場を検出するような磁気センサを作成する場合も、
これに適する磁気デバイスを作成することはできない。
In this way, the one published in Japanese Patent Application Laid-Open No. 53-137641 is
Although magnetic devices have excellent characteristics, their manufacturing methods are complicated, and it is difficult to manufacture them with a high yield. Also, although a thin wire with a diameter of 260 microns is used, it would be very difficult or even impossible to create smaller devices. Furthermore, when creating a matrix by arranging many such devices, or creating a magnetic sensor that detects minute magnetic fields,
It is not possible to create magnetic devices suitable for this.

本発明はこれらの諸問題、難点を大幅に解決しようとす
るものである。すなわち、薄膜構造にすることにより、 (1)数ミクロン−数十ぐクロンのような微小な磁気セ
ンサに仕上げることができる。
The present invention seeks to significantly solve these problems and difficulties. That is, by forming a thin film structure, (1) it is possible to create a minute magnetic sensor with a size of several microns to several tens of microns.

?) 集積密度を高くできることから多数のセンサから
なるマトリックスが高密度にできる。
? ) Since the integration density can be increased, a matrix consisting of a large number of sensors can be formed at a high density.

(3)製造が容易となる。(3) Manufacturing becomes easier.

(4)  量産性に富んでいる。(4) It is highly suitable for mass production.

などの優れた1A甑が得られる。An excellent 1A koshigami such as the following can be obtained.

以下に本発明の一実施例を図面を用いて説明するO 第2図、第3図は本発明の一実施例の構成を示すO 本実施例の薄膜磁気センサは、Fe−C0−■を材料と
し、真空蒸着、電子線蒸着、あるいはスパッタリング蒸
着によって第2図の基板1上に異なる保磁力の磁性薄膜
2,3を2層重ねて析出する。
An embodiment of the present invention will be described below with reference to the drawings. Figures 2 and 3 show the configuration of an embodiment of the present invention. The thin film magnetic sensor of this embodiment uses Fe-C0-■. Two layers of magnetic thin films 2 and 3 having different coercive forces are deposited on the substrate 1 of FIG. 2 by vacuum evaporation, electron beam evaporation, or sputtering evaporation.

保磁力を異にするには、F6−GO−Vの組成の成分比
を変えておこなう。F、 −co−v磁性材料の組成と
保磁力の関係を一部調べると、おおむね第1図の通りで
あった。この領域ではVの添加量が最も保磁力に効果的
に影響する。よって、保磁力の異なる磁性薄膜、すなわ
ち保磁力の小さい磁性薄膜2と大きい磁性薄膜3の2層
の構成となるが、その大きさの差はあまり大きくても、
結果として得られるピックアップコイルに発生するパル
ス電圧が得られにくい。発明者による実験では保磁力の
大きい磁性薄膜(以後この薄膜を・・−ド膜と呼ぶ)の
保磁力は、保磁力の小さい磁性薄膜(以下この薄膜をソ
フト膜と呼ぶ)の保磁力より約6倍〜2゜倍程度の範囲
でパルス特性が得られた。しかし、倍率をさらに大きく
するとパルス電圧はしだいに小さくなる。また倍率をこ
れより小さくして行ってもソフト膜とノ・−ド膜の相互
作用が弱いだめか、パルス電圧は小さくなるとともにパ
ルス幅が広くなる。これは、ハード膜の保磁力が太きす
ぎるとソフト膜の磁化方向が外部磁場がなくてもハード
膜の磁化方向に強制的にむけられてしまいパルス電圧が
得られにくいと考えられる。またハード膜の保磁力がソ
フト膜の保磁力よりは大きいが近い値になると、外部磁
場に対しソフト膜の磁化反転を効果的に抑制あるいは助
けることが出来ず、単一膜に近いパルス電圧が得られる
ことになると思われる。外部磁場に対し、ソフト膜とハ
ード膜の保磁力の相互作用を効果的に生じさせるだめに
は第1図において、ソフト膜、ハード膜の成分比を前述
の比率に選ぶことが好ましい。
In order to vary the coercive force, the component ratio of the composition of F6-GO-V is changed. A partial investigation of the relationship between the composition and coercive force of the F, -co-v magnetic material revealed that it was roughly as shown in Figure 1. In this region, the amount of V added most effectively influences the coercive force. Therefore, the structure consists of two layers of magnetic thin films with different coercive forces, that is, magnetic thin film 2 with a small coercive force and magnetic thin film 3 with a large coercive force, but even if the difference in size is not very large,
The resulting pulse voltage generated in the pickup coil is difficult to obtain. In experiments conducted by the inventors, the coercive force of a magnetic thin film with a large coercive force (hereinafter referred to as a . . . -de film) is approximately greater than that of a magnetic thin film with a small coercive force (hereinafter referred to as a soft film). Pulse characteristics were obtained in a range of about 6 times to 2 degrees. However, when the magnification is further increased, the pulse voltage gradually becomes smaller. Even if the magnification is made smaller than this, the pulse voltage becomes smaller and the pulse width becomes wider, probably because the interaction between the soft film and the node film is weak. This is because if the coercive force of the hard film is too large, the magnetization direction of the soft film will be forced to the direction of magnetization of the hard film even in the absence of an external magnetic field, making it difficult to obtain a pulse voltage. Furthermore, if the coercive force of the hard film is larger than but close to that of the soft film, it will not be possible to effectively suppress or assist magnetization reversal of the soft film in response to an external magnetic field, and the pulse voltage will be close to that of a single film. It seems that you will be able to get it. In order to effectively generate an interaction between the coercive forces of the soft film and the hard film in response to an external magnetic field, it is preferable to select the component ratio of the soft film and the hard film to the above-mentioned ratio in FIG.

すなわち、ソフト膜の組成は、Fa:36〜62重量%
 、Co:41−63重量%、V:1〜8重量%の領域
、ハード膜の組成は、Fe:26〜51重量% 、 G
o :40〜e 3重量%、V:2〜15重量%である
That is, the composition of the soft film is Fa: 36 to 62% by weight.
, Co: 41-63% by weight, V: 1-8% by weight, the composition of the hard film is Fe: 26-51% by weight, G
o: 40 to e 3% by weight, V: 2 to 15% by weight.

なお、これらFe−Go−Vの組成比以外のところでも
磁性材料の保磁力の組合せは適当にとり得るが、後述す
るように基板の熱膨張係数の大きさが磁性膜のそれと大
きく異なると、2層膜として析出したとき見かけの保磁
力は変ってし捷い、ソフト膜2.ハード膜3の組合せが
決めにくく、また作成条件に対し安定につくりにくくな
る。
Note that the coercive forces of the magnetic materials can be appropriately combined at composition ratios other than these Fe-Go-V, but as will be described later, if the coefficient of thermal expansion of the substrate is significantly different from that of the magnetic film, 2 When deposited as a layered film, the apparent coercive force changes and the soft film 2. It is difficult to decide on the combination of hard films 3, and it is also difficult to produce them stably under various production conditions.

このようなソフト膜2.ハード膜3を前述の方法で基板
1上に蒸着して形成するのであるが、膜の磁化方向が等
方向であると、所望のパルスが得られ々い。両方の膜と
も磁化容易軸を持ち、お互が平行でなければならない。
Such a soft film2. The hard film 3 is formed by vapor deposition on the substrate 1 by the method described above, but if the magnetization direction of the film is isodirectional, it is difficult to obtain the desired pulse. Both films have easy axes of magnetization and must be parallel to each other.

このように磁化容易軸を膜に持たせ、しかも方向をお互
に平行にするには、磁場中蒸着力との手法をとり膜形成
することである。
In order to provide a film with easy magnetization axes and to make the directions parallel to each other, it is necessary to form the film using a method using deposition force in a magnetic field.

また、基板1上へソフト膜2.ハード膜3を形成する場
合、真空槽内で蒸着しておこなうが、このときソフト膜
2とハード膜3の界面に、水分、あるいは他の吸着ガス
などにより生ずる酸化膜、あるいは、歪などによる磁気
特性の犬きく変化した層ができると、両者の膜間の相互
作用が得られなくなる。
Also, a soft film 2. When forming the hard film 3, it is deposited in a vacuum chamber. At this time, the interface between the soft film 2 and the hard film 3 is coated with an oxide film caused by moisture or other adsorbed gases, or a magnetic film caused by strain. If a layer with drastically different properties is formed, interaction between the two films becomes impossible.

これを防ぐのに、ソフト膜2.ハード膜3を同一槽の中
で真空を破らず、つづけて蒸着し形成することが必要で
ある。また、歪は膜自身の磁気特性すらも大きく変えて
しまうので、基板1の物理定数である熱膨張係数を特に
ソフト膜のそれとで1゜ きるだけ合せることが重要である。捷だハード膜3の熱
膨張係数も基板1やソフト膜2ど大きく違わない方が、
パルスの発生する磁場のばらつきが少なくなる。
To prevent this, soft membrane 2. It is necessary to continuously deposit and form the hard film 3 in the same tank without breaking the vacuum. Furthermore, since strain greatly changes even the magnetic properties of the film itself, it is important to match the coefficient of thermal expansion, which is a physical constant, of the substrate 1 with that of the soft film by as much as 1°. If the coefficient of thermal expansion of the hard film 3 is not significantly different from that of the substrate 1 or the soft film 2,
Variations in the magnetic field where pulses are generated are reduced.

ハード膜3を基板上に形成したのち、ソフト膜2を重ね
て形成した場合、あらかじめ基板1の熱膨張係数をソフ
ト膜2の値とできるだけ合せておいても、ハード膜3の
影響を直接受けて、ソフト膜2に歪が多く加わり磁気特
性が変動してし甘う。
If the hard film 3 is formed on a substrate and then the soft film 2 is formed overlappingly, even if the thermal expansion coefficient of the substrate 1 is made to match the value of the soft film 2 as much as possible in advance, it will not be directly affected by the hard film 3. As a result, a large amount of strain is applied to the soft film 2, and the magnetic characteristics tend to fluctuate.

これはハード膜3の厚さにも敏感である。しかしソフト
膜2を基板1上に析出したのち、・・−ド膜3をソフト
膜2に重ねて形成すると、これらの影響は改良される。
This is also sensitive to the thickness of the hard film 3. However, if the soft film 2 is deposited on the substrate 1 and then the . . . -de film 3 is formed over the soft film 2, these effects can be improved.

このように基板1上に重ねて形成された2枚の磁性薄膜
2,3を、たとえば、適当な大きさのんんざく状にする
には、フォトリソ技術を用いておこなえば容易にできる
。本実施例ではフォートレジストにシプレー社のAZ1
350Jを用い、400ミフロン×25ミクロンのたん
ざく状のものを作成した。磁性膜の工、チングは塩化鉄
の水溶液を用いた。
The two magnetic thin films 2 and 3 thus formed overlappingly on the substrate 1 can be easily formed into, for example, a rectangular shape of an appropriate size by using photolithography. In this example, the FortResist is Shipley's AZ1.
Using 350J, a 400 micron x 25 micron piece was created. The magnetic film was manufactured using an aqueous solution of iron chloride.

たんざく状の2層よりなる磁性薄膜2,3の上に、電気
的絶縁をおこなうため、スパッタリング蒸着で5102
膜4を全面に形成する。このSi、02膜4の膜厚は6
000人程度にしだ。つぎに、5i02膜4上にピック
アップコイル形成するだめのAP膜を全面に蒸着したの
ち、フォ) IJソ技術でたんざく状の磁性薄膜2,3
上にピックアップ用コイル5を形成した。なお第2図中
の6,6′は電極用パッドである。
On top of the magnetic thin films 2 and 3 consisting of two tanzaku-shaped layers, 5102 is deposited by sputtering to provide electrical insulation.
A film 4 is formed over the entire surface. The thickness of this Si,02 film 4 is 6
About 000 people. Next, an AP film for forming a pickup coil is deposited on the entire surface of the 5i02 film 4, and then a tanzaku-shaped magnetic thin film 2, 3 is formed using IJ technology.
A pickup coil 5 was formed on top. Note that 6 and 6' in FIG. 2 are electrode pads.

以下に本発明の実施例を具体的に説明する。Examples of the present invention will be specifically described below.

〔実施例1] ソフト膜用磁性材料としてFe:Co:V=35〜52
:41〜63:1〜8(重量比)の組成比のものを、ハ
ード膜用磁性材料としてFe :Co :V =25〜
51:40〜63:2〜5(重量%)の組成比のものを
用いた。基板1には、ボロシリケートガラスを用いた。
[Example 1] Fe:Co:V=35-52 as magnetic material for soft film
:41-63:1-8 (weight ratio) as magnetic material for hard film Fe:Co:V=25-
The composition ratio of 51:40 to 63:2 to 5 (wt%) was used. For the substrate 1, borosilicate glass was used.

この基板1の熱膨張係数は、主としてホー酸とシリカの
成分比を変えることによ秒、約65×1O−77C〜8
o×10〜710C程度まで変化しうる。電子線蒸着で
基板1−ににソフト膜2を3000人の厚みに析出し、
つづけて2500人の膜厚のハード膜3をソフト膜2に
重ねて析出した。ソフト膜2とハード膜30組合せは第
1表に示しだ通りにいろいろと変えて析出した。この2
層膜を400ミフロン×26ミクロンのたんざく状に、
フォ) IJソ技術をもちいて形成した。エツチングは
塩化第2鉄の水溶性をもちいておこなった。
The thermal expansion coefficient of this substrate 1 can be varied from approximately 65×1O-77C to 8C by mainly changing the component ratio of horic acid and silica.
It can vary from 0x10 to about 710C. A soft film 2 is deposited on the substrate 1 to a thickness of 3000 nm by electron beam evaporation,
Subsequently, a hard film 3 having a thickness of 2,500 layers was deposited on top of the soft film 2. Various combinations of soft film 2 and hard film 30 were deposited as shown in Table 1. This 2
The layer film is made into a strip of 400 microns x 26 microns.
4) Formed using IJ-So technology. Etching was carried out using water-soluble ferric chloride.

つぎに5i02膜4をスパッタリング方法で、たんざく
状にした磁性薄膜上全面に析出した。この5102膜4
は5000人程度とした。
Next, a 5i02 film 4 was deposited on the entire surface of the striped magnetic thin film by sputtering. This 5102 membrane 4
It was estimated that there would be around 5,000 people.

コイル5の形成はムeを基板の全面に真空蒸着で析出さ
せることにより行った。A/の膜厚はo、8ミクロン、
巻数は8ターンであった。
The coil 5 was formed by depositing Mue on the entire surface of the substrate by vacuum deposition. The film thickness of A/ is o, 8 microns,
The number of turns was 8 turns.

つぎにダイシング機械をもちいて切断し、デツプ化した
のち、リードフレーム−1−にマウンドし、25ミクロ
ンのA、線をコイルの電極パッド6゜6′とリードフレ
ーム上にワイヤボンドして結線し最後にモールドした。
Next, it is cut using a dicing machine to form depths, then it is mounted on a lead frame-1-, and a 25 micron A wire is connected to the electrode pad 6°6' of the coil by wire bonding on the lead frame. Finally, I molded it.

 3 このようにできたデバイスを、ソレノイド中に入れて外
部磁場を印加し、ピックアップ用コイルの両端に発生す
る前述のパルスの電圧を測定した。
3 The device thus produced was placed in a solenoid, an external magnetic field was applied, and the voltage of the aforementioned pulse generated at both ends of the pickup coil was measured.

なお外部磁場用にもちいたンレノイドコイルにはIKH
zの正弦波電流を流して外部磁場を発生させた。測定結
果を第1表に示した。
In addition, the IKH coil is used for the external magnetic field.
An external magnetic field was generated by passing a sinusoidal current of z. The measurement results are shown in Table 1.

(以下余 白) 4 15 〔実施例2〕 実施例1において、N1112の試料に用いたソフト膜
用磁性材料とハード膜用磁性材料を用い、電子線蒸着法
により、ボロ・シリケートガラス基板1上にソフト膜を
先に析出したのちノ・−ド膜をこれに重ねて析出して2
層の磁性薄膜を形成した場合と、ハード膜を先に析出し
たのちソフト膜をこれに重ねて析出して2層の磁性薄膜
を形成した場合について比較した。磁性薄膜をだんざく
状に形成する工程以後の方法は実施例1と同様にしだ。
(The following is a blank space) 4 15 [Example 2] Using the magnetic material for the soft film and the magnetic material for the hard film used for the N1112 sample in Example 1, the material was deposited on the borosilicate glass substrate 1 by electron beam evaporation. The soft film is deposited first, and then the node film is deposited on top of it.
A comparison was made between a case in which a magnetic thin film of one layer was formed and a case in which a hard film was deposited first and then a soft film was deposited on top of it to form a two-layer magnetic thin film. The method after the step of forming the magnetic thin film in a danzag shape is the same as in Example 1.

なおソフト膜、ハード膜の厚みは、それぞれ、30oO
人、2500人とした。その結果ハード膜を先に析出し
た場合では、外部磁場を・・−ド膜の保磁力より犬きく
しても大きな、しかも急峻なパルス特性は得られなくて
25μV程度の小さいパルスしか得られなかった。ソフ
ト膜を先に形成した場合では、パルス電圧が1.75ミ
IJボルトと太きく、シかもパルス幅が0.1マイクロ
セカンド以下のものが得られた。外部磁場に対するパル
ス′−耳圧の関係を第3図に示す。外部磁場の小さい領
域では2種類の大きさの異なるパルスが得られた。
The thickness of the soft film and hard film is 30oO, respectively.
The number of people was 2,500. As a result, when the hard film was deposited first, even if the external magnetic field was set much higher than the coercive force of the hard film, large and steep pulse characteristics could not be obtained, and only small pulses of about 25 μV were obtained. . In the case where the soft film was formed first, a pulse voltage as large as 1.75 μIJ volts and a pulse width of 0.1 microseconds or less were obtained. The relationship between pulse ' and ear pressure with respect to the external magnetic field is shown in FIG. Two types of pulses with different sizes were obtained in the region where the external magnetic field was small.

〔実施例3〕 実施例1の1!]、12の試料において、その磁性薄膜
の形成方法を次の通りにおこなった。すなわち基板上に
ソフト膜を先に析出したのち、真空槽の真空を破り、一
度常圧の空気中に出し、これを再度真空中に入れてハー
ド膜をソフト膜に重ねて析出した。この2層をたんざく
状にする工程以後は実施例1と同じ方法でおこ々つだ。
[Example 3] Example 1-1! ], 12 samples, the magnetic thin film was formed as follows. That is, after a soft film was first deposited on the substrate, the vacuum of the vacuum chamber was broken and the film was once exposed to normal pressure air, and then this was put back into the vacuum to deposit the hard film on top of the soft film. After the step of forming these two layers into a tanzak shape, the same method as in Example 1 was carried out.

このようにして作成した薄膜磁気センナを外部磁場中に
入れ駆動させた。その結果ノ・−ド膜の保磁力以上の磁
場を印加しても、大きな、しかも急峻なパルスは得られ
なかった。
The thin film magnetic sensor thus prepared was placed in an external magnetic field and driven. As a result, even if a magnetic field greater than the coercive force of the node film was applied, a large and steep pulse could not be obtained.

以上実施例でも示した如く、本発明においてはソフト嘆
、ハード膜を、Fa、Go、Vの組成比を変えることに
より、まだ基板の熱膨張係数を適当に選び、ソフト膜を
先に析出し、つづけてハード膜をソフト膜に重ねて析出
することによって、外部磁場の大きさ、方向の変化に対
し、ピックアップNルに大きくてしかも急峻外パルス電
圧を1;Iる。
As shown in the examples above, in the present invention, the thermal expansion coefficient of the substrate is appropriately selected by changing the composition ratio of Fa, Go, and V for the soft and hard films, and the soft film is deposited first. Then, by depositing a hard film on top of a soft film, a large and steep external pulse voltage can be applied to the pickup voltage with respect to changes in the magnitude and direction of the external magnetic field.

 7 このような特性を持つ薄膜磁気センサは、磁気抵抗特性
を利用した薄膜磁気センサ、あるいはホール効果を利用
したホール素子などにくらべ、無負荷でしかも出力電圧
も太きい。またパルス状に出力が得られることからディ
ジタル信号などを得るセンサとして有用である。さらに
は、薄膜化することにより微少化でき、ICなどの集積
回路にも有用である。
7 A thin film magnetic sensor with such characteristics can be operated without load and has a higher output voltage than a thin film magnetic sensor that uses magnetoresistive characteristics or a Hall element that uses the Hall effect. Furthermore, since the output is obtained in the form of a pulse, it is useful as a sensor for obtaining digital signals. Furthermore, by making the film thinner, it can be miniaturized and is useful for integrated circuits such as ICs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFa −Co−V系の組成比と保磁力ならびに
飽和磁化の関係を示す図、第2図Aは本発明の一実施例
における薄膜磁気センサの構成を示す断面図、同Bは同
平面図、第3図は本発明により作成した薄膜磁気センサ
の外部磁場とパルス電圧の関係を示す図である。 1・・・・・・基板、2,3・・・・・・磁性薄膜、4
・・・・・5102膜、6・・・・・・コイル。 代理人の氏名 弁理士 中尾 敏 男ほか1多筒  1
 図 席 Co(wt淘
FIG. 1 is a diagram showing the relationship between the composition ratio of Fa-Co-V system, coercive force, and saturation magnetization, FIG. The same plan view and FIG. 3 are diagrams showing the relationship between the external magnetic field and the pulse voltage of the thin film magnetic sensor created according to the present invention. 1... Substrate, 2, 3... Magnetic thin film, 4
...5102 membrane, 6...coil. Name of agent: Patent attorney Satoshi Nakao et al. 1 Tatsutsu 1
Drawing seat Co (wt Tao)

Claims (6)

【特許請求の範囲】[Claims] (1)基板上に保磁力の異なる二層構造のたんざく状磁
性薄膜を有するとともに、その上部に電気的絶縁体の非
磁性膜を介してピックアップ用コイルを有し、上記磁性
薄膜がFe−Go−V合金よりなることを特徴とする薄
膜磁気センサ。
(1) A tanzaku-shaped magnetic thin film with a two-layer structure with different coercive forces is provided on the substrate, and a pickup coil is provided on top of the tanzaku-shaped magnetic thin film with an electrically insulating nonmagnetic film interposed therebetween, and the magnetic thin film is made of Fe- A thin film magnetic sensor comprising a Go-V alloy.
(2)保磁力を異にする2層の磁性薄膜は両者とも同じ
Fe −co−v合金よりなり、その組成比が異るもの
であることを特徴とする特許請求の範囲第1項記載の薄
膜磁気センサ。
(2) The two magnetic thin films having different coercive forces are both made of the same Fe-co-v alloy, but have different composition ratios. Thin film magnetic sensor.
(3)2層の保磁力の異なる磁性薄膜は、保磁力が小さ
い薄膜と、保磁力の大きい磁性薄膜との組合せよりなり
、両者の保磁力の大きさの比は、6〜20倍であること
を特徴とする特許請求の範囲第1項記載の薄膜磁気セン
サ。
(3) A two-layer magnetic thin film with different coercive forces is a combination of a thin film with a small coercive force and a magnetic thin film with a large coercive force, and the ratio of the magnitude of the coercive force between the two is 6 to 20 times. A thin film magnetic sensor according to claim 1, characterized in that:
(4)保磁力の小さい磁性薄膜の組成の成分比は、Fe
:Co:v−36〜52:41〜63:1〜8(重量%
)であることを特徴とする特許請求の範囲第2項記載の
薄膜磁気センサ。
(4) The component ratio of the composition of the magnetic thin film with low coercive force is Fe
:Co:v-36~52:41~63:1~8 (wt%
) The thin film magnetic sensor according to claim 2, characterized in that:
(5)保磁力の大きい磁性薄膜の組成の成分比は、Fe
:CO:v−25〜51:4o〜63:2〜15(重量
係)であることを特徴とする特π1請求の範囲第2項記
載の薄膜磁気センサ。
(5) The component ratio of the composition of the magnetic thin film with large coercive force is Fe
The thin film magnetic sensor according to claim 2, characterized in that :CO:v-25~51:4o~63:2~15 (weight ratio).
(6)保磁力の異なる磁性薄膜は、2層の容易軸方向が
揃っていることを特徴とする特許請求の範囲第1項記載
の薄膜磁気センサ。
(6) The thin film magnetic sensor according to claim 1, wherein the easy axes of the two layers of the magnetic thin films having different coercive forces are aligned.
JP17231081A 1981-10-27 1981-10-27 Thin film magnetic sensor Granted JPS5872071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17231081A JPS5872071A (en) 1981-10-27 1981-10-27 Thin film magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17231081A JPS5872071A (en) 1981-10-27 1981-10-27 Thin film magnetic sensor

Publications (2)

Publication Number Publication Date
JPS5872071A true JPS5872071A (en) 1983-04-28
JPH0372949B2 JPH0372949B2 (en) 1991-11-20

Family

ID=15939541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17231081A Granted JPS5872071A (en) 1981-10-27 1981-10-27 Thin film magnetic sensor

Country Status (1)

Country Link
JP (1) JPS5872071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3420709A1 (en) * 1984-06-02 1985-12-05 Robert Bosch Gmbh, 7000 Stuttgart Magnetic-field sensor for measuring the field strength of a magnetic field, and a method for its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450372A (en) * 1977-09-28 1979-04-20 Akira Matsushita Magnetismmsensitive element
JPS54128775A (en) * 1978-03-27 1979-10-05 Philips Nv Thin layer magnetic field sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450372A (en) * 1977-09-28 1979-04-20 Akira Matsushita Magnetismmsensitive element
JPS54128775A (en) * 1978-03-27 1979-10-05 Philips Nv Thin layer magnetic field sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3420709A1 (en) * 1984-06-02 1985-12-05 Robert Bosch Gmbh, 7000 Stuttgart Magnetic-field sensor for measuring the field strength of a magnetic field, and a method for its production

Also Published As

Publication number Publication date
JPH0372949B2 (en) 1991-11-20

Similar Documents

Publication Publication Date Title
JP4630544B2 (en) A method of orienting the magnetization direction of a magnetic layer of a selected magnetic element out of a plurality of magnetic elements constituting a bridge structure in a direction opposite to the magnetization direction of a magnetic layer of another magnetic element
JP2004363157A (en) Thin film magnetic sensor and its manufacturing method
WO2003008987A1 (en) Barber pole structure for magnetorestrictive sensors
JP3456204B2 (en) Magnetic encoder
JP7207671B2 (en) Magnetic sensor utilizing anomalous Hall effect, Hall sensor, and method for manufacturing Hall sensor
EP1536490A1 (en) Magnetoresistance effect element and production method and application method therefor
JPS5872071A (en) Thin film magnetic sensor
US5928715A (en) Thin film magnetoresistive device having contiguous magnetoresistive, hard bias and lead layer junctions with each hard bias layer extending outwardly beyond outside edges of each respective lead layer
JP3449160B2 (en) Magnetoresistive element and rotation sensor using the same
JP2001006932A (en) Magnetoresistive film and magnetic reading sensor using the same
JPH04275471A (en) Magnetoresistance effect element and manufacture thereof
JPS5832179A (en) Production of thin film magnetic sensor
KR100203612B1 (en) Magnetoresistive effect head and method of manufacturing the same
JP2850584B2 (en) Method of manufacturing magnetoresistive element
JP3028585B2 (en) Magnetoresistive element
JP2806549B2 (en) Magnetoresistance effect element
JP3715380B2 (en) Hall element
JP2504234B2 (en) Magnetoresistive thin film and method of manufacturing the same
KR0180590B1 (en) Granular magnetroresistane element and its manufacture
JPH0832141A (en) Artificial lattice thin film magnetic sensor
JPS626421A (en) Thin film magnetic head
JPH01152677A (en) Magnetoresistance effect device and its manufacture
JPS61248484A (en) Ferromagnetic resistance element
JPH01116914A (en) Magneto-resistance type magnetic head
JPS6396974A (en) Ferromagnetic magnetoresistance element