JPS5828615A - Measuring device for extent of shift - Google Patents
Measuring device for extent of shiftInfo
- Publication number
- JPS5828615A JPS5828615A JP12676881A JP12676881A JPS5828615A JP S5828615 A JPS5828615 A JP S5828615A JP 12676881 A JP12676881 A JP 12676881A JP 12676881 A JP12676881 A JP 12676881A JP S5828615 A JPS5828615 A JP S5828615A
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical fiber
- mark
- optical
- optical mark
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 claims abstract description 53
- 230000003287 optical effect Effects 0.000 claims abstract description 42
- 238000001514 detection method Methods 0.000 abstract description 16
- 239000000835 fiber Substances 0.000 abstract description 4
- 238000007493 shaping process Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 206010011878 Deafness Diseases 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 231100000895 deafness Toxicity 0.000 description 2
- 208000016354 hearing loss disease Diseases 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/36—Forming the light into pulses
- G01D5/363—Direction discrimination
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Linear Or Angular Velocity Measurement And Their Indicating Devices (AREA)
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
- Optical Transform (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は光学的な移動量測定装置に関するものである。[Detailed description of the invention] The present invention relates to an optical movement measuring device.
移動体の光学的な移動量測定装置としては、従来、位相
のずれた2列の光学マークを用いて、それぞれのマーク
を2組の投光、受光手段により光学的に検出して、その
位相差から光学マークの移動方向を求め、さらに通過し
たマーク数をカウントして移動量を求めるものであった
。しかし、この方式では位相のずれた2列の光学マーク
を必要とし、また、2組の受光器が他のマークの影響を
受けないようにするため、他のマークからの光を受けな
い程度に間隔を設けて取付ける必要があり、検出部が大
きくなる欠点があった。Conventionally, optical movement measuring devices for moving objects use two rows of optical marks with a phase shift, each mark is optically detected by two sets of light emitting and light receiving means, and its position is measured. The direction of movement of the optical mark was determined from the phase difference, and the amount of movement was determined by counting the number of marks that had passed. However, this method requires two rows of optical marks that are out of phase, and in order to prevent the two sets of light receivers from being affected by other marks, It is necessary to install them at intervals, which has the disadvantage that the detection part becomes large.
本発明の目的は単一の光学マークで動作し、検出部の小
形な移動量測定装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a compact movement measuring device for a detection unit that operates using a single optical mark.
本発明の一実施例を第1図〜第7図により説明する。第
1図は本発明の一実施例である。この移動量測定装置は
、はぼ等間隔の反射面3と非反射面2を交互に等ピッチ
で連続して配置した光学マーク1、光源5からの光を光
学マーク1に投光するため投光用光フアイバ4C1光学
マーク1からの反射光を第1受光器6aに導くための第
1受光用光ファイバ4a、第2受光器6bに導くための
第2受光用光ファイバ4b、受光器6a、6bの出力か
ら光学マーク1の移動方向を求め、移動方向に従って反
射面3の通過ごとにパルスを出力する方向検出器8、方
向検出器8の出力パルスを方向に従ってカウントするア
ップダウンカウンタ9、カウント結果をアナログ信号に
変換するD−A変換器から構成される。An embodiment of the present invention will be described with reference to FIGS. 1 to 7. FIG. 1 shows an embodiment of the present invention. This movement measuring device consists of an optical mark 1 in which reflecting surfaces 3 and non-reflecting surfaces 2 are alternately and continuously arranged at equal intervals, and a light source 5 is used to project light onto the optical mark 1. Optical fiber for light 4C1 A first optical fiber for light reception 4a for guiding the reflected light from the optical mark 1 to the first light receiver 6a, a second optical fiber for light reception 4b for guiding the light reflected from the optical mark 1 to the second light receiver 6b, and a light receiver 6a. , 6b, a direction detector 8 which determines the moving direction of the optical mark 1 from the outputs of the optical marks 1 and outputs a pulse each time it passes the reflecting surface 3 according to the moving direction; an up/down counter 9 which counts the output pulses of the direction detector 8 according to the direction; It consists of a DA converter that converts the count results into analog signals.
受光用光ファイバ4a、4bは第2図に示すように光学
マーク1の移動方向にXだけずらして配置する。The light-receiving optical fibers 4a and 4b are arranged shifted by X in the moving direction of the optical mark 1, as shown in FIG.
第3図は受光部の動作説明図である。第3図の状態から
光学マーク1が入方向へ移動すると反射面3bからの反
射光により第2受光用光フアイバ4bの受光量が増加し
、受光用光ファイバ4a。FIG. 3 is an explanatory diagram of the operation of the light receiving section. When the optical mark 1 moves in the entrance direction from the state shown in FIG. 3, the amount of light received by the second light-receiving optical fiber 4b increases due to the reflected light from the reflective surface 3b, and the light-receiving optical fiber 4a increases.
4bがともに受光する。さらに光学マーク1がA方向に
進むと非反射面2aのため第2受光用光フアイバ4bの
受光量は減少し、受光しなくなる。4b both receive light. When the optical mark 1 further advances in the direction A, the amount of light received by the second light-receiving optical fiber 4b decreases due to the non-reflective surface 2a, and no light is received.
次いで第1受光用光フアイバ4aも受光量が減少し、受
光用光ファイバ4a、4bがともに受光しなくなる。さ
らに光学マーク1が入方向に進むと反射面3aにより第
2受光用光フアイバが受光し始め以下同様な動作をくり
返す。このときの第1受光器6aの出力は第4図■、第
2受光器6Bの出力は第4図(イ)のごとくになる。第
3図において、光学マーク1がB方向に移動すると入方
向に移動した場合と逆になり、反射面3からの反射光は
第1受光用光フアイバが先に受光し、第2受光用光フア
イバ4bが遅れて受光する。このときの第1受光器6a
の出力は第5図ω、第2受光器6bの出力は第5図(イ
)のごとくになる。したがって受光器5a、6bの出力
の位相差θは光学マーク′1の移動方向が変った場合逆
になる。Then, the amount of light received by the first light-receiving optical fiber 4a also decreases, and both light-receiving optical fibers 4a and 4b no longer receive light. When the optical mark 1 further advances in the entrance direction, the second light-receiving optical fiber begins to receive light by the reflecting surface 3a, and the same operation is repeated thereafter. At this time, the output of the first light receiver 6a is as shown in FIG. 4(2), and the output of the second light receiver 6B is as shown in FIG. 4(A). In FIG. 3, when the optical mark 1 moves in the B direction, it is the opposite of the case where it moves in the input direction, and the reflected light from the reflective surface 3 is first received by the first light receiving optical fiber, and the second light receiving optical fiber is received by the second light receiving optical fiber. The fiber 4b receives the light with a delay. The first light receiver 6a at this time
The output of the second light receiver 6b is as shown in FIG. 5(a), and the output of the second light receiver 6b is as shown in FIG. Therefore, the phase difference θ between the outputs of the light receivers 5a and 6b becomes reversed when the moving direction of the optical mark '1 changes.
第6図は光学マーク1の移動方向に従って反射面が通過
するごとにパルスを出力する方向検出器の一例である。FIG. 6 shows an example of a direction detector that outputs a pulse every time a reflective surface passes according to the moving direction of the optical mark 1.
波形整形回路13aの入力には第1受光器6aの出力が
、波形整形回路13bには第2受光回路6bの出力が接
続される。コンデンサ14a1抵抗15a1ダイオード
16aにより波形整形回路13a出力の立上りを検出、
インバータ18、コンデンサ14b1抵抗15b1ダイ
オード16bにより立下りを検出し、それぞれと波形整
形回路13b出力とのANDをとることによりAND回
路17aには光学マーク1が入方向に移動したときに反
射面が通過するごとにパルスを出力し、AND回路17
bはB方向に移動した場合にパルスを出力する。第7図
は第6図の回路の動作時の各部の波形である。The output of the first light receiver 6a is connected to the input of the waveform shaping circuit 13a, and the output of the second light receiving circuit 6b is connected to the waveform shaping circuit 13b. The rise of the output of the waveform shaping circuit 13a is detected by the capacitor 14a1, the resistor 15a1, and the diode 16a.
The inverter 18, the capacitor 14b1, the resistor 15b1, and the diode 16b detect the falling edge, and by ANDing each of them with the output of the waveform shaping circuit 13b, the reflective surface passes through the AND circuit 17a when the optical mark 1 moves in the input direction. outputs a pulse every time the AND circuit 17
b outputs a pulse when moving in the B direction. FIG. 7 shows waveforms at various parts of the circuit shown in FIG. 6 during operation.
第6図のAND回路17a、17bの出力は、アップ端
子にパルスが加わった場合にカウントが増加し、ダウン
端°子にパルスが加わった場合にカウントが減少するア
ップダウンカウンタ9に接続される。AND回路17a
出力をアップ端子に、AND回路17bの出力をダウン
端子に接続することにより、光学マーク1が入方向に移
動した場合アップダウンカウンタ9は増加し、B方向に
移動した場合減少するのでカウント結果から方向も含め
て光学マーク1の移動量を測定できる。また、アップダ
ウンカウンタ9の出力はA−D変換器10によりアナロ
グ信号に変換され、オシログラム等の記録信号とするこ
とができる。The outputs of the AND circuits 17a and 17b in FIG. 6 are connected to an up/down counter 9 which increases the count when a pulse is applied to the up terminal and decreases the count when a pulse is applied to the down terminal. . AND circuit 17a
By connecting the output to the up terminal and the output of the AND circuit 17b to the down terminal, when the optical mark 1 moves in the in direction, the up/down counter 9 increases, and when it moves in the B direction, it decreases, so from the count result The amount of movement of the optical mark 1 including the direction can be measured. Further, the output of the up/down counter 9 is converted into an analog signal by an A/D converter 10, and can be used as a recording signal for an oscillogram or the like.
以上のように本発明の一実施例によれば、安価な単一の
光学マークで動作し、検出部直径は使用する光ツアイバ
の数倍程度の小形の移動量測定装置を提供できる。As described above, according to one embodiment of the present invention, it is possible to provide a small displacement measuring device that operates with a single inexpensive optical mark and has a detecting portion diameter several times that of the optical fiber used.
第8図は複数の光ファイバで投光及び受光を行なった場
合の光学マーク1に対向する検出部で投光用光ファイバ
4c、4c’、4c’を中央に、その両側に第1受光用
光ファイバ4a、4a’、及び第2受光用光ファイバ4
b、4b/を配置したものである。このように複数本の
光ファイバで投光、受光を行なうことにより検出部の感
度を増大できる。Figure 8 shows the detection unit facing the optical mark 1 when light is emitted and received using a plurality of optical fibers, with the light emitting optical fibers 4c, 4c', and 4c' in the center, and the first light-receiving fibers on both sides. Optical fibers 4a, 4a' and second light receiving optical fiber 4
b, 4b/ are arranged. By projecting and receiving light using a plurality of optical fibers in this manner, the sensitivity of the detection section can be increased.
また、投光用光ファイバ4c、4c’、4c’の中心線
、第1受光用光ファイバ4a、4a/の中心線、第2受
光用光ファイバ4b、4b’の中心線を互いにほぼ平行
にし、投光用光ファイバ4c、4c’の中心線を第1受
光用光ファイバ4a、4a’の中心線と第2受光用光フ
ァイバ4b、4b/の中心線のほぼ中央に配置すること
により投光用光ファイバからの光の利用率、光学マーク
検出の分解能を上げることができる。Also, the center lines of the light emitting optical fibers 4c, 4c', 4c', the center lines of the first light receiving optical fibers 4a, 4a/, and the center lines of the second light receiving optical fibers 4b, 4b' are made almost parallel to each other. , by arranging the center lines of the light emitting optical fibers 4c, 4c' approximately in the center of the center lines of the first light receiving optical fibers 4a, 4a' and the center lines of the second light receiving optical fibers 4b, 4b/. The utilization rate of light from the optical fiber and the resolution of optical mark detection can be increased.
第9図は第8図に示す検出部の側面の部分断面図である
。この図に示すように、投光用光ファイバ4C,4C’
、4C’、第1受光用光フアイバ4a。FIG. 9 is a partial sectional view of the side surface of the detection section shown in FIG. 8. As shown in this figure, the light emitting optical fibers 4C, 4C'
, 4C', first light receiving optical fiber 4a.
4 a/及び第2受光用光ファイバ4b、4b/を支持
部材22により一括して固定し、これらの光ファイバを
一つの被覆内に納めることにより構造を簡単にできるた
め、製作が容易になり経済的な検出部を得ることができ
る。また、投光用光フアイバ4C1受光用光フアイバ4
a、4bを一つの被覆内に納めることにより取扱いやす
い検出部にすることができる。4a/ and the second light-receiving optical fibers 4b, 4b/ are collectively fixed by the support member 22, and the structure is simplified by housing these optical fibers in one coating, which facilitates manufacturing. An economical detection unit can be obtained. In addition, the light emitting optical fiber 4C1 and the light receiving optical fiber 4
By housing a and 4b in one cover, the detection section can be made easy to handle.
本発明において使用できる光学マーク1の反射面の幅は
検出部の第1受光用光フアイバ4aと第2受光用光フア
イバ4bの中心の間隔Xに比例する。第8図でのXは光
フアイバ直径の約1.74倍、第10図に示す配置では
Xは光フアイバ直径とほぼ同じであり、第11図の配置
では光フアイバ直径以下にすることができる。The width of the reflective surface of the optical mark 1 that can be used in the present invention is proportional to the distance X between the centers of the first light-receiving optical fiber 4a and the second light-receiving optical fiber 4b of the detection section. In Fig. 8, X is approximately 1.74 times the optical fiber diameter, in the arrangement shown in Fig. 10, X is approximately the same as the optical fiber diameter, and in the arrangement shown in Fig. 11, it can be less than or equal to the optical fiber diameter. .
、 検出部の分解能向上の他の方法としては第12図に
示すように検出部先端にレンズを設ける方法がある。Another method for improving the resolution of the detection section is to provide a lens at the tip of the detection section, as shown in FIG.
第6図に示す方向検出回路では光学マーク1の反射面3
が検出部を1個通過すると1個のパルスしか発生しない
。これは反射面の始まり又は終り部分しか検出しないた
めである。第13図に示す方向検出回路はこの点を改良
したものでインバータ19、AND回路17C,17d
及びAND回路20.21を追加し、波形整形回路13
aの出力の立上り、立下りにおいてパルスを発生するよ
うにする。すなわち、反射面3の通過時にその始まりと
終り部分を検出するようにしたものである。In the direction detection circuit shown in FIG.
When one passes through the detection section, only one pulse is generated. This is because only the beginning or end of the reflective surface is detected. The direction detection circuit shown in FIG.
and AND circuits 20 and 21 are added, and the waveform shaping circuit 13
A pulse is generated at the rise and fall of the output of a. That is, the beginning and end portions of the reflective surface 3 are detected when the reflective surface 3 is passed through.
第14図は第13図の回路の動作時の各部の波形である
。FIG. 14 shows waveforms at various parts of the circuit shown in FIG. 13 during operation.
このように反射面3の通過時に反射面3から非反射面2
への境界、非反射面2から反射面3への境界を検出し、
そのいずれをもカウントするようにすることで分解能を
2拮にすることができる。In this way, when passing through the reflective surface 3, the reflection surface 3 moves from the non-reflective surface 2.
Detect the boundary from the non-reflective surface 2 to the reflective surface 3,
By counting both of them, the resolution can be reduced to two.
以上説明した本発明によれば、安価な単一の光学マーク
で動作するので経済的であり、また検出部も使用する光
フアイバ直径の数倍程度と小形にできる効果がある。According to the present invention described above, it is economical because it operates with a single inexpensive optical mark, and also has the effect that the detection section can be made small, about several times the diameter of the optical fiber used.
第1図は本発明の一実施例による測定装置の構成略図、
第2図〜第7図は第1図の動作説明図、第8図〜第14
図は本発明の異なる実施例の説明図である。
1・・・光学マーク、4a・・・第1光学用光フアイバ
、4b・・・第2光学用光フアイバ、4c・・・投光用
光ファイバ、6a、6b・・・受光器、8・・・方向検
出器、聾4因
を 5凪
聾1
’4 ′7記
A″)5?;]に物転勤SS向1=移動又FIG. 1 is a schematic diagram of the configuration of a measuring device according to an embodiment of the present invention;
Figures 2 to 7 are explanatory diagrams of the operation of Figure 1, and Figures 8 to 14.
The figures are explanatory diagrams of different embodiments of the present invention. DESCRIPTION OF SYMBOLS 1... Optical mark, 4a... Optical fiber for first optics, 4b... Optical fiber for second optics, 4c... Optical fiber for light projection, 6a, 6b... Light receiver, 8.・・Direction detector, Deafness 4 cause 5 Deafness 1 '4 '7 A'') 5?; ] to object transfer SS direction 1 = movement or
Claims (1)
で交互に連続して配置した光学マークと、この光学マー
クに投光する光ファイバと光源から成る投光8手段と、
光学マークからの反射光を受光する第1受光用光フアイ
バ及びこれよりも光学マークの移動軸方向に変位して設
けた第2受光用光フアイバと、それぞれの受光用光ファ
イバの光信号−を電気信号に変換する第1受光器及び第
2受光器と、これら受光器の出力信号から光学マークの
移動方向に従って反射面の通過ごとにパルスを発生する
方向検出器と、この方向検出器からのパルスを光学マー
クの移動方向に従ってカウントするアップダウンカウン
タにより構成したことを特徴とする移動量測定装置。 2、上記特許請求の範囲第1項記載のものにおいて、投
光用光ファイバの中心線と第1受光用光フアイバの中心
線と、第2受光用光フナイパの中心線を互いにほぼ平行
にしたことを特徴とする移動量測定装置。 3、上記特許請求の範囲第1項記載のものにおいて、投
晃用光ファイバと第1受光用光フアイバと第2受光用光
フアイバを一括して固定したことを特徴とする移動量測
定装置。 4、上記特許請求の範囲第1項記載のものにおいて、上
記アップダウンカウンタは、上記光学マークの反射面か
ら非反射面への境界と非反射面から反射面への境界をい
ずれもカウントするようにしたことを特徴とした移動量
測定装置。[Claims] 1. Eight light projecting means consisting of an optical mark in which ranges with different reflectances are alternately and consecutively arranged at a predetermined pitch at predetermined intervals, and an optical fiber and a light source that project light onto the optical mark. and,
A first light-receiving optical fiber that receives reflected light from the optical mark, a second light-receiving optical fiber that is displaced from this in the direction of the movement axis of the optical mark, and an optical signal of each light-receiving optical fiber. A first light receiver and a second light receiver that convert the signals into electrical signals, a direction detector that generates a pulse from the output signals of these light receivers each time the optical mark passes a reflective surface according to the moving direction of the optical mark, and A movement amount measuring device comprising an up/down counter that counts pulses according to the direction of movement of an optical mark. 2. In the item described in claim 1 above, the center line of the light-emitting optical fiber, the center line of the first light-receiving optical fiber, and the center line of the second light-receiving optical fiber are made substantially parallel to each other. A movement measuring device characterized by: 3. A movement measuring device according to claim 1, characterized in that the projection optical fiber, the first light-receiving optical fiber, and the second light-receiving optical fiber are fixed together. 4. In the item described in claim 1 above, the up/down counter is configured to count both the boundary from the reflective surface to the non-reflective surface and the boundary from the non-reflective surface to the reflective surface of the optical mark. A movement measuring device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12676881A JPS5828615A (en) | 1981-08-14 | 1981-08-14 | Measuring device for extent of shift |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12676881A JPS5828615A (en) | 1981-08-14 | 1981-08-14 | Measuring device for extent of shift |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5828615A true JPS5828615A (en) | 1983-02-19 |
Family
ID=14943442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12676881A Pending JPS5828615A (en) | 1981-08-14 | 1981-08-14 | Measuring device for extent of shift |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5828615A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59173713A (en) * | 1983-03-23 | 1984-10-01 | Ishikawajima Harima Heavy Ind Co Ltd | Method for measuring optical reflection type displacement |
JPS59176916U (en) * | 1983-04-13 | 1984-11-27 | アルプス電気株式会社 | rotary encoder |
JPS60150412U (en) * | 1984-03-19 | 1985-10-05 | フアインフイ−ルド株式会社 | rotation angle detector |
JPS60150413U (en) * | 1984-03-19 | 1985-10-05 | フアインフイ−ルド株式会社 | rotation angle detector |
JPH01209373A (en) * | 1988-02-17 | 1989-08-23 | Shikoku Keisoku Kogyo Kk | Light reflection type differential sensor |
US4864286A (en) * | 1987-04-13 | 1989-09-05 | Hitachi, Ltd. | Switch operation monitoring apparatus |
US5286972A (en) * | 1993-03-05 | 1994-02-15 | Falk David C | Photoelectric line measuring device with digital display |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5676003A (en) * | 1979-11-28 | 1981-06-23 | Fuji Electric Co Ltd | Measuring device for stroke of breaker |
JPS56160615A (en) * | 1980-05-14 | 1981-12-10 | Fuji Electric Co Ltd | Stroke measuring apparatus |
-
1981
- 1981-08-14 JP JP12676881A patent/JPS5828615A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5676003A (en) * | 1979-11-28 | 1981-06-23 | Fuji Electric Co Ltd | Measuring device for stroke of breaker |
JPS56160615A (en) * | 1980-05-14 | 1981-12-10 | Fuji Electric Co Ltd | Stroke measuring apparatus |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59173713A (en) * | 1983-03-23 | 1984-10-01 | Ishikawajima Harima Heavy Ind Co Ltd | Method for measuring optical reflection type displacement |
JPS59176916U (en) * | 1983-04-13 | 1984-11-27 | アルプス電気株式会社 | rotary encoder |
JPS60150412U (en) * | 1984-03-19 | 1985-10-05 | フアインフイ−ルド株式会社 | rotation angle detector |
JPS60150413U (en) * | 1984-03-19 | 1985-10-05 | フアインフイ−ルド株式会社 | rotation angle detector |
US4864286A (en) * | 1987-04-13 | 1989-09-05 | Hitachi, Ltd. | Switch operation monitoring apparatus |
JPH01209373A (en) * | 1988-02-17 | 1989-08-23 | Shikoku Keisoku Kogyo Kk | Light reflection type differential sensor |
US5286972A (en) * | 1993-03-05 | 1994-02-15 | Falk David C | Photoelectric line measuring device with digital display |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4291976A (en) | Digital fiber optic position sensor | |
US3973119A (en) | Device for determining the displacement of a machine tool component | |
US7348544B2 (en) | Optical encoder with discontinuous optical grating | |
US4118127A (en) | Method of detecting faults in moving webs of materials | |
JPS5828615A (en) | Measuring device for extent of shift | |
EP0096448B1 (en) | Apparatus for determing angular displacements of an object | |
JPS6051650B2 (en) | Zero point detection device for photoelectric encoder | |
JP3924363B2 (en) | Dimensional measuring device | |
JPH0769422B2 (en) | Pulse laser range finder | |
JPS5923257A (en) | Optical fiber type sensor | |
SU1035419A1 (en) | Optical electronic device for measubring linear displacements | |
JPS63148855A (en) | Position detector for x-y linear motor | |
SU1265476A1 (en) | Optoelectronic device for measuring linear and angular displacements | |
SU934217A1 (en) | Device for inspection of moving object shape | |
JPH0411807B2 (en) | ||
SU1188535A1 (en) | Optronic device for measuring linear and angular displacements | |
RU2220402C2 (en) | Gear measuring position and movement of object | |
JP3049302B2 (en) | Optical displacement detector | |
US20020060782A1 (en) | Optical traingulation displacement sensor using a diffraction grating | |
JPS63121722A (en) | Temperature distribution detector | |
SU1173318A1 (en) | Speedometer | |
SU1362925A1 (en) | Photoelectric convertr | |
JPH0560575A (en) | Position detection unit | |
SU1654651A1 (en) | Device for object motion measurements | |
RU2091708C1 (en) | Gear measuring linear and angular movements |