JPS5861149A - Reinforced thermoplastic resin composition - Google Patents
Reinforced thermoplastic resin compositionInfo
- Publication number
- JPS5861149A JPS5861149A JP15950981A JP15950981A JPS5861149A JP S5861149 A JPS5861149 A JP S5861149A JP 15950981 A JP15950981 A JP 15950981A JP 15950981 A JP15950981 A JP 15950981A JP S5861149 A JPS5861149 A JP S5861149A
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- thermoplastic resin
- weight
- resin composition
- mineral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、補強材として無機質繊維を含み、機械的強
度に優れた性能を発揮する強化熱可塑性樹脂組成物に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reinforced thermoplastic resin composition that contains inorganic fibers as a reinforcing material and exhibits excellent mechanical strength.
従来より、熱硬化性又は熱可塑性樹脂に所定の割合で無
機質繊維を配合し、その機械的強度、耐熱性、寸法安定
性等の性能を向上させることは広く一般に行なわれてい
る。そして、この目的で使用される無機質繊維としては
、炭素繊維、ガラス繊維、ポロン繊維、アスベスト繊維
、ロックウール等があり、特に炭素繊維が比強度、比弾
性率、導電性等の特性において優れた性能を発揮するこ
とが知られている。また、この炭素繊維が補強材として
配合された炭素繊維強化樹脂)ま、主として熱硬化性樹
脂がマトリックスとして使用され、宇、密航空機器の分
野やスポーツ機器の分野等を中心としてその需要が拡大
しているが、今日においてはその成形上の問題等から熱
可塑性樹脂をマトリックスとした炭素繊維強化樹脂も特
に機械部品を中心としてその用途が拡大し、需要が向上
している。BACKGROUND ART Conventionally, it has been widely practiced to blend inorganic fibers into thermosetting or thermoplastic resins in a predetermined proportion to improve their properties such as mechanical strength, heat resistance, and dimensional stability. Inorganic fibers used for this purpose include carbon fibers, glass fibers, poron fibers, asbestos fibers, rock wool, etc. Carbon fibers have particularly excellent properties such as specific strength, specific modulus of elasticity, and electrical conductivity. It is known to exhibit good performance. In addition, thermosetting resins (carbon fiber reinforced resins containing carbon fibers as reinforcing materials) and thermosetting resins are mainly used as matrices, and the demand for them is expanding, mainly in the fields of secret aviation equipment and sports equipment. However, due to problems in molding, carbon fiber reinforced resins with a thermoplastic resin matrix are now being used more widely, especially in mechanical parts, and demand is increasing.
しかしながら、この炭素繊維は、例えばポリアクリロニ
トリル繊維、ピッチ系繊維等の有機繊維を窒素気流中で
700〜1soo℃に゛加熱して炭化させることにより
製造するので、極めて高価であ1ハ樹脂(=配合して優
れた特性を発揮させることができる膚について十分に認
識されている(二もかかわらず、限られた用途以外には
使用されていないのが現状である。However, this carbon fiber is manufactured by heating organic fibers such as polyacrylonitrile fibers and pitch-based fibers to 700 to 1 soo Celsius in a nitrogen stream to carbonize them, and is therefore extremely expensive. Despite the fact that it is well recognized that it can be used in combination with skin to achieve excellent properties, it is currently not used for anything other than limited purposes.
本発明者等は、かかる観点に鑑み、安価でしかも機械的
強度に優れた性能を発揮する強化熱可塑性樹脂組成物に
ついて鋭意研究を重ねた結果、驚くべきことには、熱可
塑性樹脂(二配合される炭素繊維の一部を鉱物繊維に置
き換えることにより、衝撃強度及びウェルド強度(二お
いて炭素繊維のみを配合した強化熱可塑性樹脂よりも優
れた性能を発揮することを見い出し、本発明を完成した
ものである。In view of this point of view, the present inventors have conducted intensive research on reinforced thermoplastic resin compositions that are inexpensive and exhibit excellent mechanical strength. The inventors discovered that by replacing some of the carbon fibers used in carbon fibers with mineral fibers, they achieved superior performance in terms of impact strength and weld strength (both of which were superior to reinforced thermoplastic resins containing only carbon fibers), and completed the present invention. This is what I did.
すなわち、本発明は、熱可塑性樹脂65〜95重量%と
無機質繊維5〜35重量%とを主体とする組成物であり
、上記無機質繊維のうち40〜90重量%が炭素繊維で
あって、残りの10〜60重量%が鉱物繊維である強化
熱可塑性樹脂組成物を提供するものであり、特に好まし
い実施態様としては、熱可塑性樹脂がポリプロピレン、
ポリアミド、ポリエステル、ポリアセタール、ポリフェ
ニレンスルフィド、ポリフェニレンオキサイド、ポリス
ルホン等の結晶性熱可塑性樹脂である強化熱可塑性樹脂
組成物を提供するものである。That is, the present invention is a composition mainly consisting of 65 to 95% by weight of a thermoplastic resin and 5 to 35% by weight of inorganic fibers, 40 to 90% by weight of the inorganic fibers being carbon fibers, and the remainder being carbon fibers. The purpose of the present invention is to provide a reinforced thermoplastic resin composition in which 10 to 60% by weight of mineral fiber is mineral fiber, and in a particularly preferred embodiment, the thermoplastic resin is polypropylene,
The present invention provides a reinforced thermoplastic resin composition that is a crystalline thermoplastic resin such as polyamide, polyester, polyacetal, polyphenylene sulfide, polyphenylene oxide, polysulfone, or the like.
本発明において、熱可塑性樹脂としては、ポリエチレン
、ポリプロピレン等の炭化水素化合物の重合体、ポリ塩
化ビニル、ポリ弗化ビニリデン等のハロゲン化炭化水素
化合物の重合体、ポリビニルアルコール、ポリビニルエ
ーテル等の不飽和アルコール又はエーテルの重合体、ポ
リアクリル酸メチル、ポリメタクリル酸メチル、ポリ酢
酸ビニル等の不飽和カルボン酸又はそのエステルの重合
体、ポリアクリルニトリル等の不飽和ニトリルの重合体
、ポリビニルアミン、ポリアクリルアミド等の不飽和ア
ミン又はアミドの重合体、ポリスチレン、ポリ塩化スチ
レン等のスチレン系重合体、あるいは、上記各単量体の
うちの二種以上が重合して得られる共重合体、ポリアミ
ド、ポリエチレンテレフタレートやポリブチレゾテレフ
タレート等のポリエステル、ポリアセタール、ポリフェ
ニレンスルフィド、ポリフェニレンオキサイド、ポリス
ルホン等を挙げることができる。これらの熱可塑性樹脂
は単独で用いてもよく、また、二種以上を組合せて用い
てもよい。In the present invention, thermoplastic resins include polymers of hydrocarbon compounds such as polyethylene and polypropylene, polymers of halogenated hydrocarbon compounds such as polyvinyl chloride and polyvinylidene fluoride, and unsaturated resins such as polyvinyl alcohol and polyvinyl ether. Polymers of alcohols or ethers, polymers of unsaturated carboxylic acids or their esters such as polymethyl acrylate, polymethyl methacrylate, and polyvinyl acetate, polymers of unsaturated nitriles such as polyacrylonitrile, polyvinylamine, polyacrylamide Polymers of unsaturated amines or amides such as polystyrene, styrenic polymers such as polystyrene chloride, copolymers obtained by polymerizing two or more of the above monomers, polyamides, polyethylene terephthalate Examples include polyesters such as polybutyrezoterephthalate, polyacetal, polyphenylene sulfide, polyphenylene oxide, polysulfone, and the like. These thermoplastic resins may be used alone or in combination of two or more.
熱可塑性樹脂として特(−好ましいものは、ポリプロピ
レン、ポリアミド、ポリエステル、ポリアセタール、ポ
リフェニレンスルフィド、ポリフェニレンオキサイド、
ポリスルホン等の結晶性熱可塑性樹脂を挙げることがで
きる。このうちポリプロピレンとしては、従来公知の方
法で製造されるプロピレンホモポリマー及びプロピレン
と炭素数2〜18のα−オレフィンとのランダム共重合
体又はブロック共重合体があげられる。Particularly preferred thermoplastic resins include polypropylene, polyamide, polyester, polyacetal, polyphenylene sulfide, polyphenylene oxide,
Crystalline thermoplastic resins such as polysulfone can be mentioned. Among these, examples of polypropylene include propylene homopolymers produced by conventionally known methods, and random copolymers or block copolymers of propylene and an α-olefin having 2 to 18 carbon atoms.
また、本発明で使用する炭素繊維は、ポリアクリルニト
リル、レーヨン等の有機繊維や、石油ピッチ、タールピ
ッチ等のピッチを原料として繊維化したピッチ系繊維を
窒素気流中で700〜1800’Cに加熱し、炭化して
作られるものであり、また、さらに2500〜2700
℃に加熱して黒鉛化したいわゆる黒鉛繊維も含まれ、そ
の形状は、長さ1〜10簡に切断された短繊維、いわゆ
るtヨップドストランドである。The carbon fibers used in the present invention are made from organic fibers such as polyacrylonitrile and rayon, and pitch-based fibers made from pitches such as petroleum pitch and tar pitch. It is made by heating and carbonizing, and it is also made by heating and carbonizing.
It also includes so-called graphite fibers that have been graphitized by heating to 0.degree. C., and the shape thereof is short fibers cut into lengths of 1 to 10 pieces, so-called t-hopped strands.
さらに、本発明において、鉱物繊維とは、ロックウール
(岩綿、スラグウール、鉱さい綿とも称される)をいい
、Ca020〜45重量%、5i0230〜50重量%
及びAl2O35〜20重量%を主成分とし、その他に
MgO等の成分を含有するものである。Furthermore, in the present invention, mineral fiber refers to rock wool (also called rock wool, slag wool, mineral wool), Ca020-45% by weight, 5i0230-50% by weight.
and Al2O35 to 20% by weight as main components, and also contains components such as MgO.
ロックウールは、玄武岩等の自然石や製鉄の際に副生ず
る高炉スラグな溶融して繊維化したものであり、繊維長
数覇ないし数m、粒子含有率30〜4゜チ程度である。Rock wool is made by melting natural stones such as basalt and blast furnace slag produced during iron manufacturing into fibers, and has a fiber length of several meters to several meters and a particle content of about 30 to 4 inches.
したがってこのロックウールを回転円盤型破砕機、圧縮
破砕機等で破砕し、ついで#1!維分と粒子分を空気分
級機等で分級したものが特に好適である。このよう(=
加工された鉱物繊維は平均繊維長100〜150μ、平
均繊維径2〜10μの範囲内にある。Therefore, this rock wool is crushed using a rotating disc type crusher, a compression crusher, etc., and then #1! Particularly suitable is one in which the fibers and particles are classified using an air classifier or the like. Like this (=
The processed mineral fibers have an average fiber length of 100-150μ and an average fiber diameter of 2-10μ.
本発明において、−熱可塑性樹脂(二配合される無機質
繊維の配合量は、使用される熱可塑性樹脂の種類によっ
て異なるが、通常、熱゛可塑性樹脂65〜95重量%し
対し7て、無機質繊維5〜35重量%であり、好ましく
は、熱可塑性樹脂70〜90重量%で無機質繊維10〜
30重誓チである。無機質繊維が35重量%を越えると
形成された成形品が脆(なり、また、5重曾チより少い
と無機質繊維の配合による補強効果が不十分である。In the present invention, - thermoplastic resin (2) The blending amount of inorganic fibers varies depending on the type of thermoplastic resin used, but usually 65 to 95% by weight of thermoplastic resin and 7% inorganic fibers are blended. 5 to 35% by weight, preferably 70 to 90% by weight of thermoplastic resin and 10 to 35% by weight of inorganic fiber.
It is a 30-fold oath. If the amount of inorganic fiber exceeds 35% by weight, the molded product will become brittle, and if it is less than 5% by weight, the reinforcing effect of the inorganic fiber will be insufficient.
また、上記無機質繊維の組成と17では、通常40〜9
0重量%が炭素繊維であり、残りの10〜60重量%が
鉱物線維であるものがよく、好ましくは、炭素繊維60
〜85重量%で鉱物繊維15〜40重量%である。鉱物
繊維が60重量%以上であると炭素繊維のみを配合した
強化熱可塑性樹脂とほぼ同等と言える程度の機械的強度
を得ることができず、また、10重量%以下であると顕
著な経済的効果を発揮するまでに至らない。In addition, the composition of the above inorganic fiber and 17 are usually 40 to 9
0% by weight is carbon fiber and the remaining 10 to 60% by weight is mineral fiber, preferably carbon fiber 60% by weight.
-85% by weight and mineral fibers 15-40% by weight. If the mineral fiber content is 60% by weight or more, it will not be possible to obtain mechanical strength that can be said to be almost the same as that of a reinforced thermoplastic resin containing only carbon fibers, and if the mineral fiber content is 10% by weight or less, there will be a significant economical It has not reached the point where it is effective.
上記熱可塑性樹脂、炭素繊維及び鉱物繊維を含有する強
化熱可塑性樹脂組成物の調製は、上述した配合割合の範
囲内で適宜のブレンダ等を用いて常法(二より均一(二
混合すること(二よってなされる。The reinforced thermoplastic resin composition containing the thermoplastic resin, carbon fibers, and mineral fibers is prepared by a conventional method (mixing the two more uniformly (mixing the two) within the range of the above-mentioned blending ratio using an appropriate blender, etc. 2.
また、このようにして調製された強化熱可塑性樹脂組成
物は、通常の押出成形や射出成形によって所望の製品C
−成形される。Further, the reinforced thermoplastic resin composition thus prepared can be molded into a desired product C by ordinary extrusion molding or injection molding.
- Molded.
なお、上記炭素繊維及び鉱物繊維の表面は、熱可塑性樹
脂との密着性を向上させる処理剤によって処理されたも
のであってもよい。また、組成物の調製(1際して、熱
可塑性樹脂に通常添加して使用される難燃剤、顔料、可
塑剤、安定剤、酸化防止剤、紫外線吸収剤、架橋剤その
他の添加剤や、補強材として無機質繊維を配合する場合
に使用される分散剤等を添加してもよい。Note that the surfaces of the carbon fibers and mineral fibers may be treated with a treatment agent that improves adhesion to the thermoplastic resin. In addition, in the preparation of the composition (1) flame retardants, pigments, plasticizers, stabilizers, antioxidants, ultraviolet absorbers, crosslinking agents, and other additives that are usually added to thermoplastic resins, A dispersant or the like used when blending inorganic fibers as a reinforcing material may be added.
以下、本発明をその実施例及び比較例に基づいて具体的
に説明する。Hereinafter, the present invention will be specifically explained based on Examples and Comparative Examples.
〔実施例1〕
熱可塑性樹脂としてポリプロピレン(徳山曹達■裂開品
名PS−750)80重量部に無機質繊維として炭素繊
維(三菱レーヨン■製、チョツプドストランド、平均繊
維長さa、)15重量部と鉱物繊維(新日本製鉄化学工
業■裂開品名ニスファイバーFF 平均繊維径4μ、
平均繊維長120μ、粒子(10μ以下)含有率1%以
下)5重量部とを配合し、バンバリーミキサ−で練り込
んで強化ポリプロピレン樹脂組成物を調製した。この強
化ポリプロピレン樹脂組成物について、射出成形により
試験片を成形し、引張強度(JIsK 6871 )、
曲げ強度(A、STM D−790)及び衝撃強度(A
STMD256)を測定し、試験片の強度を求めた。ま
た、この強化ポリプロピレン樹脂組成物について、射出
成形によりウェルド試験片を成形し、同様にし4ピ
てウェルド強度を求めた結果を表に示す。[Example 1] 80 parts by weight of polypropylene (Tokuyama Soda ■ split product name PS-750) as a thermoplastic resin and 15 parts by weight of carbon fiber (manufactured by Mitsubishi Rayon ■, chopped strand, average fiber length a) as an inorganic fiber. Part and mineral fiber (Nippon Steel Chemical Industry ■Split product name Varnish fiber FF Average fiber diameter 4μ,
An average fiber length of 120 μm and 5 parts by weight of particles (10 μm or less, particle content: 1% or less) were mixed in a Banbury mixer to prepare a reinforced polypropylene resin composition. Regarding this reinforced polypropylene resin composition, a test piece was molded by injection molding, and the tensile strength (JIsK 6871),
Bending strength (A, STM D-790) and impact strength (A
STMD256) was measured to determine the strength of the test piece. Further, a weld test piece was molded by injection molding for this reinforced polypropylene resin composition, and the weld strength was determined in the same manner using 4 pieces, and the results are shown in the table.
〔実施例2〕
上記実施例1で使用したポリプロピレン、炭素繊維及び
鉱物繊維をそれぞれ80重量部、10重量部及び10重
量部配合して実施例1と同様にして試験片を成形し、そ
の強度とウェルド強度とを求めた。結果を表に示す。[Example 2] A test piece was formed in the same manner as in Example 1 by blending 80 parts by weight, 10 parts by weight, and 10 parts by weight of the polypropylene, carbon fiber, and mineral fiber used in Example 1 above, respectively, and its strength was determined. and weld strength were determined. The results are shown in the table.
上記各実施例において使用したポリプロピレンと炭素繊
維とをそれぞれ80重量部及び20重量部配合して各実
施例と同様に試験片を成形し、その強度とウェルド強度
とを求めた。結果を表に示す。80 parts by weight and 20 parts by weight of the polypropylene and carbon fiber used in each of the above Examples were mixed, test pieces were molded in the same manner as in each Example, and the strength and weld strength of the test pieces were determined. The results are shown in the table.
なお、上記実施例の数値は比較例を100としたときの
対比で表わされている。Note that the numerical values of the above examples are expressed in comparison with the comparative example being set as 100.
表 ()内はウェルド強度を表す。Table () represents weld strength.
上記表から明らかなよう(二、実施例1の場合は、引張
強度及び曲げ強度が比較例の場合とほとんど変ることな
く、衝撃強度において著るしい向上がみられ、また、ウ
ェルド強度についてはその引張強度及び曲げ強度共(二
向上がみられた。また、実施例2の場合は、引張強度及
び曲げ強度(=おいて比較例の場合に比べて若干の低下
はみられるがほぼ同等であると言うことができ、衝撃強
度(−おいて著るしい向上がみられ、また、ウェルド強
度においてもその引張強度及び曲げ強度共に向上がみら
れた。As is clear from the above table (2. In the case of Example 1, the tensile strength and bending strength are almost the same as those of the comparative example, and there is a significant improvement in impact strength. Both tensile strength and bending strength (2) were improved. In addition, in the case of Example 2, there was a slight decrease in tensile strength and bending strength (=) compared to the comparative example, but they were almost the same. It can be said that a significant improvement was observed in the impact strength (-), and an improvement was observed in both the tensile strength and the bending strength in the weld strength.
以上の通り、本発明によれば、熱可塑性樹脂にその補強
材として配合される無機質繊維のうちの40〜90重量
%な炭素繊維とし、残りの10〜60重量%を鉱物繊維
とすることにより、機械的強度(−おいて炭素繊維のみ
を配合した場合と同等の強度を維持し、しかも、ウェル
ド強度においてはむしろその強度が向上した強化熱可塑
性樹脂組成物を与えるもので、高価な炭素繊維の使用量
を減らし、その公安価な鉱物繊維を使用できるため、安
価でしかも機械的強度に優れた性能を発揮する強化熱可
塑性樹脂組成物を提供することができる。As described above, according to the present invention, 40 to 90% by weight of the inorganic fibers blended into the thermoplastic resin as a reinforcing material are carbon fibers, and the remaining 10 to 60% by weight is mineral fibers. This method provides a reinforced thermoplastic resin composition that maintains mechanical strength (-) equivalent to that obtained when only carbon fiber is blended, but has improved weld strength. Since the amount of mineral fibers used can be reduced and the mineral fibers can be used, it is possible to provide a reinforced thermoplastic resin composition that is inexpensive and exhibits excellent mechanical strength.
Claims (3)
35重量%とを主体とする組成物であり、上記無機質繊
維のうち40〜90重量%が炭素繊維であって、残りの
10〜60重量%が鉱物繊維であることを特徴とする強
化熱可塑性樹脂組成物。(1) Thermoplastic resin 65-96% by weight and inorganic fiber 5-5%
35% by weight of the inorganic fibers, 40 to 90% by weight of the inorganic fibers are carbon fibers, and the remaining 10 to 60% by weight are mineral fibers. Resin composition.
リエステル、ポリフェニレンスルフィド、ポリフェニレ
ンオキサイド、ポリスルホン等の結晶性熱可塑性樹脂で
ある特許請求の範囲第1項記載の強化熱可塑性樹脂組成
物。(2) The reinforced thermoplastic resin composition according to claim 1, wherein the thermoplastic resin is a crystalline thermoplastic resin such as polypropylene, polyamide, polyester, polyphenylene sulfide, polyphenylene oxide, or polysulfone.
去した平均繊維長100〜150μ、平均繊維径2〜1
0μの範囲内にあざものである特許請求の範囲第1項記
載の強化熱可塑性樹脂組成物。(3) Mineral fibers are obtained by crushing rock wool and removing the particle portion, with an average fiber length of 100 to 150μ and an average fiber diameter of 2 to 1
The reinforced thermoplastic resin composition according to claim 1, which has a bruise within the range of 0μ.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15950981A JPS5861149A (en) | 1981-10-08 | 1981-10-08 | Reinforced thermoplastic resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15950981A JPS5861149A (en) | 1981-10-08 | 1981-10-08 | Reinforced thermoplastic resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5861149A true JPS5861149A (en) | 1983-04-12 |
JPH0140061B2 JPH0140061B2 (en) | 1989-08-24 |
Family
ID=15695324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15950981A Granted JPS5861149A (en) | 1981-10-08 | 1981-10-08 | Reinforced thermoplastic resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5861149A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60112846A (en) * | 1983-11-24 | 1985-06-19 | Mitsubishi Gas Chem Co Inc | Fiber-reinforced polyphenylene ether resin composition |
JPS6116936A (en) * | 1984-07-02 | 1986-01-24 | Nippon Steel Chem Co Ltd | Filler for thermoplastic resin |
JPH03290460A (en) * | 1990-04-06 | 1991-12-20 | Nippon Steel Corp | Molding liquid crystalline polyester carbonate resin composition |
JPH0570688A (en) * | 1991-03-05 | 1993-03-23 | Polyplastics Co | Reinforced polyarylene sulfide resin composition and its molded product |
JP2006303969A (en) * | 2005-04-21 | 2006-11-02 | Pioneer Electronic Corp | Component for loudspeaker apparatus, and manufacturing method thereof |
WO2012043180A1 (en) * | 2010-09-30 | 2012-04-05 | ユニチカ株式会社 | Polyamide resin composition and molding obtained therefrom |
-
1981
- 1981-10-08 JP JP15950981A patent/JPS5861149A/en active Granted
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60112846A (en) * | 1983-11-24 | 1985-06-19 | Mitsubishi Gas Chem Co Inc | Fiber-reinforced polyphenylene ether resin composition |
JPS6116936A (en) * | 1984-07-02 | 1986-01-24 | Nippon Steel Chem Co Ltd | Filler for thermoplastic resin |
JPH03290460A (en) * | 1990-04-06 | 1991-12-20 | Nippon Steel Corp | Molding liquid crystalline polyester carbonate resin composition |
JPH0570688A (en) * | 1991-03-05 | 1993-03-23 | Polyplastics Co | Reinforced polyarylene sulfide resin composition and its molded product |
JP2006303969A (en) * | 2005-04-21 | 2006-11-02 | Pioneer Electronic Corp | Component for loudspeaker apparatus, and manufacturing method thereof |
JP4677274B2 (en) * | 2005-04-21 | 2011-04-27 | パイオニア株式会社 | Component parts for speaker device and manufacturing method thereof |
WO2012043180A1 (en) * | 2010-09-30 | 2012-04-05 | ユニチカ株式会社 | Polyamide resin composition and molding obtained therefrom |
JPWO2012043180A1 (en) * | 2010-09-30 | 2014-02-06 | ユニチカ株式会社 | Polyamide resin composition and molded product obtained therefrom |
JP5911426B2 (en) * | 2010-09-30 | 2016-04-27 | ユニチカ株式会社 | Polyamide resin composition and molded product obtained therefrom |
Also Published As
Publication number | Publication date |
---|---|
JPH0140061B2 (en) | 1989-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5433906A (en) | Composite of small carbon fibers and thermoplastics and method for making same | |
JPS5845255A (en) | Polybutylene terephthalate composition | |
US5145892A (en) | Polypropylene resin composition | |
CN101020775A (en) | High strength and high toughness modified poly-propylene material | |
DE2758029A1 (en) | THERMOPLASTIC COMPOSITION | |
CN108546353B (en) | Basalt fiber composite material for vehicle body manufacturing and preparation method thereof | |
JPS601256A (en) | Polyamide resin composition | |
CN110591220A (en) | High-modulus modified polypropylene krah pipe and production method thereof | |
CN104277323B (en) | A kind of heat conduction, polypropylene/polyester composite and preparation method thereof of anti-impact | |
CN102702666A (en) | Potassium titanate whisker and acrylonitrile butadiene styrene (ABS) modified high-impact composite material and preparation method thereof | |
CN107641255A (en) | Glass fiber reinforced polypropylene composite material and preparation method thereof | |
JPH01272656A (en) | Polyoxymethylene resin composition and production thereof | |
JPS5861149A (en) | Reinforced thermoplastic resin composition | |
CN104017346A (en) | Method for preparing high-ductility polymer blend alloy by melt blending | |
JPH0379663A (en) | Polyamide resin composition | |
EP0397881A1 (en) | Process for producing composite material composition | |
CN117529528A (en) | Antibacterial and antiviral composite resin molded body | |
JPH0526642B2 (en) | ||
CN103937094A (en) | Screwing burst resisting enhanced polypropylene material as well as preparation method and application thereof | |
CN113831641A (en) | Polypropylene material composite material with low linear expansion coefficient and high surface hardness and preparation method thereof | |
JPH039952A (en) | Thermoplastic resin composition | |
JPH0311306B2 (en) | ||
JPS6399929A (en) | Manufacture of electrically-conductive resin molding | |
JPS58206643A (en) | Reinforced thermoplastic resin composition | |
JPS63272536A (en) | Manufacture of conductive resin molded product |