Nothing Special   »   [go: up one dir, main page]

JPS58222556A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58222556A
JPS58222556A JP57105411A JP10541182A JPS58222556A JP S58222556 A JPS58222556 A JP S58222556A JP 57105411 A JP57105411 A JP 57105411A JP 10541182 A JP10541182 A JP 10541182A JP S58222556 A JPS58222556 A JP S58222556A
Authority
JP
Japan
Prior art keywords
emitter
polysilicon
gate
window
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57105411A
Other languages
Japanese (ja)
Other versions
JPH0481336B2 (en
Inventor
Takahide Ikeda
池田 隆英
Kiyoshi Tsukuda
佃 清
Mitsuru Hirao
充 平尾
Nobuaki Miyagawa
宣明 宮川
Tokuo Watanabe
篤雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57105411A priority Critical patent/JPS58222556A/en
Publication of JPS58222556A publication Critical patent/JPS58222556A/en
Publication of JPH0481336B2 publication Critical patent/JPH0481336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an element structure with the CMOS process connected without sacrificing characteristic of bipolar element by commonly executing impurity doping for the emitter and forming polysilicon emitter on the emitter simultaneously with forming the polysilicon gate. CONSTITUTION:After forming a gate oxide film 13 for MOS element, an emitter window 14 is formed by photo etching and then a polysilicon layer 12 to be used for gate of MOS element is formed. Thereafter, the arsenic ion is implanted to the entire part and thermal processing is executed. Thereby resistance of polysilicon which will become a gate is lowered and simultaneously an emitter 9 is formed through the emitter window 14. With the photo resist used as the mask, the polysilicon layer 12 is etched and thereby a gate 12 and emitter polysilicon layer 19 of MOS element are formed. With SiO2 film used as the mask, boron ion is implanted for doping of the source/drain 8 of PMOS, while arsenic ion for doping of the source/drain 7 of NMOS. A semiconductor device can be formed through heat processing.

Description

【発明の詳細な説明】 本発明は、バイボー2トランジスタおよびMOSトラン
ジスタを同一基板上に形成した複合LSIにおいて、バ
イポーラ素子の高速化、および製造工程の簡略化を図る
素子構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an element structure that increases the speed of a bipolar element and simplifies the manufacturing process in a composite LSI in which a biborder transistor and a MOS transistor are formed on the same substrate.

バイポーラトランジスタと相補型MO8)ランジスタ(
PチャネルとNチャネルを同時に含みCMOS トラン
ジスタと呼ばれる)を同一基板上に作ったLSI(以後
BiCMO8LS、Iと呼ぶ)は、すでに1969年項
から試みられている。これまで報告され1いるBicM
os LSIの”MOS素子は、AIゲートプロセスで
加工寸法も大きく(5μm以上)、集積度、高速性能も
最近の微細加工技術(例えば最小寸法2μm)を用いた
LSIに比べて劣る。したがって、従来のntcMos
 LS iに含まれるバイポーラ素子も、同様に寸法が
大きく、商集積、高速性能は期待できなかった。
Bipolar transistor and complementary MO8) transistor (
LSIs (hereinafter referred to as BiCMO8LS, I) in which both P-channel and N-channel transistors (called CMOS transistors) were fabricated on the same substrate have already been attempted since 1969. One BicM reported so far
os LSI's MOS devices are manufactured using an AI gate process and have large processing dimensions (more than 5 μm), and are inferior in terms of integration and high-speed performance compared to LSIs using recent microfabrication technology (for example, minimum size 2 μm). ntcMos
The bipolar element included in LS i was similarly large in size, and could not be expected to have high integration or high-speed performance.

近年、MOSLSIはシリコンゲートを用いたセルフ゛
ア2イン技術、微細加工技術等の進歩により、ゲート長
も3μmから2μmが中心なってきている。この様なM
OS素子に見合って、微細なバイポーラ素子を同時に形
成する必要が生じてきている。
In recent years, due to advancements in self-core 2-in technology using silicon gates, microfabrication technology, etc., the gate length of MOSLSI has become mainstream from 3 μm to 2 μm. M like this
It has become necessary to simultaneously form fine bipolar elements in line with OS elements.

従来報告されているBiCMO8LS Iを形成するプ
ロセスから類推し、シリコンゲートのMOS素子と同時
にバイポーラ素子を作る工程を第1図に示す。ここに示
した816MO8素子の各部分の説明を、工程順に行な
う。
By analogy with the previously reported process for forming BiCMO8LSI, FIG. 1 shows a process for forming a bipolar element at the same time as a silicon gate MOS element. Each part of the 816MO8 element shown here will be explained in order of process.

P型シリコン基板1の表面に、N+ (高濃度のN型、
埋込み層2およびアイソレーション用のP3埋込み層4
を形成した後、N型エピタキシャル層3を形成する。、
NMO8を作る領域にPウェル領域5を形成した後、S
i3N、膜を酸化のマスクに用いてアイソレーション用
の選択酸化膜10を形成する。
On the surface of the P-type silicon substrate 1, N+ (high concentration N-type,
Buried layer 2 and P3 buried layer 4 for isolation
After forming, an N-type epitaxial layer 3 is formed. ,
After forming the P well region 5 in the region where NMO8 is to be formed, S
A selective oxide film 10 for isolation is formed using the i3N film as an oxidation mask.

次いて、バイポーラ素子のベース6全形成しゲート酸化
膜13、ゲート用のポリシリコア12を形成し、ポリシ
リコンのホトエツチング、2M08部のホトエツチング
を行ない−PMO8のソース・ドレイン8をセルファラ
インで形成する。次に、拡散マスクとしてのsio、膜
11を形成し、玉稿簡略化のために、エミッタ拡散の窓
14、およびNMO8のソース・ドレイソ拡散の窓を同
時に形成した後、N型不純物をドープしてエミッタ9、
ソース・ドレイン7を形成する。この後、第1図(b)
に示す様罠、パッシベーション膜15を形成し、全素子
に電極を接続するだめのコンタクト窓を形成する。夫々
コンタクト窓は、エミッタ16、ベース16’ 、NM
O8I 6“、PMO816“′である。
Next, the entire base 6 of the bipolar element is formed, the gate oxide film 13 and the polysilicon core 12 for the gate are formed, and the polysilicon is photoetched and the 2M08 portion is photoetched, and the source and drain 8 of the PMO 8 are formed by self-line. Next, the sio film 11 as a diffusion mask is formed, and in order to simplify the printing process, an emitter diffusion window 14 and a source/drain diffusion window of NMO8 are simultaneously formed, and then an N-type impurity is doped. emitter 9,
A source/drain 7 is formed. After this, Figure 1(b)
As shown in FIG. 3, a passivation film 15 is formed, and contact windows for connecting electrodes to all elements are formed. The contact windows are emitter 16, base 16', and NM, respectively.
O8I 6", PMO816"'.

以上、シリコンゲートのCMOSプロセスとバイポーラ
プロセスとを接続した一般的な方法を示したが、この方
法でU、NMO8のソース・ドレインとバイポーラ素子
のエミッタを同時に作るため、NMO8の電極取出しの
ためには、この後、必ずパッシベーション膜15を形成
した後、コンタクト窓を形成する必要がある。すなわち
、マスク合わせずれを見込むと、エミッタ拡散窓14を
エミッタコンタクト16に比べて十分大きくしておかざ
Above, we have shown a general method that connects the silicon gate CMOS process and the bipolar process. This method is used to simultaneously create the source/drain of U and NMO8 and the emitter of the bipolar element, and to take out the electrode of NMO8. After this, it is necessary to form the contact window after forming the passivation film 15. In other words, the emitter diffusion window 14 should be made sufficiently larger than the emitter contact 16 to account for mask misalignment.

るを得す、バイポーラ素子の性能向上が期待できない。However, no improvement in the performance of bipolar devices can be expected.

この問題を第2図(a)、(b)を用いてさらに説明す
る。第2図(a)、(b)は、第1図(a)、(b)の
パイボー2素子の部分を取り出したものである。第2図
(a)は、エミッタ拡散窓14を通してエミッタ9を形
成した状態を示している。前述の様に、この後、NMO
8の表面をカバーするため、パッシベーション膜を形成
スるが、エミッタ上にも形成されるため、第2図(b)
に示す様に、この膜にコンタクト窓16を形成する必要
がある。例えば、最小加工寸法2μmのプロセスを用い
た場合、コンタクト窓16の巾2μm(図のα)に対し
、マスク合わせずれ2μm(図のβ)を見込む必要があ
るため、最初のエミツタ窓16は6μmにしておく必要
があり、エミッタ巾を最小加工寸法2μmにする事はで
きない。
This problem will be further explained using FIGS. 2(a) and 2(b). FIGS. 2(a) and 2(b) show the parts of the two pibo elements shown in FIGS. 1(a) and 1(b). FIG. 2(a) shows a state in which the emitter 9 is formed through the emitter diffusion window 14. As mentioned above, after this, NMO
A passivation film is formed to cover the surface of the emitter, but it is also formed on the emitter, as shown in Figure 2(b).
It is necessary to form a contact window 16 in this film as shown in FIG. For example, when using a process with a minimum processing size of 2 μm, it is necessary to allow a mask alignment deviation of 2 μm (β in the figure) for the width of the contact window 16 of 2 μm (α in the figure), so the first emitter window 16 has a width of 6 μm. Therefore, it is not possible to reduce the emitter width to the minimum processing dimension of 2 μm.

一方、バイポーラ素子のみを作るプロセスでは、エミッ
タの微細化(従ってバイポーラ素子の高性能化につなが
る)のために、第3図に示すウオシュトエミツタ構造が
用いられている。この方法は、第3図(d)に示したよ
うに、パッシベーションxi 5にエミッタ拡散窓14
を通してエミッタ9を形成した後、第3図(b)に示す
様に、エミッタ拡散窓14はそのま\(従ってこの後パ
ッシベーション膜は形成しない)にして、コンタクト用
のホトエツチングを行なう。ホトレジスト17は、エミ
ッタ上は窓を開けず、ベース部分に窓16’を開ける。
On the other hand, in the process of manufacturing only bipolar elements, the washed emitter structure shown in FIG. 3 is used to miniaturize the emitter (which leads to higher performance of the bipolar element). In this method, as shown in FIG. 3(d), an emitter diffusion window 14 is added to the passivation xi 5.
After forming the emitter 9 through the emitter 9, as shown in FIG. 3(b), the emitter diffusion window 14 is left as it is (therefore, no passivation film is formed after this) and photoetching for contact is performed. The photoresist 17 does not have a window on the emitter, but has a window 16' on the base.

第3図(C)は、レジスト膜除去後、電極18.18’
を形成した状態を示す。
FIG. 3(C) shows the electrode 18, 18' after removing the resist film.
This shows the state in which it has been formed.

第3図の方法によれば、エミッタ9の巾は、最小加工寸
法(例えば2μm)による窓の寸法と同一になり、第2
図のエミッタ9の巾(6μm)に比べて素子性能も大巾
に向上する。すなわち、エミッタ9の下側のベース抵抗
は1/3になり、エミッタ9の接合容量も1/3になる
According to the method shown in FIG.
The device performance is also greatly improved compared to the width of the emitter 9 shown in the figure (6 μm). That is, the base resistance on the lower side of the emitter 9 is reduced to 1/3, and the junction capacitance of the emitter 9 is also reduced to 1/3.

第4図で従来のエミッタ9にポリシリコンを用いる方法
を説明する。素子の高性能化のため、エミッタ9の接合
深さを浅く(例えば0.2〜0,3μm)した場合、電
極が下地シリコン層と反応して接合特性が劣化するのを
防ぐため、まだ、エミッタ9の注入効率の向上のため、
エミッタ9の上にポリシリコン層を付加する方法である
。第4図(a)は、エミッタ拡散窓を形成した後、ポリ
シリコン層を全面に形成し、ポリシリコンの上からエミ
ッタ9用の不純物をドープしてエミッタ9を形成し、続
いて、エミッタ9上にポリシリコン層19をパターニン
グする。次に、第3図(b)と同様にエミッタ9部はそ
のま\で、ベースコンタクト窓16′を開け、この後、
第4図(b)に示す様に電極18.18’を形成する。
A conventional method of using polysilicon for the emitter 9 will be explained with reference to FIG. In order to improve the performance of the device, when the junction depth of the emitter 9 is made shallow (for example, 0.2 to 0.3 μm), it is still necessary to prevent the electrode from reacting with the underlying silicon layer and deteriorating the junction characteristics. In order to improve the injection efficiency of the emitter 9,
This is a method of adding a polysilicon layer on top of the emitter 9. FIG. 4(a) shows that after forming an emitter diffusion window, a polysilicon layer is formed on the entire surface, and an impurity for the emitter 9 is doped from above the polysilicon to form an emitter 9. A polysilicon layer 19 is patterned on top. Next, as in FIG. 3(b), leave the emitter 9 as it is and open the base contact window 16'.
Electrodes 18, 18' are formed as shown in FIG. 4(b).

第5図は、第3図のウオシュトエミツタ構造を単純にB
10MO8構造に適用する場合を示しである。、PMO
8,NMO8素子およびパッシベーション膜15を形成
した後にエミツタ窓14を開け、エミッタ9を形成し、
続いて第3図(C)の様に他の部分のコンタクト窓を開
ける。
Figure 5 shows the wash emitter structure in Figure 3 simply as B.
This figure shows the case where it is applied to a 10MO8 structure. , P.M.O.
8. After forming the NMO8 element and the passivation film 15, open the emitter window 14 and form the emitter 9,
Next, open the contact windows in other parts as shown in FIG. 3(C).

この方法を用いれば、構造上最小加工寸法に相当するエ
ミッタが形成できるがMO8素子に大きな特性変動を与
える。例えば、バイポーラ素子の高性能化のために、不
純物としてひ素を0.3μmの深さにドープする場合、
ひ素の熱拡散条件またはイオン打込み後のアニール条件
として通常例えば1000C,60分以上の熱処理が必
要である。
If this method is used, an emitter corresponding to the minimum processing size can be formed in terms of structure, but it causes large characteristic fluctuations in the MO8 element. For example, when doping arsenic as an impurity to a depth of 0.3 μm to improve the performance of a bipolar device,
As the thermal diffusion conditions for arsenic or the annealing conditions after ion implantation, heat treatment, for example, at 1000 C for 60 minutes or more is usually required.

この熱処理により、先に形成したPMO8,NMO8の
ソース・ドレイン接合深さが深くなり、従って接合の横
方向への広がりも大きく、実効的なチャネル長が短かく
なる。例えば、設計寸法2μmのチャネル長の場合、正
常なソース・ドレインの接合深さ0.3μmに対して実
効チャネル長1.4μmが得られるが、上記エミッタの
熱処理により、接合深さが深くなる(例えば0.5μm
)と、実効チャネル長が1μmになってしまい、パンチ
スルーによる耐圧の低下、短チヤネル効果による閾1直
電圧の大巾な変化をひきおこす。
By this heat treatment, the depth of the source/drain junction of the previously formed PMO8 and NMO8 becomes deep, and therefore the lateral spread of the junction becomes large, and the effective channel length becomes short. For example, in the case of a channel length with a design dimension of 2 μm, an effective channel length of 1.4 μm is obtained for a normal source/drain junction depth of 0.3 μm, but due to the heat treatment of the emitter, the junction depth becomes deeper ( For example, 0.5μm
), the effective channel length becomes 1 μm, which causes a decrease in breakdown voltage due to punch-through and a large change in the threshold 1 direct voltage due to the short channel effect.

このように、高集積のCMOSプロセスと、高速のバイ
ポーラプロセスを単純に結びつけてB i 0MO8プ
ロセスを作ろうとすると、いずれかの素子の特性を犠牲
にせざるを得ない。
In this way, if one attempts to create a B i 0 MO8 process by simply combining a highly integrated CMOS process and a high-speed bipolar process, the characteristics of one of the elements must be sacrificed.

本発明の目的は、高集積の−CMOSプロセスと高速の
バイポーラプロセスを結びつけて高性能のB i 0M
O8プロセスを作る際に、バイポーラ素子の特性を犠牲
にせず、CMo5プロセスを結びつけた素子構造を提供
するにある。
The purpose of the present invention is to combine a highly integrated CMOS process with a high-speed bipolar process to create a high-performance B i 0M
The object of the present invention is to provide an element structure that combines the CMo5 process without sacrificing the characteristics of bipolar elements when producing the O8 process.

本発明は、CMOSプロセスで用いられる工程を極力利
用して微細なエミッタを形成する方法である。すなわち
、ゲート酸化膜形成後に微細はエミツタ窓を開け、続い
てMO8素子のゲートに用いるポリシリコンを形成し、
ポリシリコンの抵抗を低くするために行なわれる不純物
のドーピングをエミッタのドーピングと兼ね、さらに、
ポリシリコンゲートの加工の際に同時に、エミッタ上に
ポリシリコンエミッタを加工する方法である。
The present invention is a method of forming fine emitters by making the most of the steps used in the CMOS process. That is, after forming the gate oxide film, a fine emitter window is opened, and then polysilicon used for the gate of the MO8 element is formed.
The impurity doping performed to lower the resistance of polysilicon also serves as emitter doping, and
This is a method in which a polysilicon emitter is processed on the emitter at the same time as the polysilicon gate is processed.

以下、本発明を、第6図の実施例を用いて説明する。The present invention will be explained below using the embodiment shown in FIG.

第6図(a)は、MO8素子用のゲート酸化膜13を5
00人の厚さに形成した後エミツタ窓14を寸法2μm
巾にホトエツチングにより形成した状態を示す。本構造
に至る工程の概略を以下に説明する。先ず、N”、P+
埋込み層(夫々2゜4)を形成した後、4μmの厚さに
エピタキシャル成長層3を形成する。次に、Pijlウ
ェル5をイオン打込み法と熱処理により、深さ38m1
濃度5 X 10 ”7cm”に々るように形成する。
FIG. 6(a) shows a gate oxide film 13 for an MO8 element.
After forming the emitter window 14 to a thickness of 0.00 mm, the dimension is 2 μm.
The width is shown formed by photoetching. An outline of the steps leading to this structure will be explained below. First, N”, P+
After forming the buried layers (each 2°4), an epitaxial growth layer 3 is formed to a thickness of 4 μm. Next, the Pijl well 5 was formed to a depth of 38 m1 by ion implantation and heat treatment.
It is formed to have a density of 5 x 10 "7 cm".

次に、St、N、膜をマスクとする選択酸化法により、
1μmの厚さにアイソレーション用の酸化膜10を形成
する。次に、バイポーラ素子のペース層6を、熱拡散法
またはイオン打込み法により、深さ0.6μm1層抵抗
300Ω/口に形成する。この後、ゲート酸化膜13を
500人の厚さに形成する。
Next, by selective oxidation using St, N, and films as masks,
An oxide film 10 for isolation is formed to a thickness of 1 μm. Next, the paste layer 6 of the bipolar element is formed by a thermal diffusion method or an ion implantation method to a depth of 0.6 μm and a single layer resistance of 300 Ω/hole. Thereafter, a gate oxide film 13 is formed to a thickness of 500 nm.

薄いゲート酸化、膜にホトエツチングを行なうので、微
細なエミッタパターンを精度良く開けられる。
Since the thin gate oxide and film are photo-etched, a fine emitter pattern can be created with high precision.

第6図(b)は、(a)に続いてMO8素子のゲートに
用いるポリシリコン層12を、CVD法により0.3μ
mの厚さに形成し、次に、ひ素イオンをlX1016/
−全面に打込んだ後、1ooot:’で100分の熱処
理を行ない、ゲートとなるポリ7リコンの抵抗を200
/口に低下させると同時ニ、エミッタ窓14全通してエ
ミッタ9を0.4μmの深さに形成する。
FIG. 6(b) shows that, subsequent to FIG. 6(a), a polysilicon layer 12 of 0.3 μm was formed by CVD to be used for the gate of the MO8 element.
m thickness, and then arsenic ions were added to lX1016/
- After implanting the entire surface, heat treatment is performed for 100 minutes at 1ooot:', and the resistance of the poly7 silicon that will become the gate is reduced to 200.
At the same time, the emitter 9 is formed to a depth of 0.4 μm through the entire emitter window 14.

第6図(Qは、ホトレジストをマスクにし、ドライエツ
チング法によりポリシリコン+112をエツチングし、
MO8素子のゲート12およびエミッタポリシリコン層
191r:形成した状態を示す。なお、ポリシリコンエ
ミッタ19の巾はエミツタ窓14よりマスク合わせ余裕
分(例えば片側2μm)だけ大きくしておく必要がある
FIG. 6 (Q shows polysilicon +112 etched by dry etching using photoresist as a mask,
Gate 12 and emitter polysilicon layer 191r of MO8 element: The state in which they are formed is shown. Note that the width of the polysilicon emitter 19 needs to be larger than the emitter window 14 by an allowance for mask alignment (for example, 2 μm on one side).

この段階まででバイポーラ素子が形成され、電流増巾率
も、ひ素イオン打込み後の熱処理により約100に調整
される。また、ノクイポーラ素子の熱処理は100OC
で行なわれるが、以後のMOB素子形成温度は9500
以下の低温で行ない、ノ(イボーラ素子の特性変動への
影響を少なくする。
By this stage, a bipolar element has been formed, and the current amplification factor is also adjusted to about 100 by heat treatment after arsenic ion implantation. In addition, the heat treatment of the noquipolar element is 100OC.
However, the subsequent MOB element formation temperature is 9500℃.
It is carried out at a low temperature below (2000) to reduce the influence on the characteristic fluctuations of the Ibora element.

第6図(d)は、第6図(c)の後、5i02膜をマス
クにして2MO8のソース・ドレイン8をほう素のイオ
ン打込みにより、NMO8のソース・ドレイン7をひ素
のイオン打込みによりドープし、熱処理により0.3μ
mの深さに形成する。この後、パッシベーション膜とし
てリンガラス15をCVD法により、0.5μmの厚さ
に形成し、次に各素子のコンタクト窓を同時に形成する
。それぞれ、エミッタ16、ベース16 ’ 、NMO
8のソース・ドレイン16“、2MO8のソース・ドレ
イン16”′である。
FIG. 6(d) shows that after FIG. 6(c), the source/drain 8 of 2MO8 is doped by boron ion implantation and the source/drain 7 of NMO8 is doped by arsenic ion implantation using the 5i02 film as a mask. 0.3μ by heat treatment
Form to a depth of m. Thereafter, phosphor glass 15 is formed as a passivation film to a thickness of 0.5 μm by CVD, and then contact windows for each element are simultaneously formed. Emitter 16, base 16', NMO respectively
8 source/drain 16'', 2MO8 source/drain 16'''.

完成した状態のバイポーラ素子のエミッタ構造tよ、従
来の第4図(b)のエミッタ構造とは、ポリシリコンの
上にパッシベーション膜が有り、ポリシリコン内にコン
タクト窓が開いている点が異なる。
The emitter structure t of the completed bipolar element differs from the conventional emitter structure shown in FIG. 4(b) in that a passivation film is provided on the polysilicon and a contact window is opened in the polysilicon.

なお、第6図は、本発明の一実施例を示したものであり
、途中の工程には種々の変化が考えられる。例えば、第
6図(b)のポリシリコン層へのドーピング不純物とし
ては、ひ素の代りにリンを用いてもよい。また、第6図
(b)と(C)の工程を一部入れ替え、ポリシリコン層
を形成した後、先にゲート12、エミッタポリシリコン
19の形成を行なった後、不純物のドーピングを行なう
工程をとってもよい。さらに、例えばひ素をドープした
ポリシリコンを形成し、熱処理によりエミッタを形成す
る方法も考えられる。
Note that FIG. 6 shows one embodiment of the present invention, and various changes can be considered in the intermediate steps. For example, phosphorus may be used instead of arsenic as the impurity doped into the polysilicon layer in FIG. 6(b). In addition, some of the steps in FIGS. 6(b) and 6(C) are replaced, and after forming the polysilicon layer, the gate 12 and emitter polysilicon 19 are first formed, and then the impurity doping step is performed. Very good. Furthermore, it is also possible to form an emitter by forming polysilicon doped with arsenic, for example, and heat-treating it.

なお、図中17はホトレジスト膜、18はエミッタ電極
、18′はベース電極、19はエミッタポリシリコンで
ある。
In the figure, 17 is a photoresist film, 18 is an emitter electrode, 18' is a base electrode, and 19 is an emitter polysilicon.

本発明によれば次の効果が得られる。According to the present invention, the following effects can be obtained.

(1)薄いゲート酸化膜にエミッタのホトエツチングを
行なうため、従来の厚い(例えば0.5μm)パッシベ
ーション膜への窓開けに比べて寸法精度を上げられる。
(1) Since the emitter is photo-etched on a thin gate oxide film, dimensional accuracy can be improved compared to the conventional method of opening a window on a thick (for example, 0.5 μm) passivation film.

(2)  ゲート酸化膜に形成したエミツタ窓を、ポリ
シリコンで固定するため、以後の工程の如何にか\わら
ず、最小加工寸法に相当する微細なエミッタ巾を実現で
き、バイポーラ素子の高性能化が可能になる。
(2) Since the emitter window formed on the gate oxide film is fixed with polysilicon, a fine emitter width corresponding to the minimum processing size can be achieved regardless of the subsequent process, which improves the high performance of bipolar devices. becomes possible.

(3) MO8素子を形成する工程をそのま\利用して
エミッタを形成するため、エミッタ形成のために付加す
る工程としてはエミツタ窓を開ける工程のみであL B
iCMUS  プロセスとして工程の簡略化が行なえる
(3) Since the emitter is formed using the process of forming the MO8 element, the only additional process for forming the emitter is the process of opening the emitter window.
The process can be simplified as an iCMUS process.

(4)熱処理の多いバイポーラ素子を先に形成した後M
O8素子を形成するため、ソース・ドレインの浅い接合
の深さ制御が容易であり、微細なMO8素子を形成でき
る。すなわち、BiCMUSプロセスに高集積のMO8
LSlO8上スをそのま\適用できる。
(4) After forming the bipolar element which requires a lot of heat treatment first, M
Since an O8 element is formed, it is easy to control the depth of a shallow source/drain junction, and a fine MO8 element can be formed. In other words, highly integrated MO8 in BiCMUS process
LSLIO8 can be applied as is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は従来のB1CMo5プロセスの
断面図、第2図(a)、(b)は、従来のBiCMUS
 プロセスのバイポーラ素子部の断面図、第3図(a)
、(b)、(c)は、従来のバイポーラ素子のエミッタ
形成法を示す1析面図、第4図(a)、(b)は、従来
のポリシリコンエミッタを用いたバイポーラ素子の断面
図、第5図の従来例をB i CM(JS プロセスに
適用した場合の1F?而図、第6図(a)、(b)、(
c)、(d)は、本発明の実施例を示す断面図である。 l・・・P型基板、2・・・N1埋込j−13・・・N
エピタキシャル層、4・・・P4′アイソレーション層
、5・・・Pウェル、6・・・ペース、7・・・NMO
8のソース・トレイン、8・・・2MO8のソース°ド
レイン、9・・・エミッタ、10・・・フィールド酸化
膜、11・・・マスク用酸化膜、12・・・ポリシリコ
ンゲート、13・・・ゲート酸化膜、14・・・エミッ
タ拡散窓、15・・・パツ/ペーション膜、16・・・
エミッタコンタクト窓、16′・・・ベースコンタクト
窓 16 //・・・NMO8のソース・ドレインコン
タクト窓、16“′・・・PMOSのソース°ドレイン
コンタクト窓、17・・・ホトレジスト膜、18・・・
エミツダ1極、18′・・・ベース醒極、19・・・エ
ミッタポリシリコン。 竹2閃 第30 第4− 図 第 5 囚 手続補正書(方式) %式% 事件の表示 昭和57年特許願第105411  号発明の名称 半導体装置 補正をする者 帽1との呻!  特許出願人 fl   所 東京都千代田区丸の内−丁目5番1号名
  称t!1lo1株式会社 日 立 製 (1所代表
者 三 1)勝 茂 代   理   人 居  所  東京都千代田区丸の内−丁目5番1号図面
(第6図(d)) −2コ
Figures 1 (a) and (b) are cross-sectional views of the conventional B1CMo5 process, and Figures 2 (a) and (b) are cross-sectional views of the conventional BiCMUS process.
Cross-sectional view of the bipolar element part of the process, Figure 3 (a)
, (b) and (c) are 1-dimensional views showing a conventional emitter formation method for a bipolar device, and FIGS. 4(a) and (b) are cross-sectional views of a bipolar device using a conventional polysilicon emitter. , Figure 6 (a), (b), (
c) and (d) are cross-sectional views showing examples of the present invention. l...P type substrate, 2...N1 embedded j-13...N
Epitaxial layer, 4...P4' isolation layer, 5...P well, 6...Pace, 7...NMO
8 source train, 8...2 MO8 source/drain, 9...emitter, 10...field oxide film, 11...mask oxide film, 12...polysilicon gate, 13...・Gate oxide film, 14... Emitter diffusion window, 15... Pat/pation film, 16...
Emitter contact window, 16'... Base contact window 16 //... NMO8 source/drain contact window, 16'''... PMOS source/drain contact window, 17... Photoresist film, 18...・
Emitsuda 1 pole, 18'...Base pole, 19...Emitter polysilicon. Bamboo 2 Sen No. 30 No. 4 - Figure No. 5 Prison procedure amendment (method) % formula % Display of the case 1982 Patent Application No. 105411 Name of the invention Semiconductor device amendment person hat 1 and groan! Patent applicant fl Address: 5-1 Marunouchi-chome, Chiyoda-ku, Tokyo Name: T! 1lo1 Hitachi Co., Ltd. (1st place Representative 3 1) Osamu Katsu Shigeyo Residence 5-1 Marunouchi-chome, Chiyoda-ku, Tokyo Drawing (Figure 6(d)) -2

Claims (1)

【特許請求の範囲】 1、 シリコンゲートを有するMOS)ランジスタおよ
びエミッタ上に0.1μm以下の厚さの絶縁膜に形成さ
れたエミッタ拡散窓上に形成され、その領域は、エミッ
タ拡散窓より大きいポリシリコン層を有するバイポーラ
トランジスタを、同一基板上に配役したことを特徴とす
る半導体装置。 2、特許請求の範囲第1項の記載において、前記ポリシ
リコン層上にさらに絶縁膜をもち、その絶縁膜に、エミ
ッタ電極取出し用のコンタクト窓が、ポリシリコン領域
内に設けられていることを特徴とする半導体装置。
[Claims] 1. A MOS transistor (MOS having a silicon gate) formed on an emitter diffusion window formed in an insulating film with a thickness of 0.1 μm or less on the transistor and emitter, and the area thereof is larger than the emitter diffusion window. A semiconductor device characterized in that bipolar transistors having a polysilicon layer are arranged on the same substrate. 2. Claim 1 states that an insulating film is further provided on the polysilicon layer, and a contact window for taking out the emitter electrode is provided in the polysilicon region of the insulating film. Characteristic semiconductor devices.
JP57105411A 1982-06-21 1982-06-21 Semiconductor device Granted JPS58222556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57105411A JPS58222556A (en) 1982-06-21 1982-06-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57105411A JPS58222556A (en) 1982-06-21 1982-06-21 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS58222556A true JPS58222556A (en) 1983-12-24
JPH0481336B2 JPH0481336B2 (en) 1992-12-22

Family

ID=14406861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57105411A Granted JPS58222556A (en) 1982-06-21 1982-06-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58222556A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286752A (en) * 1985-10-11 1987-04-21 Matsushita Electronics Corp Manufacture of semiconductor integrated circuit
JPS6331155A (en) * 1986-07-24 1988-02-09 Mitsubishi Electric Corp Manufacture of semiconductor integrated circuit device
EP0469840A2 (en) * 1990-07-30 1992-02-05 Nippon Motorola Ltd. Transistor with predetermined emitter area and method of manufacturing
US5106765A (en) * 1986-02-28 1992-04-21 Canon Kabushiki Kaisha Process for making a bimos

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591857A (en) * 1978-12-28 1980-07-11 Fujitsu Ltd Manufacture of semiconductor device
JPS55157257A (en) * 1979-05-25 1980-12-06 Nec Corp Manufacture of mos integrated circuit
JPS567462A (en) * 1979-06-29 1981-01-26 Hitachi Ltd Semiconductor device and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591857A (en) * 1978-12-28 1980-07-11 Fujitsu Ltd Manufacture of semiconductor device
JPS55157257A (en) * 1979-05-25 1980-12-06 Nec Corp Manufacture of mos integrated circuit
JPS567462A (en) * 1979-06-29 1981-01-26 Hitachi Ltd Semiconductor device and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286752A (en) * 1985-10-11 1987-04-21 Matsushita Electronics Corp Manufacture of semiconductor integrated circuit
US5106765A (en) * 1986-02-28 1992-04-21 Canon Kabushiki Kaisha Process for making a bimos
US5488251A (en) * 1986-02-28 1996-01-30 Canon Kabushiki Kaisha Semiconductor device and process for producing the same
JPS6331155A (en) * 1986-07-24 1988-02-09 Mitsubishi Electric Corp Manufacture of semiconductor integrated circuit device
EP0469840A2 (en) * 1990-07-30 1992-02-05 Nippon Motorola Ltd. Transistor with predetermined emitter area and method of manufacturing

Also Published As

Publication number Publication date
JPH0481336B2 (en) 1992-12-22

Similar Documents

Publication Publication Date Title
US4879255A (en) Method for fabricating bipolar-MOS devices
JP2851753B2 (en) Semiconductor device and manufacturing method thereof
JPH0576190B2 (en)
JPH0519811B2 (en)
JPH0521726A (en) Bicmos device and manufacture thereof
JPS6379368A (en) Manufacture of high performance bicmos composition with polycrystalline silicon emitter and silicide base
JPH0510828B2 (en)
JP2000077532A (en) Semiconductor device and manufacture thereof
JPH0348459A (en) Semiconductor device and manufacture thereof
US4983531A (en) Method of fabricating a single polysilicon bipolar transistor which is compatible with a method of fabricating CMOS transistors
JPS58222556A (en) Semiconductor device
JPS58170047A (en) Semiconductor device
JPH10135349A (en) Cmos type semiconductor device and its manufacturing method
JPH0936242A (en) Semiconductor integrated circuit device
JPS6038856A (en) Manufacture of semiconductor device
JP2997123B2 (en) Method for manufacturing semiconductor device
JP2575876B2 (en) Semiconductor device
JP3132455B2 (en) Method for manufacturing semiconductor device
JPS62181458A (en) Complementary type mos transistor and manufacture thereof
JPS643065B2 (en)
JP2610906B2 (en) Method for manufacturing BiMOS semiconductor circuit device
JPS58124269A (en) Complementary type insulated gate field effect semiconductor device
JPH0243348B2 (en)
JP2953915B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH0517701B2 (en)