JPS58154200A - X-ray exposure apparatus - Google Patents
X-ray exposure apparatusInfo
- Publication number
- JPS58154200A JPS58154200A JP57037623A JP3762382A JPS58154200A JP S58154200 A JPS58154200 A JP S58154200A JP 57037623 A JP57037623 A JP 57037623A JP 3762382 A JP3762382 A JP 3762382A JP S58154200 A JPS58154200 A JP S58154200A
- Authority
- JP
- Japan
- Prior art keywords
- anode
- plasma
- discharge
- cathode
- ray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G1/00—X-ray apparatus involving X-ray tubes; Circuits therefor
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Radiography Using Non-Light Waves (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- X-Ray Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
(a) 発明の技術分野
本発明は、)!−露光装置に於けるプラズマX線源の改
良に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention is directed to )! -Regarding improvements to plasma X-ray sources in exposure equipment.
(b) 技術の背景
半導体装置の高集積高鴨嵐化に伴い4−サブミクロン・
パターンの形成が必要になって来た。そのためにパター
ン転写技術に於けるパターンの解像度を更に高める必要
が生じ、パターン転写の際の光源は、従来の紫外光よ多
波長の短かい遠紫外光に変って来ている。そして最近で
は更に高解像度の転写技術として、2〜50(幻程度の
短波長を有するX線露光技術が用いられ始めている。(b) Background of technology As semiconductor devices become more highly integrated, 4-submicron and
It became necessary to form a pattern. For this reason, it has become necessary to further improve the pattern resolution in pattern transfer technology, and the light source for pattern transfer has been changed from conventional ultraviolet light to short, deep ultraviolet light with multiple wavelengths. Recently, as an even higher resolution transfer technology, an X-ray exposure technology having wavelengths as short as 2 to 50 (phantom) has begun to be used.
(c) 従来技術と問題点
当初X線露光には電子ビーム衝撃方式のX線源が用いら
れていた。(c) Prior art and problems Initially, an electron beam impact type X-ray source was used for X-ray exposure.
しかし該電子ビーム衝撃方式に於てはターゲット物質に
照射された電子線によって励起されその結果ターゲット
物質から放出された特性X縁をX線源として用いている
ので、X線変換効率がlO−一程度と極めて低く、X線
発生に大きな電力を要17、電光能率が悪かった。However, in the electron beam bombardment method, the characteristic The level of radiation was extremely low, requiring a large amount of power to generate X-rays17, and the efficiency of the lightning was poor.
そこで最近は上記欠点を除去したプラズマX線源が提供
されている。Therefore, recently, plasma X-ray sources have been provided that eliminate the above-mentioned drawbacks.
このプラズマX線源に於ては、例えば真空中で陽極とS
極間にアーク放電を起こさせ、該アーク放電によって形
成されるターゲット物質蒸気のプラズマから発生するX
線がXM源として用いられ、促米装置は第1図に示すよ
うな要部模式構造を有してなっていた。なおHjt図に
於て、1は真空容器、2は陽極、3は一極、sFiスイ
ッチ、Cは放電電荷蓄積ハ」のコンデンサ、Rは電源保
繰抵抗、Hvは尚電圧LI!1IM源、Gは接地を表わ
し7ている。In this plasma X-ray source, for example, an anode and S
An arc discharge is caused between the electrodes, and X generated from the target material vapor plasma formed by the arc discharge.
A ray was used as the XM source, and the rice stimulator had the schematic structure of the main part as shown in FIG. In the Hjt diagram, 1 is a vacuum vessel, 2 is an anode, 3 is a single pole, an sFi switch, C is a discharge charge storage capacitor, R is a power supply retention resistor, and Hv is a voltage LI! 1IM source, G represents ground and 7.
図のように従来構造のプラズマX線源に於ては、真空容
器l内に対向した一対の電極(陽極2と一極3)のみが
配設されておシ、放電電荷蓄積用コンアンサCに所定の
電荷かIMされた時点でSが閉じられ Cの電荷により
電極間にアーク放電が生じ、該アーク放電の熱によって
蒸発した陽極材料の尚胴プラズマ4が形成きれ、該高温
プラズマ4から陽極材料の特性X線が放出される。As shown in the figure, in a plasma X-ray source with a conventional structure, only a pair of electrodes (anode 2 and one electrode 3) facing each other are arranged in a vacuum chamber L, and a condenser C for accumulating discharge charges is provided. When a predetermined charge is IMed, S is closed, and the charge of C causes an arc discharge between the electrodes, and the heat of the arc discharge forms a body plasma 4 of the evaporated anode material, and the high temperature plasma 4 is transferred to the anode. Characteristic X-rays of the material are emitted.
ここで前記高温プラズマを磁界によって小さくピンチす
ることにより高温為密度のプラズマが形成1すれ、Xl
1l!i!の発生量が増すということがあるが、該従来
411mK於ては高温プラズマのピンチがグラ:)
ズマ電流自体によって形成される磁界によってなされる
ので、ピンチのタイミングを制御することができず、従
って必ずしも充分なピンチがカされがありた。By pinching the high-temperature plasma using a magnetic field, a high-temperature, high-density plasma is formed.
1l! i! However, at 411 mK, the pinch of high-temperature plasma is caused by the magnetic field formed by the Zuma current itself, so the timing of the pinch cannot be controlled, and therefore There was not necessarily enough pinch.
(d) 発明の目的
本発明の目的は上記問題点に鑑み、高温プラズマをタイ
ミングよくピンチする機能金具偏せ(めて、X線の発生
gjJ率を高めたプラズマX線源を提供し、X′/Ii
A露尤の効率を向上せしめることにある。(d) Object of the Invention In view of the above problems, the object of the present invention is to provide a plasma '/Ii
A: The purpose is to improve the efficiency of exposure.
(e)発明の構成
即ち本発明はX線露光装置に於て、コンデンサに蓄積さ
れた電荷を対向する陰極−陽極間で放電させることによ
って高温プラズマを生成しX線を発生セしめる方式のグ
ラス−v X IM源に於ける主放電用陰極の近傍に第
2の一極を配設し、該第2の陰極に、該第2の陰極と前
記陽極との間を接続するコンデンサを具備する第2の放
電回路を接続してなるプラズマX線源を露光エネルギ源
として用いたことを特徴とする・
□・。(e) Structure of the Invention In other words, the present invention is a glass which generates X-rays by generating high-temperature plasma by discharging charges accumulated in a capacitor between an opposing cathode and an anode in an X-ray exposure apparatus. -V A plasma X-ray source connected to a second discharge circuit is used as an exposure energy source.
(f)@明の実施例
以下本発明を実施例について、第2図に示すプラズマX
線源に於ける一実施例の要部断面模式図、及び熟3図に
示す他の一実施例に於ける要部断面模式図を用いて詳細
に説明する0
本発明のプラズマX線源は例えば第2凶に示すように、
真空容器l内に所望のXl1tIJt長(2〜50〔λ
〕)に対応する特性X@波長(stA〕程度)を有する
例えばアルミニウム(Aj)からなる主放電用の陽極2
と陰極3が所定の間隔(例えば10〔m )程&)を米
通りで、陽極2は接地Gされ、陰極3はスイッチS1及
び〔MΩ〕オーダの#!lの電源保饅抵抗R。(f) Example of @Akira The following is an example of the present invention, and the plasma X shown in FIG.
The plasma X-ray source of the present invention will be explained in detail using a schematic cross-sectional view of the main part of one embodiment of the radiation source and a schematic cross-sectional view of the main part of another embodiment shown in Figure 3. For example, as shown in the second evil,
A desired length of Xl1tIJt (2 to 50 [λ
])) A main discharge anode 2 made of aluminum (Aj), for example, having a characteristic X@wavelength (about stA)
The anode 2 and the cathode 3 are connected at a predetermined distance (for example, about 10 [m2) &), the anode 2 is grounded G, and the cathode 3 is connected to the switch S1 and #! of the order of [MΩ]. l power supply protection resistor R.
を介して数10(KV )の高電圧直流電源−HV、に
接続され、陽極2と陰極3が前記スイッチS1の外側に
於て数lO〔μF]程度の第1の電荷蓄積用コンデンサ
C1を介して並列接続されてなっている0そして本発明
の構造に於スは、図に示すように前記主放電用陰極3の
先端近傍(可能な限シ近い位置、絶縁体を介して密着さ
せても良い)KM陰偽と同種材質からなるプラズマ・ピ
ンチ用の第2の陰極5が主放電用陰極3を囲むように配
設される。そして該第2の陰極5は主放電用陰極同様第
2のスイッチ81、第20電源保護抵抗R6を介してw
J2の高電圧直流電源−HV、に接続され、且つ前記#
I2のスイッチS、の外側に於て館2の電荷蓄積用コン
デンサ已を介して陽極2と並列接続されてなっている。The anode 2 and cathode 3 are connected to a high voltage DC power supply -HV of several tens of kilovolts (KV) through a first charge storage capacitor C1 of about several 10 [μF] outside the switch S1. In the structure of the present invention, the terminals are connected in parallel through the main discharge cathode 3, as shown in the figure, near the tip of the main discharge cathode 3 (as close as possible, and in close contact with each other via an insulator). A second cathode 5 for plasma pinch made of the same material as the KM cathode is disposed so as to surround the main discharge cathode 3. Similarly to the main discharge cathode, the second cathode 5 is connected via the second switch 81 and the 20th power protection resistor R6.
J2 is connected to the high voltage DC power supply -HV, and the #
It is connected in parallel with the anode 2 via the charge storage capacitor of the housing 2 on the outside of the switch S of I2.
上記プラズマX線源は真空容器内を’ 0−(Torr
)程度の真空に保った状部で主放電用電極BK*続する
第1のスイッチS、が閉じられ、先ず第1の電荷蓄積用
コンデンサC1に蓄積された電荷により主放電用陰極3
と陽極2の間でアーク放電が行われ、賦アーク放電によ
って生じた陽極材料Ajの蒸気により陽極2近傍に高温
高密度プラズマが形成される(1放t)。そしてこの時
点で第2の陰極5に接続された菖2のスイッチSlが閉
じられ第2の電荷蓄積用コンデンサC8に蓄積された電
荷によって第2の一極5と陽極20間で第2の放電がな
され、腋放電領域の周囲に形成される磁場によった、前
記主放電で形成され九高温高密夏プラズマ4が陽極2近
傍の小領域にピンチされ、鋏高温高密度プラズマ4から
陽極材料であるAA’の特PI: X Mが多量に放出
される。なお骸X線を用いて露光を行う際には図に示す
ように、真空容器1内の前記亮温^密度プラズマ形成領
域から例えば100〜l 50Cw 〕程皺離れた場所
に、露光マスク6を重ねた徴露光基板7をプラズマに対
向して配置し、前記高温高密度プラズマの形成操作が1
〜10[回/秒]和度の頻度で所望回数繰り返えされる
。The above plasma X-ray source moves inside the vacuum chamber at '0-(Torr
), the main discharge electrode BK* and the subsequent first switch S are closed, and the charge accumulated in the first charge storage capacitor C1 causes the main discharge cathode 3 to
An arc discharge occurs between the anode 2 and the anode 2, and high-temperature, high-density plasma is formed near the anode 2 by the vapor of the anode material Aj generated by the arc discharge (1 discharge). At this point, the switch Sl of the irises 2 connected to the second cathode 5 is closed, and the electric charge accumulated in the second charge storage capacitor C8 causes a second discharge between the second one electrode 5 and the anode 20. Due to the magnetic field formed around the axillary discharge region, the nine high-temperature, high-density summer plasma 4 formed in the main discharge is pinched into a small region near the anode 2, and the high-temperature, high-density plasma 4 is transferred to the anode material. Special PI of a certain AA': A large amount of X M is released. When performing exposure using skeleton X-rays, as shown in the figure, the exposure mask 6 is placed at a distance of, for example, 100 to 50 Cw from the bright temperature density plasma formation area in the vacuum chamber 1. The stacked exposure-sensitive substrates 7 are placed facing the plasma, and the high-temperature, high-density plasma formation operation is performed in step 1.
It is repeated a desired number of times at a frequency of ~10 times/second.
又主放電プラズマをピンチするための第2の放電のタイ
ミングは、分光光度1或るいは露光状態等による検査で
、X線の放出量が最大になるように実験的に選ばれる。The timing of the second discharge for pinching the main discharge plasma is experimentally selected so as to maximize the amount of X-rays emitted, as determined by spectrophotometric intensity 1 or exposure conditions.
第3図は他の一実施例を示したもので、図に於ける各記
号は第2図と同一の部分を表わしている。FIG. 3 shows another embodiment, and each symbol in the figure represents the same part as in FIG. 2.
そしてこの構造は第1の実施例に於ける第2陰憔5の外
部回路から第2のスイッチを取り除いた、。ア、。ID
IImKN□フイ□″2ヶ。、□、3とKより主族−用
の陽極3と151m2の主放電が行われ、皺主放電によ
って現われる電極間の電界分2の放電が酵発され、該第
2の放電によって形成される磁場によって主放電によっ
て生じた高温プラズマが更にピンチされ、wJlの実施
例と同様多量のX線を放出する高温高密度プラズマ4が
陽極近傍に形成される6、
(め 発明の詳細
な説明したように、本発明の構造を有するプラズマX線
源に於ては、主放電によって形成された高温プラズマが
主放電自体の電流によってその周囲に形成される磁場で
小領域にピンチされ、更該プラズマが第2陰極と陽極の
間で行われる第2の放電によって生ずる磁場によシ史に
一層小領域イピンチされる。従って極めて高密度の高温
プラズマが形成されるので、XMの発生・放射効率を1
0−1程度まで向上せしめることができる。This structure eliminates the second switch from the external circuit of the second switch 5 in the first embodiment. a,. ID
IImKN□F□″2 pieces., □, 3 and K cause main group anode 3 and 151m2 main discharge, and discharge of electric field between electrodes 2 produced by wrinkle main discharge is fermented. The high-temperature plasma generated by the main discharge is further pinched by the magnetic field formed by the second discharge, and a high-temperature, high-density plasma 4 that emits a large amount of X-rays is formed near the anode, as in the wJl embodiment6. As described in the detailed description of the invention, in the plasma The plasma is further pinched in a smaller area by the magnetic field generated by the second discharge between the second cathode and the anode.Therefore, an extremely high-density, high-temperature plasma is formed. XM generation/radiation efficiency is 1
It can be improved to about 0-1.
このように本発明は、発生・放射効率の高いX□
111i!源を提供するので、XII!露光装置の露光
効率が向上する。As described above, the present invention provides X□ 111i! with high generation and radiation efficiency. XII! The exposure efficiency of the exposure device is improved.
第1図はプラズマX線源に於ける従来構造の要部断面模
式図、第2図はプラズマX線源に於けるである。
図に於て、lは真空容器、2は陽極、3は陰極、4は高
温高密度プラズマ、5は第2陰極、6は露光マスク、7
は被露光基板、Gは接地、S、、S。
はスイ7・チ、R,、R自は電源保―抵抗、C,、C,
は電荷蓄積用コンデンサ、−HM、−HV、は高電圧直
流電源を示す。
第1図
革 2 閃
第 3 図
1−1v2
1FIG. 1 is a schematic cross-sectional view of the main part of a conventional plasma X-ray source, and FIG. 2 is a diagram of the plasma X-ray source. In the figure, l is a vacuum vessel, 2 is an anode, 3 is a cathode, 4 is high-temperature high-density plasma, 5 is a second cathode, 6 is an exposure mask, and 7
is the substrate to be exposed, G is ground, S, , S. is switch 7, R, R is the power supply resistance, C,, C,
indicates a charge storage capacitor, and -HM, -HV indicate a high voltage DC power supply. Figure 1 Leather 2 Sendai 3 Figure 1-1v2 1
Claims (1)
主放電用鳩極の近傍に第2の陰極を配設し、該JI2の
陰極に、該第2の陰極と前記陽極との間を一統するコン
デンサを具備する第2の放電1!−11略を接続してな
るプラズマX線源を露光エネルギ源として用いたことを
特徴とするX線胤光装置。A second cathode is disposed near the main discharge dovetail in the cathode facing the electric charge accumulated in the capacitor, and a connection between the second cathode and the anode is integrated with the cathode of JI2. A second discharge comprising a capacitor 1! 1. An X-ray exposure apparatus characterized in that a plasma X-ray source formed by connecting -11 is used as an exposure energy source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57037623A JPS58154200A (en) | 1982-03-10 | 1982-03-10 | X-ray exposure apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57037623A JPS58154200A (en) | 1982-03-10 | 1982-03-10 | X-ray exposure apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58154200A true JPS58154200A (en) | 1983-09-13 |
Family
ID=12502756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57037623A Pending JPS58154200A (en) | 1982-03-10 | 1982-03-10 | X-ray exposure apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58154200A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62177842A (en) * | 1986-01-31 | 1987-08-04 | Hitachi Ltd | X-ray generating device |
US4751723A (en) * | 1985-10-03 | 1988-06-14 | Canadian Patents And Development Ltd. | Multiple vacuum arc derived plasma pinch x-ray source |
JP2012119555A (en) * | 2010-12-02 | 2012-06-21 | Ihi Corp | Plasma light source and plasma light generating method |
-
1982
- 1982-03-10 JP JP57037623A patent/JPS58154200A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4751723A (en) * | 1985-10-03 | 1988-06-14 | Canadian Patents And Development Ltd. | Multiple vacuum arc derived plasma pinch x-ray source |
JPS62177842A (en) * | 1986-01-31 | 1987-08-04 | Hitachi Ltd | X-ray generating device |
JPH0580783B2 (en) * | 1986-01-31 | 1993-11-10 | Hitachi Ltd | |
JP2012119555A (en) * | 2010-12-02 | 2012-06-21 | Ihi Corp | Plasma light source and plasma light generating method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4800281A (en) | Compact penning-discharge plasma source | |
US4851668A (en) | Ion source application device | |
Haworth et al. | Improved electrostatic design for MILO cathodes | |
JPH0750701B2 (en) | Discharge reactor | |
EP0502429B1 (en) | Fast atom beam source | |
CA2011644C (en) | Vacuum switch apparatus | |
US4841556A (en) | Plasma X-ray source | |
JPS58154200A (en) | X-ray exposure apparatus | |
JPH0211974B2 (en) | ||
JP3989507B2 (en) | Gas atom inclusion fullerene production apparatus and method, and gas atom inclusion fullerene | |
JPS6293834A (en) | Ion source | |
JPH0222500B2 (en) | ||
JP2003203591A (en) | X-ray tube and method of manufacture | |
Lamar et al. | Proton Production in the Low Voltage Arc | |
JP2988764B2 (en) | Accelerator tube of DC voltage accelerator | |
JP3577785B2 (en) | Ion beam generator | |
JPS62254349A (en) | X-ray generator | |
JP3717575B2 (en) | Thin film forming equipment | |
RU191379U1 (en) | Vacuum source of neutrals with a cooled cathode | |
Leung | Radio frequency multicusp ion source development | |
CN100389476C (en) | Scan type ion gun | |
US3572876A (en) | Method of making a neutron source tube | |
RU2233505C2 (en) | Gas-discharge ion source | |
Arlantsev et al. | Open-discharge generation of a beam of'runaway'electrons suitable for the pumping of gaseous media | |
Steiner | Development of a large insert gas ion thruster |