Nothing Special   »   [go: up one dir, main page]

JPS5856045B2 - Fluidized bed combustion method - Google Patents

Fluidized bed combustion method

Info

Publication number
JPS5856045B2
JPS5856045B2 JP6889877A JP6889877A JPS5856045B2 JP S5856045 B2 JPS5856045 B2 JP S5856045B2 JP 6889877 A JP6889877 A JP 6889877A JP 6889877 A JP6889877 A JP 6889877A JP S5856045 B2 JPS5856045 B2 JP S5856045B2
Authority
JP
Japan
Prior art keywords
fluidized bed
combustion
section
main
bed section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6889877A
Other languages
Japanese (ja)
Other versions
JPS543926A (en
Inventor
誠一 内田
義仁 黒見
規博 木内
仁一 戸室
進 吉岡
知彦 宮本
武夫 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Eneos Corp
Original Assignee
Hitachi Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Mining Co Ltd filed Critical Hitachi Ltd
Priority to JP6889877A priority Critical patent/JPS5856045B2/en
Publication of JPS543926A publication Critical patent/JPS543926A/en
Publication of JPS5856045B2 publication Critical patent/JPS5856045B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】 本発明は流動層を用いた燃焼方法に係り、特に窒素弁を
含有する固体燃焼を使用した場合の燃焼後の排ガス中の
窒素酸化物(NOx)及び−酸化炭素等の可燃性ガス成
分の濃度低減化を図った流動層燃焼方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion method using a fluidized bed, and in particular to a combustion method using a fluidized bed, and in particular to a method for controlling nitrogen oxides (NOx), carbon oxides, etc. in exhaust gas after combustion when solid combustion containing a nitrogen valve is used. This invention relates to a fluidized bed combustion method that reduces the concentration of combustible gas components.

燃焼中の窒素は燃焼温度及び残存酸素濃度の上昇に伴な
って窒素酸化物への転化が促進される傾向にある。
The conversion of nitrogen during combustion into nitrogen oxides tends to be promoted as the combustion temperature and residual oxygen concentration increase.

渣た、燃焼に必要な酸素源として空気を利用することの
窒素も窒素酸化物に転化する可能性があり、これも高温
になるほど進行しやすい。
Nitrogen from the use of air as the oxygen source required for combustion can also be converted to nitrogen oxides, and this also progresses more easily at higher temperatures.

前者はfuelNOx、後者ばth e rma l
NOxと呼ばれている。
The former is fuel NOx, the latter is fuelNOx.
It is called NOx.

大気圧付近下での燃焼ではthermal NOxは
1200℃以上の温度にならなければその発生はほとん
ど認められない。
In combustion under atmospheric pressure, almost no thermal NOx is generated unless the temperature reaches 1200°C or higher.

一方、比較的高温において酸素と共存しやすい一酸化炭
素も750℃以上の温度では比較的速やかに二酸化炭素
に転化する。
On the other hand, carbon monoxide, which tends to coexist with oxygen at relatively high temperatures, is also relatively quickly converted to carbon dioxide at temperatures of 750° C. or higher.

流動層を用いた燃焼方法では、燃焼部分の温度をほぼ均
一に制御することが可能であり局部的な高温領域を生じ
ないため、通常の燃焼方法、例えば重油ボイラ、等に比
べてNOxの発生をかなり低く保つことが可能である。
Combustion methods using a fluidized bed can control the temperature of the combustion part almost uniformly and do not create localized high-temperature areas, so they produce less NOx than normal combustion methods, such as heavy oil boilers. It is possible to keep it fairly low.

これはthermal NOxの発生が極めて少ないこ
とに起因する。
This is due to extremely low generation of thermal NOx.

しかし、窒素分を多く含有する燃料、例えば石炭等を利
用すると流動層燃焼方法といえども無視し得ない量のN
Oxが生成する。
However, if a fuel containing a large amount of nitrogen, such as coal, is used, a non-negligible amount of N is produced even in the fluidized bed combustion method.
Ox is generated.

このNOxの大部分はfuel NOxと考えられる
Most of this NOx is considered to be fuel NOx.

このfuelNOxを低下させる方法としては、従来よ
り、供給する酸素量を少なくする、言い換えると燃焼後
の排ガス中に残存する酸素ガスの濃度を低下させる方法
が知られている。
As a method for reducing this fuel NOx, it is conventionally known to reduce the amount of oxygen to be supplied, in other words, to reduce the concentration of oxygen gas remaining in the exhaust gas after combustion.

しかし、残存酸素濃度を低下させると燃料の燃焼効率が
低下したり、一酸化炭素や水素、メタン等の可燃性ガス
が生成し始める等の不都合が生じる。
However, lowering the residual oxygen concentration causes disadvantages such as a decrease in fuel combustion efficiency and the start of generation of flammable gases such as carbon monoxide, hydrogen, and methane.

本発明は上記欠点を改善しようとしてなされたもので、
その目的とするところは、窒素含有率の高い固体燃料を
用いてもNOxの発生が極めて少なく、かつ、排ガス中
の可燃性成分も少なく、新たな排ガス後処理を行なう必
要のない流動層燃焼方法を提供するにある。
The present invention has been made in an attempt to improve the above-mentioned drawbacks.
The aim is to create a fluidized bed combustion method that generates extremely little NOx even when solid fuel with a high nitrogen content is used, has few combustible components in the exhaust gas, and does not require any additional exhaust gas after-treatment. is to provide.

即ち、本発明の特徴は、窒素分を含有する固体燃料を、
燃焼装置で流動燃焼する方法に釦いて、該燃焼装置が隔
壁により分割された主流動層部と副流動層部を有し、し
かも、両流動層の上方に共通のフリーボード部を有して
おり、上記主流動層部に前記固体燃料及び該燃料の完全
燃焼には、不足の1次空気を導入して該燃料の大部分を
流動燃焼させ、次に前記主流動層部での燃焼残部を含有
する前記固体燃料を、副流動層部へ移動させ、該副流動
層部に前記燃焼残部の固体燃料及びフリーボード部中の
可燃性ガス成分の燃焼に十分な量の2次空気を導入し流
動燃焼させ、しかも前記上及び副流動層部から発生する
ガスをフリーボード部で合流させ、かつ該ガス中の可燃
成分を該ガス中に含まれる酸素により酸化させる流動層
燃焼方法にある。
That is, the feature of the present invention is that solid fuel containing nitrogen is
In a method of fluidized combustion in a combustion device, the combustion device has a main fluidized bed section and a sub fluidized bed section separated by a partition wall, and has a common freeboard section above both fluidized beds. For complete combustion of the solid fuel and the fuel in the main fluidized bed section, insufficient primary air is introduced to fluidize and burn most of the fuel, and then the combustion residue in the main fluidized bed section is The solid fuel containing the solid fuel is moved to a sub-fluidized bed section, and a sufficient amount of secondary air is introduced into the sub-fluidized bed section for combustion of the solid fuel remaining after combustion and the combustible gas component in the freeboard section. In this fluidized bed combustion method, gases generated from the upper and sub-fluidized bed sections are combined in a freeboard section, and combustible components in the gas are oxidized by oxygen contained in the gas.

本発明の方法では、窒素分を多く含有する固体燃料たと
えば石炭、税源によって生ずるアスファルテン、家庭塵
かい、木材、コークス、重質油分解反応によって生成す
るコークス状燃料付着解媒を、NOx及びCOの発生を
抑えて完全に燃焼させることが出来る。
In the method of the present invention, solid fuels containing a large amount of nitrogen, such as coal, asphaltenes produced by tax sources, household dust, wood, coke, and coke-like fuel adhering decomposers produced by heavy oil cracking reactions are used to remove NOx and CO. It is possible to suppress generation and achieve complete combustion.

本方法で用いられる燃焼装置は、主流動層部と副流動層
部およびフリーボード部より成ってち・す、前記二つの
流動層部は隔壁により分割されている。
The combustion apparatus used in this method consists of a main fluidized bed section, a subfluidized bed section, and a freeboard section, and the two fluidized bed sections are separated by a partition wall.

しかも、両流動層部の上方には、両流動層部から発生す
るガスが合流して、可燃成分を酸化させるためのフリー
ボード部が設けられている。
Moreover, a freeboard section is provided above both fluidized bed sections for allowing gases generated from both fluidized bed sections to join together and oxidize combustible components.

主流動層部へは、窒素分を含む固体燃料が導入され、し
かも一次空気が下方から導入され、流動化させつつ、燃
焼を行う。
A solid fuel containing nitrogen is introduced into the main fluidized bed section, and primary air is introduced from below, where it is fluidized and combusted.

一次空気は前記固体燃料が完全燃焼するには若干不足の
量が導入される。
The amount of primary air introduced is slightly insufficient for complete combustion of the solid fuel.

即ち、一次空気の化学当量比(対理論空気比)は0.9
0乃至0.98より好1しくは0.91乃至0.97で
ある。
That is, the chemical equivalent ratio of primary air (to theoretical air ratio) is 0.9
It is more preferably 0.91 to 0.97 than 0 to 0.98.

主流動層部と副流動層部は隔壁分割されているから、層
高は両者はぼ同じであり、しかも主と副流動層部の断面
積比は、9:1乃至11:1である。
Since the main fluidized bed section and the sub-fluidized bed section are divided by partition walls, the bed heights are almost the same, and the cross-sectional area ratio of the main and sub-fluidized bed sections is 9:1 to 11:1.

したがって、流動層の容積も、はぼ9:1乃至11:1
である。
Therefore, the volume of the fluidized bed is approximately 9:1 to 11:1.
It is.

即ち、主流動層の容積が、副流動層のそれの9乃至11
倍であるから、主流動層部において、若干酸素不足で燃
焼させるのであるが、前記燃焼装置内に導入される固体
燃料のうちの大部分(約90%)は主流動層部内で燃焼
されることになる。
That is, the volume of the main fluidized bed is 9 to 11 times that of the auxiliary fluidized bed.
Therefore, the main fluidized bed section is combusted with a slight lack of oxygen, but most of the solid fuel (approximately 90%) introduced into the combustion apparatus is combusted within the main fluidized bed section. It turns out.

しかも流動層底部から供給される空気を用い酸素不足燃
焼させるから該層から発生するガスは水蒸気、N2のほ
かCO、メタンエチレン等可燃性ガス成分に富んでいる
Furthermore, since oxygen-deficient combustion is performed using air supplied from the bottom of the fluidized bed, the gas generated from the bed is rich in combustible gas components such as CO and methane ethylene in addition to water vapor and N2.

極部的に生成するNoは、流動層を上昇する過程でCO
により還元される。
No generated locally becomes CO in the process of rising through the fluidized bed.
will be reduced by

主流動層内の固体燃料で未然の残部あるいは成分、触媒
担体成分、中の固体未燃残部は、隔壁をオーバーフロー
して副流動層部へ導入される。
The unburned solid fuel remaining or components in the main fluidized bed, the catalyst carrier components, and the solid unburnt portions in the main fluidized bed overflow the partition wall and are introduced into the auxiliary fluidized bed section.

副流動層部へは、下方から過剰の二次空気が導入され、
そこで、未然残部の固体燃料が、完全に燃焼する。
Excess secondary air is introduced from below into the sub-fluidized bed section,
There, the remaining solid fuel is completely combusted.

該副流動層部から発生するガス中には、可燃性ガス成分
はほとんど含有されず、一方02が過剰に含有される。
The gas generated from the auxiliary fluidized bed section contains almost no combustible gas components, but contains an excessive amount of 02.

上述のように副流動層部内での燃焼は、酸素過剰燃焼で
あるから、NOxが発生するものの、燃焼装置全体に導
入される燃料の少量部分のみの燃焼が起るのみであるか
ら、副流動層部から発生するNOxは極く少ない。
As mentioned above, combustion in the auxiliary fluidized bed is oxygen-excessive combustion, so NOx is generated, but only a small portion of the fuel introduced into the entire combustion apparatus is combusted; There is very little NOx generated from the layer.

一方、主流動層部では、酸素不足燃焼であるから、大部
分の燃料が燃焼しても、燃焼温度は低くかつCOの発生
によりNOxは生成しない。
On the other hand, in the main fluidized bed section, oxygen-deficient combustion occurs, so even if most of the fuel is combusted, the combustion temperature is low and NOx is not generated due to the generation of CO.

両流動層から発生するガスはフリーボード部で合流し、
主流動層部からのCO、メタン、エチレン等の可燃性ガ
ス成分と、副流動層部からの02が合流し、酸化(燃焼
)反応により、CO、メタン、エチレン等がCO2、H
2Oに変化する。
The gases generated from both fluidized beds meet at the freeboard section,
Combustible gas components such as CO, methane, and ethylene from the main fluidized bed part and 02 from the auxiliary fluidized bed part join together, and through an oxidation (combustion) reaction, CO, methane, ethylene, etc. are converted into CO2, H
Changes to 2O.

したがって、副流動層部への二次空気は、十分過剰に投
入されるべきであるが、必要に応じ、フリーボード部に
新たに補助的に空気を導入しても良い。
Therefore, a sufficient excess amount of secondary air should be introduced into the auxiliary fluidized bed section, but if necessary, additional air may be newly introduced into the freeboard section.

フリーボード部での燃焼を行わせるには、ガスの混合と
滞留時間が配慮される。
In order to cause combustion in the freeboard section, consideration must be given to gas mixture and residence time.

可燃性ガス、特にそのうちでも酸素と共存しやすい一酸
化炭素に鮫いても、750°C以上さらに好1しくは8
00℃以上であれば残存酸素濃度の低い0.5〜1.0
%程度の条件下でも実施可能な反応時間内に実用上満足
のいく低い濃度にオで一酸化炭素を低減することができ
る。
Combustible gases, especially carbon monoxide, which easily coexists with oxygen, must be heated at a temperature of 750°C or higher, more preferably 8°C.
If it is above 00℃, the residual oxygen concentration is low 0.5 to 1.0
It is possible to reduce carbon monoxide to a practically satisfactory low concentration within a reaction time that can be carried out even under conditions of about 10%.

第3図はこれを示すもので、これは残存酸素濃度を0.
5〜1.0%とし、反応時間τをパラメータにして反応
温度と残存−酸化炭素濃度との関係を示す実験結果で、
破線は反応前の一酸化炭素濃度である。
Figure 3 shows this, which shows that the residual oxygen concentration is 0.
5 to 1.0%, and experimental results showing the relationship between reaction temperature and residual carbon oxide concentration using reaction time τ as a parameter.
The broken line is the carbon monoxide concentration before the reaction.

この結果からも判るように、反応に必要な時間は反応温
度が高いほど短かくて良いが、著しく高温になると前述
したthermal NOxが生成するため、燃焼用の
酸素源に空気、あるいはこれに準する窒素ガスを含有す
るガスを用いる時には、1200℃坦下とすることが好
ましい。
As can be seen from this result, the higher the reaction temperature, the shorter the time required for the reaction, but if the temperature is extremely high, the aforementioned thermal NOx will be generated, so air or a similar type of oxygen source for combustion is recommended. When using a gas containing nitrogen gas, the temperature is preferably below 1200°C.

lた、上記の可燃性ガスの酸化に際して新たな可燃性ガ
スの生成反応が伴なうと、可燃性ガスの濃度を十分に低
下できなくなるので、酸化反応領域へは新たな可燃性ガ
スの生成源となる未燃の燃料分を含む粒子等を導き入れ
ないようにすることが必要である。
Additionally, if the oxidation of the combustible gas described above is accompanied by a reaction that generates a new combustible gas, the concentration of the combustible gas cannot be sufficiently reduced, so a new source of combustible gas is introduced into the oxidation reaction region. It is necessary to prevent the introduction of particles containing unburned fuel.

以下実施例によって本発明をさらに詳細に説明する。The present invention will be explained in more detail below with reference to Examples.

実施例 1 第1図は減圧残渣油の接触分解に使用する触媒の再生に
本発明を適用した一実施例である。
Example 1 FIG. 1 shows an example in which the present invention is applied to the regeneration of a catalyst used for catalytic cracking of vacuum residue oil.

第1図に釦いて、1は主流動層部、2は副流動層部、3
はフリーボード部、4は内挿物、5はサイクロン、6は
分散器、7は一次空気導入管、8は二次空気導入管、9
は排気管、10は触媒供給管、11は触媒抜出管、12
は燃焼装置(再生塔)、13は隔壁、14は伝熱管であ
る。
In Figure 1, 1 is the main fluidized bed section, 2 is the sub-fluidized bed section, and 3 is the main fluidized bed section.
is a freeboard part, 4 is an insert, 5 is a cyclone, 6 is a distributor, 7 is a primary air introduction pipe, 8 is a secondary air introduction pipe, 9
is an exhaust pipe, 10 is a catalyst supply pipe, 11 is a catalyst extraction pipe, 12
1 is a combustion device (regeneration tower), 13 is a partition wall, and 14 is a heat exchanger tube.

接触分解で副生ずるコークス状炭化水素が表面に付着し
た廃触媒は触媒供給管10から主流動層部1に供給され
る。
The spent catalyst with coke-like hydrocarbons produced as a by-product of catalytic cracking adhering to the surface is supplied to the main fluidized bed section 1 from the catalyst supply pipe 10.

上記炭化水素の燃焼に必要な空気の大部分は一次空気導
入管7から導入され、分散器6により主流動層部1に均
一に供給され、主流動層部1内の触媒を流動化すると同
時に、触媒表所に付着した上記炭化水素の大部分を燃焼
除去する。
Most of the air required for the combustion of the hydrocarbons is introduced from the primary air introduction pipe 7, and is uniformly supplied to the main fluidized bed section 1 by the disperser 6, and at the same time fluidizes the catalyst in the main fluidized bed section 1. , most of the hydrocarbons adhering to the surface of the catalyst are removed by combustion.

主流動層部1には必要に応じて伝熱管14を設は主流動
層部1の温度を制御することができる。
The temperature of the main fluidized bed section 1 can be controlled by providing heat transfer tubes 14 in the main fluidized bed section 1 as necessary.

表面に付着した炭化水素の大部分が除去された触媒は主
流動層部1から隔壁13で隔壁された副流動層部2へ溢
流していく。
The catalyst from which most of the hydrocarbons adhering to the surface have been removed overflows from the main fluidized bed section 1 to the auxiliary fluidized bed section 2 partitioned by partition walls 13.

副流動層部2へは触媒上に残る炭化水素及び主流動層部
1の燃焼ガス中の可燃性成分の燃焼に必要な量を上回る
空気を二次空気導入管8から分散器6を経て供給し、副
流動層部2内の触媒粒子を流動させ、同時に表面に残っ
た炭化水素を完全に燃焼除去する。
Air in excess of the amount required to burn the hydrocarbons remaining on the catalyst and the combustible components in the combustion gas in the main fluidized bed section 1 is supplied to the auxiliary fluidized bed section 2 from a secondary air introduction pipe 8 via a disperser 6. The catalyst particles in the auxiliary fluidized bed section 2 are fluidized, and at the same time, the hydrocarbons remaining on the surface are completely burned off.

低濃度の可燃性成分を含む主流動層部1からの燃焼ガス
と残存酸素濃度の高い副流動層部2からの燃焼ガスは流
動層上部で合流しフリーボード部3を上昇する間に一酸
化炭素、水素等の可燃性成分をゆるやかに酸化してゆく
The combustion gas from the main fluidized bed section 1 containing a low concentration of combustible components and the combustion gas from the auxiliary fluidized bed section 2 containing a high residual oxygen concentration merge at the upper part of the fluidized bed and are oxidized while rising through the freeboard section 3. Slowly oxidizes combustible components such as carbon and hydrogen.

内挿物4,4′、イ′はフリーボード部3を上昇する燃
焼ガスの混合を促進し可燃性成分の酸化をより短時間に
行なわせると同時に、流動層から飛散する粒子を慣性分
離させる構造が好ましい。
The inserts 4, 4', and A' promote the mixing of the combustion gases rising in the freeboard section 3, allowing the oxidation of combustible components to occur in a shorter time, and at the same time, inertial separation of particles scattered from the fluidized bed. Structure is preferred.

可燃性ガスのうち、水素は比較的低温でも短時間で酸化
除去可能であるが、一酸化炭素を十分に除去するには比
較的高温並びに長い反応時間を必要とする。
Among combustible gases, hydrogen can be oxidized and removed in a short time even at a relatively low temperature, but a relatively high temperature and long reaction time are required to sufficiently remove carbon monoxide.

内挿物4,4’、イ′に粒子分離効果を持たせることに
より、フリーボード部3内での新たな一酸化炭素生成が
抑制され、より容易に残存する一酸化炭素濃度を低下さ
せることを可能にする。
By giving the inserts 4, 4', and A' a particle separation effect, new carbon monoxide generation within the freeboard section 3 is suppressed, and the remaining carbon monoxide concentration can be more easily reduced. enable.

燃焼ガスは最後にフリーボード部3の上部に設置された
サイクロン5に導かれ、同伴する触媒粒子を分離した後
、排気管9から系外に導かれる。
The combustion gas is finally led to a cyclone 5 installed at the top of the freeboard section 3, and after separating the accompanying catalyst particles, is led out of the system through an exhaust pipe 9.

主流動層部1の断面積が1150cyyt、副流動層2
の断面積が120CIAの装置により、一次空気導入管
7及び二次空気導入管8に供給する空気量を変化させた
場合の排ガス中の残存酸素、一酸化炭素、一酸化窒素の
濃度を第1表に示した。
The cross-sectional area of the main fluidized bed section 1 is 1150 cyyt, and the sub-fluidized bed 2
Using a device with a cross-sectional area of 120 CIA, the concentrations of residual oxygen, carbon monoxide, and nitrogen monoxide in the exhaust gas when changing the amount of air supplied to the primary air introduction pipe 7 and the secondary air introduction pipe 8 are calculated as follows. Shown in the table.

この時使用した触媒粒子の主要性状及び表面に付着した
コークス状炭化水素の元素分析結果を第2表に示した。
Table 2 shows the main properties of the catalyst particles used and the elemental analysis results of the coke-like hydrocarbons attached to the surface.

燃焼は約1.5 kg /crltGの加圧下で行なわ
れ、主流動層部1の温度は845〜857°Cの範囲内
であった。
Combustion was carried out under a pressure of approximately 1.5 kg/crltG, and the temperature of the main fluidized bed section 1 was within the range of 845-857°C.

7I7−ボード部3内の温度は高さと共に徐々に下降し
、サイクロン5の入口部で810〜823°Ctで低下
した。
7I7-The temperature inside the board section 3 gradually decreased with height, dropping at 810-823° Ct at the entrance of the cyclone 5.

フリーボード部3でのガス滞留時間は上記温度に訃いて
約4.5秒である。
The gas residence time in the freeboard section 3 is about 4.5 seconds at the above temperature.

触媒供給量は平均33 okg/h r、同伴されて主
※※流動層部1に供給されるコークス状炭化水素は10
、7 kg/ h r、これに対して元素分析から計算
される理論空気量は95.2Nm”/h rであった。
The average catalyst supply rate is 33 kg/hr, and the coke-like hydrocarbon entrained and supplied to the main fluidized bed section 1 is 10 kg/hr.
, 7 kg/hr, whereas the theoretical air amount calculated from elemental analysis was 95.2 Nm''/hr.

*比較例 1 第1図の実施例1と同一の装置で二次空気導入管8から
は副流動層部2を流動化する目的で窒素ガスを供給し、
燃焼に必要な空気はすべて一次空気導入管7から供給し
たところ、第3表の結果を得た。
*Comparative Example 1 Using the same equipment as in Example 1 shown in FIG. 1, nitrogen gas was supplied from the secondary air introduction pipe 8 for the purpose of fluidizing the auxiliary fluidized bed section 2.
When all the air necessary for combustion was supplied from the primary air introduction pipe 7, the results shown in Table 3 were obtained.

このうち、空気供給量の不足している2つの実験例(第
3表の下段の2つ)では触媒上に炭化水素の残留が認め
られた。
Among these, in two experimental examples (lower two in Table 3) where the air supply amount was insufficient, residual hydrocarbons were observed on the catalyst.

比較例 2 第1図の実施例1の装置から内挿物4,4’。Comparative example 2 Insertion 4, 4' from the apparatus of Example 1 of FIG.

イ′ を取り除いたところ、第4表の結果を得た。stomach' When , was removed, the results shown in Table 4 were obtained.

第2図は第1図の装置に釦ける一次空気量と排ガス中の
一酸化窒素濃度との関係を図示したものである。
FIG. 2 illustrates the relationship between the amount of primary air fed to the device shown in FIG. 1 and the concentration of nitrogen monoxide in the exhaust gas.

理論空気量との比で表わした相対的一次空気量が1.0
を割る付近で急激に一酸化窒素の濃度が減少している。
The relative primary air amount expressed as a ratio to the theoretical air amount is 1.0
The concentration of nitric oxide decreases rapidly near the point where the

二酸化窒素は一酸化窒素の1/10以下であることを確
認しているので、窒素酸化物総量は近似的に一酸化窒素
と見なしてよい。
Since it has been confirmed that nitrogen dioxide is less than 1/10 of nitrogen monoxide, the total amount of nitrogen oxides can be approximately regarded as nitrogen monoxide.

従って、相対的空気供給量を1.0以下、より好ましく
は0.97以下、にして運転することにより窒素酸化物
の発生を抑制できる。
Therefore, the generation of nitrogen oxides can be suppressed by operating the relative air supply amount at 1.0 or less, more preferably at 0.97 or less.

相対的空気供給量が0.9以下で一酸化窒素濃度の増加
が認められるのは副流動層部2での燃焼により発生する
一酸化窒素が無視できなくなったためである。
The reason why the nitrogen monoxide concentration increases when the relative air supply amount is 0.9 or less is because the nitrogen monoxide generated by combustion in the sub-fluidized bed section 2 can no longer be ignored.

よって、主流動層部への二次空気量を、理論量の0.9
0乃至0.97とし、しかも、副流動層部への燃焼負荷
を少なくする。
Therefore, the amount of secondary air to the main fluidized bed section is 0.9 of the theoretical amount.
0 to 0.97, and reduce the combustion load on the auxiliary fluidized bed section.

即ち、主流動層部との容積比を9:1乃至11:1に設
定することが全体としてのNOxを抑制する上で重要で
ある。
That is, it is important to set the volume ratio to the main fluidized bed part to 9:1 to 11:1 in order to suppress NOx as a whole.

流動層燃焼装置では、容量範囲はあるものの、流動化ガ
スの流速を大幅に変化させるのは実用上好昔しくないの
で、主流動層部1と副流動層部2の断面積割合は、お釦
むね9:1乃至11:1の比の範囲かつNOx、CO抑
制上好ましい。
In a fluidized bed combustion apparatus, although there is a capacity range, it is not practical to greatly change the flow rate of the fluidizing gas, so the cross-sectional area ratio of the main fluidized bed section 1 and the sub fluidized bed section 2 is A button breast ratio of 9:1 to 11:1 is preferable for suppressing NOx and CO.

主流動層部と副流動層部は、第1図に示す如く、燃焼装
置内に隔壁により隣設されるのが、熱利用、及び設計上
好筐しい。
As shown in FIG. 1, it is preferable for the main fluidized bed section and the auxiliary fluidized bed section to be placed adjacent to each other by a partition wall in the combustion apparatus in terms of heat utilization and design.

燃焼装置は、円塔又は、箱形いずれでも良く、箱形の場
合は、隔壁は仕切り板状か、内箱状となる。
The combustion device may be either circular or box-shaped, and in the case of a box-shape, the partition wall will be in the shape of a partition plate or an inner box.

可燃性成分の濃度低減は、本発明によらない比較例1で
も窒素酸化物の低下と全く両立し得ない。
The reduction in the concentration of combustible components is completely incompatible with the reduction in nitrogen oxides even in Comparative Example 1, which is not according to the present invention.

しかも、単に二次空気のみを供給した比較例2でも、窒
素酸化物の低下を十分に果させた場合には、依然として
かなりの可燃性ガス成分の残留が認められ、二次空気の
混合促進と同伴粒子の低減を伴用する本発明の効果は顕
著である。
Furthermore, even in Comparative Example 2 in which only secondary air was supplied, even if nitrogen oxides were sufficiently reduced, a considerable amount of combustible gas components remained, and mixing of the secondary air was promoted. The effect of the present invention, which is accompanied by a reduction in entrained particles, is remarkable.

本実施例によれば、−次及び二次空気供給量を制御する
ことにより高い残存酸素濃度下でも窒素酸化物の発生を
抑制でき、昔た、比較的低い残存酸素濃度下でも一酸化
炭素を始めとする可燃性ガス取分の発生を増加させずに
運転が可能となる。
According to this embodiment, by controlling the secondary and secondary air supply amounts, it is possible to suppress the generation of nitrogen oxides even under high residual oxygen concentrations. This makes it possible to operate without increasing the amount of combustible gas produced.

さらに、本実施例では副流動層部を設けることにより、
最終的な残存酸素濃度がかなり低い条件でも触媒を完全
に再生することが可能となる。
Furthermore, in this example, by providing an auxiliary fluidized bed section,
It becomes possible to completely regenerate the catalyst even under conditions where the final residual oxygen concentration is quite low.

以上のように、本発明によれば、窒素を含有する固体燃
料でもNOx及び可燃性成分を極端に低濃度の排出に抑
制させつつ、燃焼させることが出来るため、その工業的
価値が大きい。
As described above, according to the present invention, even solid fuel containing nitrogen can be combusted while suppressing the emission of NOx and combustible components to extremely low concentrations, and therefore has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明図、第2図は第1図の
装置による効果の−を示すグラフ、第3図は一酸化炭素
が反応温度及び時間により低減する結果を示すグラフで
ある。 1・・・主流動層部、2・・・副流動層部、3・・・フ
リーボード部、4,4’、4’・・・内挿物、5・・・
サイクロン、6・・・分散器、7・・・一次空気導入管
、8・・・二次空気導入管、9・・・排気管、14・・
・伝熱管。
Fig. 1 is an explanatory diagram of one embodiment of the present invention, Fig. 2 is a graph showing the effect of the apparatus shown in Fig. 1, and Fig. 3 is a graph showing the result of reducing carbon monoxide depending on reaction temperature and time. It is. DESCRIPTION OF SYMBOLS 1...Main fluidized bed part, 2...Subfluidized bed part, 3...Freeboard part, 4, 4', 4'...Interpolate, 5...
Cyclone, 6... Distributor, 7... Primary air introduction pipe, 8... Secondary air introduction pipe, 9... Exhaust pipe, 14...
・Heat transfer tube.

Claims (1)

【特許請求の範囲】 1 窒素弁を含有する固体燃料を、燃焼装置で流動燃焼
する方法に釦いて、該燃焼装置が隔壁により分割された
主流動層部と副流動層部を有し、しかも、両流動層の上
方に共通のフリーボード部を有してかり、上記主流動層
部に前記固体燃料及び該燃料の完全燃焼には不足の1次
空気を導入して該燃料の大部分を流動燃焼させ、次に前
記主流動層部での燃焼残部を含有する前記固体燃料を、
副流動層部へ移動させ、該副流動層部に前記燃焼残部の
固体燃料及びフリーボード部中の可燃性ガス成分の燃焼
に十分な量の2次空気を導入して流動燃焼させ、しかも
前記上及び副流動層部から発生するガスをフリーボード
部で合流させ、かつ該ガス中の可燃成分を該ガス中に含
1れる酸素により酸化させることを特徴とする流動層燃
焼方法。 2 主流動層部と副流動層部の断面積が9=1乃至11
:1の範囲であることを特徴とする特許請求の範囲第1
項記載の流動層燃焼方法。
[Claims] 1. A method of fluidized combustion of a solid fuel containing a nitrogen valve in a combustion device, the combustion device having a main fluidized bed section and a sub fluidized bed section separated by a partition wall, and , has a common freeboard section above both fluidized beds, and introduces the solid fuel and primary air, which is insufficient for complete combustion of the fuel, into the main fluidized bed section to burn most of the fuel. Fluidized combustion and then the solid fuel containing the combustion residue in the main fluidized bed section,
A sufficient amount of secondary air is introduced into the secondary fluidized bed section to burn the solid fuel in the combustion residue and the combustible gas component in the freeboard section to cause fluidized combustion. A fluidized bed combustion method characterized in that gases generated from upper and sub fluidized bed sections are combined in a freeboard section, and combustible components in the gas are oxidized by oxygen contained in the gas. 2 The cross-sectional area of the main fluidized bed part and the sub fluidized bed part is 9=1 to 11
Claim 1 characterized in that the range is: 1.
Fluidized bed combustion method described in section.
JP6889877A 1977-06-13 1977-06-13 Fluidized bed combustion method Expired JPS5856045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6889877A JPS5856045B2 (en) 1977-06-13 1977-06-13 Fluidized bed combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6889877A JPS5856045B2 (en) 1977-06-13 1977-06-13 Fluidized bed combustion method

Publications (2)

Publication Number Publication Date
JPS543926A JPS543926A (en) 1979-01-12
JPS5856045B2 true JPS5856045B2 (en) 1983-12-13

Family

ID=13386924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6889877A Expired JPS5856045B2 (en) 1977-06-13 1977-06-13 Fluidized bed combustion method

Country Status (1)

Country Link
JP (1) JPS5856045B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL182508C (en) * 1981-05-08 1988-03-16 Hoogovens Groep Bv PRESSURE CHARGED SWIRLBED COMBUSTION SYSTEM.
JPS60117414U (en) * 1984-01-18 1985-08-08 三菱重工業株式会社 Fluidized bed combustion furnace

Also Published As

Publication number Publication date
JPS543926A (en) 1979-01-12

Similar Documents

Publication Publication Date Title
JP2710267B2 (en) Apparatus for separating carbon dioxide from carbon dioxide-containing gas and combustion apparatus having carbon dioxide separation function
US5378443A (en) Method for reducing emissions when burning nitrogen containing fuels
JP2752399B2 (en) Fluid bed catalyst regeneration method and apparatus for implementing the method
CA2156464C (en) Reduction of emissions from fcc regenerators
RU2093755C1 (en) Method of reduction of evolution of contained in flue gases formed in combustion of nitrogen-containing fuels in fluidized bed reactors
JPH05509124A (en) Multi-stage catalyst regeneration control method using complete CO combustion and partial CO combustion
US4521389A (en) Process of controlling NOx in FCC flue gas in which an SO2 oxidation promotor is used
SK279954B6 (en) Process for decreasing n2o content in combustion gas
US3784676A (en) Removing sulphur from hydrocarbons
JPH05508433A (en) Method and apparatus for dehydrogenating alkanes
US3843330A (en) Regeneration apparatus
US11697157B2 (en) Incineration apparatus and method
ES409156A1 (en) Fluid catalyst regeneration process with substantially complete combustion of carbon monoxide
JP3317496B2 (en) Reduction of N2O emissions
JPH052382B2 (en)
US4341623A (en) Catalytic cracking using a mixture of cracking catalyst particles with particles of platinum group metal or rhenium on inert substrates regenerated to up to about 0.1% coke
JP2011026489A (en) Pyrolysis furnace in circulating fluidized bed gasification system and temperature control system of gasification furnace
JPS5856045B2 (en) Fluidized bed combustion method
JP2009216353A (en) Combustion method for fluidized bed boiler
JPS5842230B2 (en) Method for producing fuel gas and sulfur from hydrocarbon fuel
SU620214A3 (en) Method of catalytic cracking of raw petroleum
EP3617590A1 (en) Incineration apparatus and method
JP2003190763A (en) Treatment system for matter to be treated and treatment method using the same
JPH06508380A (en) Method for stripping and regenerating fluidized catalytic cracking catalysts
WO1993000674A1 (en) A process for stripping and regenerating fluidized catalytic cracking catalyst