JPH11319566A - Catalyst for removing nitrogen oxide and method for removing nitrogen oxide - Google Patents
Catalyst for removing nitrogen oxide and method for removing nitrogen oxideInfo
- Publication number
- JPH11319566A JPH11319566A JP11034894A JP3489499A JPH11319566A JP H11319566 A JPH11319566 A JP H11319566A JP 11034894 A JP11034894 A JP 11034894A JP 3489499 A JP3489499 A JP 3489499A JP H11319566 A JPH11319566 A JP H11319566A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- alumina
- mass
- nox
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、過剰の酸素が存在
する全体として酸化条件下の雰囲気において、排ガス中
の窒素酸化物を、少量添加した、あるいは排ガス中に含
まれる炭化水素類や含酸素有機化合物の存在下で、該排
ガス中の窒素酸化物を還元除去する触媒および方法に関
する。BACKGROUND OF THE INVENTION The present invention relates to a method for producing hydrocarbons and oxygen containing nitrogen oxides in an exhaust gas in a small amount in an atmosphere under an oxidizing condition in which excess oxygen is present. The present invention relates to a catalyst and a method for reducing and removing nitrogen oxides in an exhaust gas in the presence of an organic compound.
【0002】[0002]
【従来の技術】種々の内燃機関や燃焼器より排出される
窒素酸化物(以下、「NOx」と記す)は、人体に悪影
響を及ぼすのみならず、光化学スモッグや酸性雨の発生
原因ともなり得るため、環境対策上その低減が急務とな
っている。2. Description of the Related Art Nitrogen oxides (hereinafter, referred to as "NOx") emitted from various internal combustion engines and combustors not only adversely affect the human body but also cause photochemical smog and acid rain. Therefore, there is an urgent need to reduce it in environmental measures.
【0003】従来、このNOxを除去する方法として、
触媒を用いて排ガス中のNOxを低減する方法が既に幾
つか実用化されている。例えば、(イ)ガソリン自動車
における三元触媒法や、(ロ)ボイラーなどの大型設備
排出源からの排ガスについてのアンモニアによる選択的
接触還元法が挙げられる。また、(ハ)酸素雰囲気下に
おいて炭化水素類を還元剤としてNOxを還元する方法
が提案されており、この方法には、種々の金属を担持さ
せたゼオライトが触媒として用いられる(特開昭63−
283727号など)。Conventionally, as a method of removing this NOx,
Several methods for reducing NOx in exhaust gas using a catalyst have already been put to practical use. Examples of the method include (a) a three-way catalytic method for gasoline vehicles and (b) a selective catalytic reduction method using ammonia for exhaust gas from a large facility discharge source such as a boiler. In addition, (c) a method of reducing NOx using hydrocarbons as a reducing agent in an oxygen atmosphere has been proposed. In this method, zeolites supporting various metals are used as a catalyst (Japanese Patent Application Laid-Open No. Sho 63/1988). −
No. 283727).
【0004】上記(イ)の方法は、自動車の燃焼排ガス
中に含まれる炭化水素成分と一酸化炭素を、白金族を含
有する触媒により、水と二酸化炭素とすると同時に、N
Oxを還元して窒素とするものである。この方法では、
排ガス中の酸素とNOxに含まれる酸素の合計量と、炭
化水素成分および一酸化炭素が酸化されるのに必要とす
る酸素量とが化学量論的に等しくなるように酸素濃度を
調整する必要があり、ディーゼルエンジンやリーンバー
ンエンジンのように排ガス中に多量の酸素を含む雰囲気
では、原理的に適用不可能であるなどの問題がある。最
近、酸素過剰雰囲気下においても、NOxを浄化できる
白金族含有三元触媒が提案されているが(特願平5−2
44174号)、その浄化率は未だ低く、また還元副生
物として亜酸化窒素が多量に生成するなどの問題があ
り、課題解決には至っていない。In the above method (a), the hydrocarbon component and carbon monoxide contained in the exhaust gas from the automobile are converted into water and carbon dioxide by a catalyst containing a platinum group, and simultaneously N 2
Ox is reduced to nitrogen. in this way,
It is necessary to adjust the oxygen concentration so that the total amount of oxygen in the exhaust gas and oxygen contained in NOx and the amount of oxygen required to oxidize hydrocarbon components and carbon monoxide are stoichiometrically equal. However, in an atmosphere containing a large amount of oxygen in exhaust gas such as a diesel engine or a lean burn engine, there is a problem that it is not applicable in principle. Recently, a platinum group-containing three-way catalyst capable of purifying NOx even in an oxygen-excess atmosphere has been proposed (Japanese Patent Application No. 5-2 / 1993).
No. 44174), the purification rate is still low, and there are problems such as the generation of a large amount of nitrous oxide as a reduction by-product, and the problem has not been solved.
【0005】また、上記(ロ)のアンモニアを還元剤と
して用いる方法では、酸素雰囲気においてもNOxを還
元浄化できるが、アンモニアは、有毒であり、しかも多
くの場合高圧ガスとして用いるため、その取り扱いが容
易でなく、また設備が巨大化するなど、小型の排ガス発
生源、特に移動型発生源に適用することは技術的にも困
難で、経済性も良くない。[0005] In the method of (2) using ammonia as a reducing agent, NOx can be reduced and purified even in an oxygen atmosphere. However, ammonia is toxic and is often used as a high-pressure gas. It is technically difficult to apply to a small exhaust gas generation source, particularly a mobile generation source, because it is not easy and the equipment becomes huge, and the economic efficiency is not good.
【0006】一方、上記(ハ)の方法は、酸素雰囲気に
おいてもNOxを還元除去できる新しい方法として注目
されているが、実排ガス中における活性や耐久性が不足
している。この方法に使用される触媒としては、銅など
の金属を担持したゼオライト触媒が提案されており、初
期の使用では比較的高い活性を示すが、実排ガス中には
数%〜十数%の水分が含まれており、このような条件下
では、金属の凝集やゼオライト骨格からの脱アルミニウ
ムが起こり、触媒劣化を引き起こす。On the other hand, the above method (c) has attracted attention as a new method capable of reducing and removing NOx even in an oxygen atmosphere, but lacks the activity and durability in actual exhaust gas. As a catalyst used in this method, a zeolite catalyst supporting a metal such as copper has been proposed, and exhibits a relatively high activity in the initial use, but has a water content of several% to tens of% in actual exhaust gas. Under such conditions, metal aggregation and dealumination from the zeolite skeleton occur, causing catalyst deterioration.
【0007】[0007]
【発明の目的】本発明は、以上の(イ)〜(ハ)の方法
に存在する各種の問題を解決するためになされたもので
あって、酸素が存在する酸化雰囲気で、かつ実用条件下
においても、ガソリン機関は勿論のこと、ディーゼル機
関の排ガスをはじめ、種々の設備から発生する排ガス中
のNOxを効率良く還元除去する触媒と、該触媒を使用
した該排ガス中のNOxの除去方法を提供することを目
的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the various problems existing in the above methods (a) to (c), and is intended to solve the above problems in an oxidizing atmosphere containing oxygen and under practical conditions. In addition to the above, a catalyst for efficiently reducing and removing NOx in exhaust gas generated from various facilities including an exhaust gas of a diesel engine as well as a gasoline engine, and a method of removing NOx in the exhaust gas using the catalyst are described. The purpose is to provide.
【0008】[0008]
【発明の概要】上記目的を達成するために、本発明のN
Ox除去触媒は、アルミナに、触媒全質量に対して0.
1〜50質量%の硫酸バリウムを物理的に混合したもの
であることを特徴とし、このアルミナは、後述の遷移元
素並びに特定の典型元素の中から選ばれる1種以上の元
素を0.01〜15質量%含むものであることが好まし
い。また、本発明のNOx除去方法は、酸素が存在する
雰囲気中、炭化水素類若しくは含酸素有機化合物の存在
下において、上記触媒を用いることを特徴とする。SUMMARY OF THE INVENTION To achieve the above object, the present invention provides
The Ox removal catalyst was added to alumina in an amount of 0.1 to the total mass of the catalyst.
The alumina is characterized by being physically mixed with 1 to 50% by mass of barium sulfate. This alumina contains 0.01 to 1 or more elements selected from transition elements described later and specific typical elements. Preferably, it contains 15% by mass. Further, the NOx removal method of the present invention is characterized in that the above catalyst is used in an atmosphere where oxygen is present, in the presence of hydrocarbons or an oxygen-containing organic compound.
【0009】アルミナは、α、θ、γなどのタイプがあ
り、本発明の触媒では、これらいずれのタイプのアルミ
ナも使用できるが、一般には、表面積や触媒活性の高い
γ−アルミナを使用することが好ましい。これらのアル
ミナは、市販品でもよいし、通常の製法で得られたもの
であってもよい。Alumina includes types such as α, θ, and γ. In the catalyst of the present invention, any of these types of alumina can be used. Generally, γ-alumina having a high surface area and high catalytic activity is used. Is preferred. These aluminas may be commercially available products, or may be those obtained by an ordinary production method.
【0010】硫酸バリウムは、市販品や、通常の製法で
得られたものが使用でき、特に制限はない。また、例え
ば、シリカ、チタニア、ジルコニアなどの担体に、塩化
バリウム、硝酸バリウム、酸化バリウムなどの水溶性の
バリウム化合物を含浸担持し、これを硫酸や酸化硫黄
(SOx)で処理して、担体上のバリウムを硫酸バリウ
ムにしたものを使用することもできる。このとき、担体
上に水溶性のバリウム化合物が存在すると、後述するよ
うに、NOx除去操作中に生成する水などにより該バリ
ウム化合物が溶解して悪影響が生じるため、水溶性のバ
リウム化合物の存在が認められないように処理すること
が重要である。また、このときの上記担体は、そのまま
本発明の触媒の構成成分として使用することとなる。As barium sulfate, commercially available products and those obtained by a usual production method can be used, and there is no particular limitation. For example, a carrier such as silica, titania, or zirconia is impregnated and supported with a water-soluble barium compound such as barium chloride, barium nitrate, or barium oxide, and treated with sulfuric acid or sulfur oxide (SOx). A barium sulfate can be used instead of barium. At this time, if a water-soluble barium compound is present on the carrier, as will be described later, the barium compound is dissolved by water or the like generated during the NOx removal operation, causing an adverse effect. It is important to treat it unacceptably. The carrier at this time is used as it is as a component of the catalyst of the present invention.
【0011】アルミナは、それ自体でもNOxに対して
還元除去活性を有するが、これに、それ自体では還元除
去活性を示さない硫酸バリウムを物理的に混合すると、
アルミナの還元除去活性が飛躍的に向上する。[0011] Alumina itself has an activity of reducing and removing NOx itself, but when physically mixed with barium sulfate which does not exhibit an activity of reducing and removing itself,
The activity of reducing and removing alumina is dramatically improved.
【0012】硫酸バリウムは、水や、他の溶液に対して
難溶性であるが、硫酸バリウム以外のバリウム化合物、
例えば、上記した塩化バリウム、硝酸バリウム、酸化バ
リウムなどは、水に溶解する。従って、これらの水溶性
のバリウム化合物を、アルミナに含浸担持した触媒も考
えられるが、この触媒では、アルミナのNOxの還元除
去活性の向上は認められない。この理由は、詳細には明
らかでないが、溶解したバリウム化合物のバリウムイオ
ンが、アルミナ成分へ移動して、アルミナの活性点を被
毒することにあると推測される。Barium sulfate is hardly soluble in water and other solutions, but barium compounds other than barium sulfate,
For example, the above-mentioned barium chloride, barium nitrate, barium oxide and the like dissolve in water. Accordingly, a catalyst in which these water-soluble barium compounds are impregnated and supported on alumina is conceivable, but this catalyst does not improve the activity of alumina for reducing and removing NOx. Although the reason for this is not clear in detail, it is presumed that barium ions of the dissolved barium compound migrate to the alumina component and poison the active sites of alumina.
【0013】また、水溶性のバリウム化合物を、アルミ
ナに物理的に混合した触媒も考えられるが、この触媒
も、排ガス中に存在する水蒸気、あるいは炭化水素類や
含酸素有機化合物の存在下で行うNOxの還元除去過程
で生成する水など、によってバリウム化合物の溶解が進
行し、上記のバリウムイオンによる悪影響が生じるため
好ましくない。A catalyst in which a water-soluble barium compound is physically mixed with alumina is also conceivable. This catalyst is also used in the presence of steam present in the exhaust gas or hydrocarbons or oxygen-containing organic compounds. The dissolution of the barium compound proceeds by water and the like generated in the process of reducing and removing NOx, which is not preferable because the barium ion causes an adverse effect.
【0014】アルミナに硫酸バリウムを物理的に混合す
る方法は、特に制限されず、通常の粉体同士の物理的な
混合、例えば、乳鉢での混合、ボールミルでの混合、ア
ルミナスラリーに硫酸バリウムを混合する方法などが採
用できる。The method of physically mixing barium sulfate with alumina is not particularly limited, and physical mixing of ordinary powders, for example, mixing with a mortar, mixing with a ball mill, and adding barium sulfate to an alumina slurry A method of mixing can be adopted.
【0015】硫酸バリウムの混合量は、触媒全質量に対
して0.1〜50質量%、好ましくは0.5〜40質量
%、より好ましくは0.5〜30質量%である。硫酸バ
リウムの混合量が、0.1質量%未満であると、上記し
たNOx還元除去活性の飛躍的な向上効果が得られず、
50質量%より多いと、相対的にアルミナの量が少なく
なりすぎて、アルミナによる活性が却って低下してしま
う。The mixing amount of barium sulfate is 0.1 to 50% by mass, preferably 0.5 to 40% by mass, more preferably 0.5 to 30% by mass based on the total mass of the catalyst. If the mixing amount of barium sulfate is less than 0.1% by mass, the above-mentioned dramatic improvement effect of the NOx reduction and removal activity cannot be obtained,
If it is more than 50% by mass, the amount of alumina becomes relatively too small, and the activity due to alumina is rather reduced.
【0016】また、本発明の触媒において、アルミナ
は、遷移元素並びに周期表第IIIb族、同IVb族お
よび同Vb族の典型元素の中から選ばれる少なくとも1
種以上の金属元素、好ましくはSn、Co、Ag、I
n、Ga、Sbの中から選ばれる少なくとも1種以上を
含有したものであってもよい。In the catalyst of the present invention, the alumina is at least one element selected from the group consisting of transition elements and typical elements of Group IIIb, Group IVb and Group Vb of the Periodic Table.
More than one metal element, preferably Sn, Co, Ag, I
It may contain at least one selected from n, Ga, and Sb.
【0017】本発明において、遷移元素とは、通常の、
dまたはf電子軌道が電子で満たされていない元素を指
し、周期表第IIIa族、同IVa族、同Va族、同V
Ia族、同VIIa族、同VIII族、および同Ib族
の他に、同IIb族のZn、Cd、Hgを含めることも
でき、CoやAg以外にV、Ni、Rh、Irなども挙
げられる。また、一般の典型元素は、d電子軌道を持た
ないか、あるいは電位で満たされている元素であって、
遷移元素以外の元素を指し、周期表第Ia族、同IIa
族、同IIIb族、同IVb族、同Vb族、同VIb
族、同VIIb族、および0族であるが、本発明では、
これらの典型元素のうち、周期表第IIIb族、同IV
b族および同Vb族の金属元素を使用する。In the present invention, the transition element is an ordinary transition element.
An element whose d or f electron orbital is not filled with electrons, which is represented by Group IIIa, IVa, Va, V
In addition to the Ia group, the VIIa group, the VIII group, and the Ib group, Zn, Cd, and Hg of the IIb group can be included, and in addition to Co and Ag, V, Ni, Rh, Ir, and the like are also included. . In addition, general typical elements are elements that do not have d electron orbitals or are filled with potential,
Refers to elements other than transition elements, Group Ia and IIa
Group, group IIIb, group IVb, group Vb, group VIb
Group, group VIIb, and group 0;
Of these typical elements, groups IIIb and IV of the periodic table
Group b and Vb group metal elements are used.
【0018】上記の遷移元素並びに周期表第IIIb
族、同IVb族および同Vb族の典型元素の中から選ば
れる少なくとも1種以上の金属元素(以下、第3成分と
記す)を含有したアルミナを使用して得られる触媒は、
後述の実施例に示すように、低温でのNOx還元除去活
性が、第3成分を含有していないアルミナを使用して得
られる触媒よりも、向上する。この理由は、詳細には明
らかでないが、第3成分を含有させた場合、還元剤であ
る炭化水素類や含酸素有機化合物の酸化が、第3成分を
含有させない場合よりも、低温で進行するため、低温で
のNOx還元除去活性が向上すると考えられる。このと
きの第3成分の含有量は、第3成分とアルミナの合計質
量に対して0.01〜15質量%、好ましくは0.05
〜10質量%、より好ましくは0.1〜7質量%であ
る。第3成分の含有量が、0.01質量%未満では、第
3成分を含有する効果が得られず、15質量%を超える
と、第3成分の凝集が促進されたり、触媒表面積が低下
する可能性があり、やはり第3成分を含有する効果が発
揮されない場合がある。The above transition elements and Periodic Table IIIb
A catalyst obtained using alumina containing at least one or more metal elements (hereinafter, referred to as a third component) selected from group IV, IVb and Vb typical elements includes:
As will be shown in the examples below, the NOx reduction and removal activity at low temperature is improved as compared with a catalyst obtained using alumina containing no third component. The reason for this is not clear in detail, but when the third component is contained, the oxidation of hydrocarbons or oxygen-containing organic compounds as a reducing agent proceeds at a lower temperature than when the third component is not contained. Therefore, it is considered that the activity of reducing and removing NOx at low temperatures is improved. At this time, the content of the third component is 0.01 to 15% by mass, preferably 0.05% by mass, based on the total mass of the third component and alumina.
10 to 10% by mass, more preferably 0.1 to 7% by mass. When the content of the third component is less than 0.01% by mass, the effect of containing the third component cannot be obtained. When the content exceeds 15% by mass, the aggregation of the third component is promoted or the catalyst surface area decreases. There is a possibility that the effect of containing the third component may not be exhibited.
【0019】アルミナへの第3成分の含有方法は、従来
公知の含浸法、共沈法、混練法、イオン交換法、その他
各種の方法が採用でき、特に制限されないが、所望する
含有量を比較的容易に得られる点から含浸法が好まし
い。As a method for incorporating the third component into alumina, conventionally known impregnation methods, coprecipitation methods, kneading methods, ion exchange methods, and other various methods can be employed, and there is no particular limitation. The impregnation method is preferred because it can be easily obtained.
【0020】含浸法は、アルミナに、第3成分の化合物
の溶液を含浸させ、乾燥後、空気中焼成すればよい。第
3成分の化合物としては、硝酸塩、塩化物、硫酸塩など
の無機塩類、シュウ酸塩、酢酸塩などの有機塩類を挙げ
ることができる。第3成分を含むアルミナの空気気流中
の焼成温度は、約400〜700℃、好ましくは約45
0〜600℃であり、焼成時間は、約1〜10時間であ
る。焼成温度が低すぎたり、焼成時間が短すぎると、第
3成分の化合物の分解が十分に進行せず、活性化が図れ
ない。逆に、焼成が高温度、長時間に及ぶと、アルミナ
上での第3成分の化合物の凝集やシンタリングが生じ、
触媒の活性が低下してしまう。In the impregnation method, alumina may be impregnated with a solution of the compound of the third component, dried, and fired in the air. Examples of the compound of the third component include inorganic salts such as nitrates, chlorides and sulfates, and organic salts such as oxalates and acetates. The firing temperature of the alumina containing the third component in the air stream is about 400 to 700 ° C, preferably about 45 ° C.
0 to 600 ° C., and the firing time is about 1 to 10 hours. When the firing temperature is too low or the firing time is too short, the decomposition of the compound of the third component does not sufficiently proceed, and activation cannot be achieved. Conversely, if the firing is carried out at a high temperature for a long time, aggregation and sintering of the compound of the third component on alumina occur,
The activity of the catalyst is reduced.
【0021】上記した本発明の触媒は、その形状、構造
は問わず、粉体状、粒体状、ペレット状、ハニカム状な
どであってもよいし、あるいは本発明の触媒を、コージ
ェライトやメタル製のハニカムにコーティングしたよう
なものであってもよい。The above-mentioned catalyst of the present invention may be in the form of powder, granules, pellets, honeycomb, etc., regardless of its shape and structure. It may be one coated on a metal honeycomb.
【0022】本発明の触媒を使用する本発明の方法にお
いて、処理対象となるNOx含有ガスとしては、ディー
ゼル自動車や定置式ディーゼル機関などからのディーゼ
ル排ガス、ガソリン自動車などからのガソリン排ガスを
はじめ、硝酸製造設備、各種燃焼設備などからの排ガス
を挙げることができる。In the method of the present invention using the catalyst of the present invention, the NOx-containing gas to be treated includes a diesel exhaust gas from a diesel automobile or a stationary diesel engine, a gasoline exhaust gas from a gasoline automobile, and a nitric acid gas. Exhaust gas from production facilities, various combustion facilities, and the like can be mentioned.
【0023】本発明の方法は、上記した本発明の触媒
に、酸素が存在する雰囲気中、炭化水素類若しくは含酸
素有機化合物の存在下で、上記の排ガスを接触させるこ
とにより行う。この酸素存在雰囲気とは、排ガス中に多
量の酸素が含まれる状態を言い、排ガス中に含まれる一
酸化炭素、水素、炭化水素類などの未燃焼成分を燃焼す
るのに必要な理論酸素量よりも酸素が多い状態を言う。
例えば、自動車などの内燃機関の場合には、従来の三元
触媒が有効に作用する理論空燃比の状態で排出される排
ガスに比べ、理論空燃比よりも空燃比が大きい状態(リ
ーン領域)で排出される排ガスの雰囲気であり、ディー
ゼル車やリーンバーンガソリン車の場合、排ガス中の酸
素濃度は数vol%〜十数vol%になる。本発明の方
法における排ガス中の酸素濃度は、特に制限はなく、上
記のディーゼル車やリーンバーンガソリン車などの数v
ol%〜十数vol%であってもよい。また、上限も特
に制限はなく、大気中の酸素濃度(約20%)を挙げる
ことができる。The process of the present invention is carried out by bringing the above-mentioned exhaust gas into contact with the above-mentioned catalyst of the present invention in an atmosphere containing oxygen in the presence of hydrocarbons or oxygen-containing organic compounds. The oxygen-containing atmosphere refers to a state in which a large amount of oxygen is contained in the exhaust gas, and is based on a theoretical amount of oxygen necessary for burning unburned components such as carbon monoxide, hydrogen, and hydrocarbons contained in the exhaust gas. Also refers to a state of high oxygen.
For example, in the case of an internal combustion engine such as an automobile, in a state where the air-fuel ratio is larger than the stoichiometric air-fuel ratio (lean region), compared with exhaust gas discharged in the state of the stoichiometric air-fuel ratio in which the conventional three-way catalyst works effectively. This is the atmosphere of the exhaust gas that is discharged. In the case of a diesel vehicle or a lean burn gasoline vehicle, the oxygen concentration in the exhaust gas is several vol% to several tens vol%. The oxygen concentration in the exhaust gas in the method of the present invention is not particularly limited.
ol% to more than ten vol%. The upper limit is not particularly limited, and may be the oxygen concentration in the atmosphere (about 20%).
【0024】存在させる炭化水素類や含酸素有機化合
物、言い換えればNOxを還元除去する還元剤は、排ガ
ス中に残存する炭化水素類、含酸素有機化合物、あるい
は燃料などの不完全燃焼生成物であるパティキュレート
などでもよいし、外部から添加する炭化水素類、含酸素
有機化合物、燃料であってもよい。具体例としては、炭
化水素類は、気体状のものでは、メタン、エタン、プロ
パン、プロピレン、ブタン、ブチレンなどが挙げられ、
液体状のものでは、ペンタン、ヘキサン、ヘプタン、オ
クタン、オクテン、ベンゼン、トルエン、キシレンなど
や、ガソリン、灯油、軽油、重油などの鉱油系の油が挙
げられる。また、含酸素有機化合物は、メチルアルコー
ル、エチルアルコール、プロピルアルコール、オクチル
アルコールなどのアルコール類、ジメチルエーテル、エ
チルエーテル、プロピルエーテルなどのエーテル類、酢
酸メチル、酢酸エチル、油脂類などのエステル類、アセ
トン、メチルエチルケトンなどのケトン類などが挙げら
れる。これらの炭化水素類や含酸素有機化合物は、一種
あるいは二種以上を組み合わせて使用することができ
る。The reducing agent for reducing and removing hydrocarbons and oxygen-containing organic compounds to be present, that is, NOx, is incomplete combustion products such as hydrocarbons, oxygen-containing organic compounds and fuel remaining in the exhaust gas. It may be a particulate or the like, or may be a hydrocarbon, an oxygen-containing organic compound, or a fuel added from the outside. As specific examples, hydrocarbons, in the gaseous state, include methane, ethane, propane, propylene, butane, butylene, and the like,
Examples of the liquid form include pentane, hexane, heptane, octane, octene, benzene, toluene, xylene, and mineral oils such as gasoline, kerosene, light oil, and heavy oil. The oxygen-containing organic compounds include alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and octyl alcohol; ethers such as dimethyl ether, ethyl ether, and propyl ether; esters such as methyl acetate, ethyl acetate, and fats and oils; and acetone. And ketones such as methyl ethyl ketone. These hydrocarbons and oxygen-containing organic compounds can be used alone or in combination of two or more.
【0025】本発明の方法における温度は、使用する触
媒および炭化水素類や含酸素有機化合物の種類により最
適温度が多少異なるが、排ガスの温度に近い温度が排ガ
スの加熱設備などを必要としないので好ましく、一般に
は、約100〜800℃、特に約200〜600℃の範
囲とすることが適している。また、このときの圧力は、
加圧下でも減圧下でも反応は進むが、通常の排気圧で排
ガスを触媒層へ導入して、反応を進行させるのが便利で
ある。さらに、空間速度は、触媒の種類、他の反応条
件、所望のNOx除去率などで決められ、特に制限はな
い。Although the optimum temperature in the method of the present invention is slightly different depending on the type of the catalyst and the hydrocarbons or oxygen-containing organic compounds used, the temperature close to the exhaust gas temperature does not require exhaust gas heating equipment and the like. Preferably, it is generally suitable to be in the range of about 100-800C, especially about 200-600C. The pressure at this time is
Although the reaction proceeds under pressure or under reduced pressure, it is convenient to introduce the exhaust gas into the catalyst layer at a normal exhaust pressure to allow the reaction to proceed. Further, the space velocity is determined by the type of catalyst, other reaction conditions, a desired NOx removal rate, and the like, and is not particularly limited.
【0026】また、本発明の方法では、処理条件によっ
て、未燃の炭化水素類や含酸素有機化合物、あるいは一
酸化炭素のような不完全燃焼生成物が処理ガス中に排出
されることが懸念される場合がある。この懸念は、本発
明の方法で処理したガスを、酸化雰囲気下で酸化触媒に
接触させることで、解決できる。In the method of the present invention, there is a concern that unburned hydrocarbons, oxygen-containing organic compounds, or incomplete combustion products such as carbon monoxide may be discharged into the processing gas depending on the processing conditions. May be done. This concern can be solved by contacting the gas treated by the method of the present invention with an oxidation catalyst in an oxidizing atmosphere.
【0027】この酸化触媒は、上記の不完全燃焼生成物
を完全燃焼させるものが使用でき、例えば、アルミナ、
シリカ、ジルコニア、チタニアなどの多孔質担体に、白
金、パラジウム、ルテニウムなどの貴金属、ランタン、
セリウム、銅、鉄、モリブデンなどの卑金属酸化物、三
酸化コバルトランタン、三酸化鉄ランタン、三酸化コバ
ルトストロンチウムなどのペロブスカイト型結晶構造物
などの触媒成分を、単独または二種以上組み合わせて担
持したものが挙げられる。もちろん、特に卑金属酸化物
などでは、担体に担持させないで使用することもでき
る。触媒成分を担体に担持させる場合の量は、要求性能
に応じて適宜選択可能であるが、一般には、貴金属では
触媒全質量に対して約0.01〜5質量%程度であり、
卑金属酸化物などでは約5〜70質量%程度である。こ
の酸化触媒は、その形状、構造は問わず、粉体状、粒体
状、ペレット状、ハニカム状などであってもよいし、酸
化触媒を、コージェライトやメタル製のハニカムにコー
ティングしたものであってもよい。As the oxidation catalyst, one that completely burns the above-mentioned incomplete combustion products can be used.
Silica, zirconia, titania and other porous carriers, platinum, palladium, precious metals such as ruthenium, lanthanum,
Catalyst components such as cerium, copper, iron, base metal oxides such as molybdenum, and perovskite-type crystal structures such as cobalt lanthanum trioxide, iron lanthanum trioxide, and cobalt strontium trioxide, supported alone or in combination of two or more. Is mentioned. Of course, in particular, base metal oxides and the like can be used without being supported on a carrier. The amount of the catalyst component to be supported on the carrier can be appropriately selected according to the required performance. In general, the amount of the noble metal is about 0.01 to 5% by mass relative to the total mass of the catalyst.
For a base metal oxide or the like, the content is about 5 to 70% by mass. This oxidation catalyst may be in the form of powder, granules, pellets, honeycomb, or the like, regardless of its shape or structure.The oxidation catalyst is coated on a cordierite or metal honeycomb. There may be.
【0028】本発明の触媒(還元触媒)と上記の酸化触
媒との使用比率は、要求性能に応じて適宜選択可能であ
るが、一般には、還元触媒(A)と酸化触媒(B)の合
計を10としたとき、(A):(B)で表して、約0.
5:9.5〜9.5:0.5の範囲で用いられる。The use ratio of the catalyst of the present invention (reduction catalyst) and the above-mentioned oxidation catalyst can be appropriately selected according to the required performance, but generally, the total of the reduction catalyst (A) and the oxidation catalyst (B) is used. Is 10 and (A): (B), about 0.
It is used in the range of 5: 9.5 to 9.5: 0.5.
【0029】また、還元触媒と酸化触媒の使用態様は、
一般には、還元触媒を排気上流側に、酸化触媒を排気下
流側に配置する。具体的には、還元触媒を配置した反応
器を排ガス導入部(前段)に、酸化触媒を配置した反応
器を排ガス排出部(後段)に配置して使用したり、ある
いは一つの反応器に、それぞれの触媒を要求性能に応じ
た比率で、還元触媒を前段に、酸化触媒を後段に配置し
て用いることもできる。The mode of use of the reduction catalyst and the oxidation catalyst is as follows.
Generally, a reduction catalyst is arranged on the exhaust gas upstream side, and an oxidation catalyst is arranged on the exhaust gas downstream side. Specifically, a reactor in which a reduction catalyst is disposed is used in an exhaust gas introduction section (previous stage), and a reactor in which an oxidation catalyst is disposed is used in an exhaust gas discharge section (rear stage). The respective catalysts may be used at a ratio corresponding to the required performance, with the reduction catalyst being arranged in the first stage and the oxidation catalyst being arranged in the second stage.
【0030】酸化触媒の使用温度については、還元触媒
の使用温度と同じでなくてもよいが、一般には、前述の
還元触媒の使用温度の範囲内で使用できるものを選択す
るのが加熱冷却設備を特に必要とせず好ましい。The temperature at which the oxidation catalyst is used may not be the same as the temperature at which the reduction catalyst is used. However, in general, a heating / cooling equipment that can be used within the above-mentioned range of the temperature at which the reduction catalyst is used is selected. Is not particularly necessary and is preferable.
【0031】[0031]
【実施例】実施例1 (触媒の調製)粒径2〜3mmのγアルミナ(水沢化学
社製)4.5gと硫酸バリウム(Ba(SO4)2、関
東化学社製、特級)0.5gを、乳鉢を用いて良く粉砕
して物理的に混合し、触媒全質量に対して10質量%の
硫酸バリウムをアルミナに混合した触媒Aを得た。Example 1 (Preparation of catalyst) 4.5 g of γ-alumina (manufactured by Mizusawa Chemical Co., Ltd.) having a particle size of 2-3 mm and 0.5 g of barium sulfate (Ba (SO 4 ) 2 , manufactured by Kanto Chemical Co., special grade) Was thoroughly pulverized using a mortar and physically mixed to obtain a catalyst A in which alumina was mixed with 10% by mass of barium sulfate based on the total mass of the catalyst.
【0032】(NOxの還元除去反応)上記のようにし
て得られた触媒Aのうち0.2gを常圧流通式反応装置
に充填し、該装置に、約1000ppmの一酸化窒素
(以下、「NO」と記す)、約9vol%の酸素、約8
vol%の水蒸気、および約1000ppmのプロピレ
ンを含むヘリウムバランスのガスを、毎分240mlの
流速(SV=40000h −1に相当)で流し、表1に
示す温度で反応を行った。反応ガスの分析はガスクロマ
トグラフを用いて行い、N2、N2Oなどを定量し、N
Ox除去率(%)を算出した。結果を表1に合わせて示
す。(Reduction and removal reaction of NOx)
0.2 g of the catalyst A obtained by the above process was supplied to a normal pressure flow reactor.
And the apparatus is charged with about 1000 ppm of nitric oxide.
(Hereinafter referred to as "NO"), about 9 vol% oxygen, about 8
vol% steam and about 1000 ppm propyle
Helium-balanced gas containing 240 ml / min
Flow rate (SV = 40000h -1In Table 1)
The reaction was performed at the indicated temperature. Analysis of reaction gas by gas chromatography
Using a graph, N2, N2Quantify O etc.
The Ox removal rate (%) was calculated. The results are shown in Table 1.
You.
【0033】比較例1 実施例1で用いた硫酸バリウムのみを、実施例1と同様
に乳鉢で粉砕し、触媒Bを得た。この触媒Bを使用し、
実施例1と同様にしてNOxの還元除去反応を行い、N
Ox除去率(%)を算出した。結果を表1に合わせて示
す。Comparative Example 1 Only barium sulfate used in Example 1 was ground in a mortar in the same manner as in Example 1 to obtain a catalyst B. Using this catalyst B,
The reduction removal reaction of NOx was performed in the same manner as in Example 1,
The Ox removal rate (%) was calculated. The results are shown in Table 1.
【0034】比較例2 実施例1で用いたアルミナのみを、実施例1と同様に乳
鉢で粉砕し、触媒Cを得た。この触媒Cを使用し、実施
例1と同様にしてNOxの還元除去反応を行い、NOx
除去率(%)を算出した。結果を表1に合わせて示す。Comparative Example 2 Only the alumina used in Example 1 was ground in a mortar in the same manner as in Example 1 to obtain a catalyst C. Using this catalyst C, a reduction and removal reaction of NOx was performed in the same manner as in Example 1, and NOx was removed.
The removal rate (%) was calculated. The results are shown in Table 1.
【0035】実施例2 塩化スズ(SnCl4・5H2O、関東化学社製、特
級)1.18gを蒸留水6.72gに溶解し、この水溶
液に実施例1で用いたアルミナ9.6gを浸漬させ5時
間放置し、エバポレーターで乾燥後(70℃)、空気中
で550℃で3時間焼成し、アルミナとスズの合計量に
対して4質量%のSn担持アルミナ(触媒Dとする)を
得た。このうちの4.85gと実施例1で用いた硫酸バ
リウム0.15gを実施例1と同様に乳鉢で良く混合
し、触媒全質量に対して3質量%の硫酸バリウムを混合
した触媒Eを得た。この触媒Eを用い、温度を表2に示
すようにする以外は、実施例1と同様にしてNOxの還
元除去反応を行い、NOx除去率(%)を算出した。結
果を表2に合わせて示す。Example 2 1.18 g of tin chloride (SnCl 4.5 H 2 O, manufactured by Kanto Chemical Co., Ltd., special grade) was dissolved in 6.72 g of distilled water, and 9.6 g of alumina used in Example 1 was added to this aqueous solution. After being immersed and allowed to stand for 5 hours, dried by an evaporator (70 ° C.), calcined in air at 550 ° C. for 3 hours to obtain 4% by mass of Sn-supported alumina (catalyst D) based on the total amount of alumina and tin. Obtained. 4.85 g of this and 0.15 g of barium sulfate used in Example 1 were mixed well in a mortar in the same manner as in Example 1 to obtain Catalyst E in which 3% by mass of barium sulfate was mixed with respect to the total mass of the catalyst. Was. Using this catalyst E, a NOx reduction reaction was performed in the same manner as in Example 1 except that the temperature was changed as shown in Table 2, and the NOx removal rate (%) was calculated. The results are shown in Table 2.
【0036】実施例3 実施例2で調製した触媒D4.0gと実施例1で用いた
硫酸バリウム1.0gを実施例1と同様に乳鉢で良く混
合し、触媒全質量に対して20質量%の硫酸バリウム混
合した触媒Fを得た。この触媒Fを用い、実施例1と同
様にしてNOxの還元除去反応を行い、NOx除去率
(%)を算出した。結果を表2に合わせて示す。Example 3 4.0 g of the catalyst D prepared in Example 2 and 1.0 g of barium sulfate used in Example 1 were mixed well in a mortar in the same manner as in Example 1, and 20% by mass relative to the total mass of the catalyst. Catalyst F mixed with barium sulfate was obtained. Using this catalyst F, a reduction removal reaction of NOx was performed in the same manner as in Example 1, and the NOx removal rate (%) was calculated. The results are shown in Table 2.
【0037】実施例4 硝酸バリウム(Ba(NO3)2、関東化学社製、特
級)2.80gを蒸留水1.75gに溶解し、この水溶
液に市販のシリカ(SiO2、富士シリシア化学社製)
2.5gを浸漬させ5時間放置し、エバポレーターで乾
燥後、空気中で550℃で3時間焼成し、バリウムとシ
リカの合計量に対して50質量%のBa担持シリカを得
た。これに0.1Nの硫酸1リットルを数回に分けてか
け、乾燥後、600℃で3時間焼成し、硫酸バリウム担
持シリカ(触媒Gとする)を得た。このうちの1.0g
と実施例2で調製した触媒D4.0gを実施例1と同様
に乳鉢で良く混合し、触媒全質量に対して20質量%の
触媒Gを混合した触媒Hを得た。この触媒Hを用い、実
施例1と同様にしてNOxの還元除去反応を行い、NO
x除去率(%)を算出した。結果を表2に合わせて示
す。Example 4 2.80 g of barium nitrate (Ba (NO 3 ) 2 , manufactured by Kanto Chemical Co., Ltd., special grade) was dissolved in 1.75 g of distilled water, and commercially available silica (SiO 2 , Fuji Silysia Chemical Ltd.) was added to the aqueous solution. Made)
2.5 g was immersed, left for 5 hours, dried with an evaporator, and calcined in air at 550 ° C. for 3 hours to obtain 50% by mass of Ba-supported silica with respect to the total amount of barium and silica. One liter of 0.1N sulfuric acid was applied thereto in several portions, dried, and calcined at 600 ° C. for 3 hours to obtain barium sulfate-supported silica (referred to as catalyst G). 1.0 g of this
And 4.0 g of the catalyst D prepared in Example 2 were mixed well in a mortar in the same manner as in Example 1 to obtain Catalyst H in which 20% by mass of Catalyst G was mixed with respect to the total mass of the catalyst. Using this catalyst H, a reduction removal reaction of NOx was performed in the same manner as in Example 1, and NO
x removal rate (%) was calculated. The results are shown in Table 2.
【0038】比較例3 実施例2で調製した触媒Dを、実施例1と同様にしてN
Oxの還元除去反応を行い、NOx除去率(%)を算出
した。結果を表2に合わせて示す。Comparative Example 3 Catalyst D prepared in Example 2 was replaced with N in the same manner as in Example 1.
A reduction removal reaction of Ox was performed, and a NOx removal rate (%) was calculated. The results are shown in Table 2.
【0039】比較例4 実施例4で用いた硝酸バリウム0.29gを蒸留水3.
40gに溶解し、この水溶液に実施例2で調製した触媒
D4.85gを浸漬し5時間放置し、エバポレーターで
乾燥後、空気中で550℃で3時間焼成し、触媒全質量
に対して3質量%のBa担持触媒Iを得た。この触媒I
を用い、実施例1と同様にしてNOxの還元除去反応を
行い、NOx除去率(%)を算出した。結果を表2に合
わせて示す。Comparative Example 4 0.29 g of barium nitrate used in Example 4 was added to distilled water 3.
Dissolved in 40 g, 4.85 g of the catalyst D prepared in Example 2 was immersed in this aqueous solution, allowed to stand for 5 hours, dried with an evaporator, calcined at 550 ° C. for 3 hours in air, and 3 masses with respect to the total mass of the catalyst. % Of the supported catalyst I on Ba was obtained. This catalyst I
, A reduction removal reaction of NOx was performed in the same manner as in Example 1, and the NOx removal rate (%) was calculated. The results are shown in Table 2.
【0040】比較例5 実施例2で調製した触媒D2.0gと実施例1で用いた
硫酸バリウム3.0gを乳鉢を用いて良く混合し、触媒
Dと硫酸バリウムの合計量に対して60質量%の硫酸バ
リウムを混合した触媒Jを得た。この触媒Jを用い、実
施例1と同様にしてNOxの還元除去反応を行い、NO
x除去率(%)を算出した。結果を表2に合わせて示
す。COMPARATIVE EXAMPLE 5 2.0 g of the catalyst D prepared in Example 2 and 3.0 g of barium sulfate used in Example 1 were mixed well using a mortar, and mixed with the total amount of Catalyst D and barium sulfate by 60 mass. % Of barium sulfate was obtained. Using this catalyst J, a NOx reduction and removal reaction was performed in the same manner as in Example 1, and NO
x removal rate (%) was calculated. The results are shown in Table 2.
【0041】比較例6 実施例2で調製した触媒D4.0gと塩化バリウム(B
aCl2、関東化学社製、特級)1.0gを乳鉢を用い
て良く混合し、触媒Dと塩化バリウムの合計量に対して
20質量%の塩化バリウムを混合した触媒Kを得た。こ
の触媒Kを用い、実施例1と同様にしてNOxの還元除
去反応を行い、NOx除去率(%)を算出した。結果を
表2に合わせて示す。Comparative Example 6 4.0 g of the catalyst D prepared in Example 2 and barium chloride (B
1.0 g of aCl 2 (manufactured by Kanto Chemical Co., Ltd., special grade) was mixed well using a mortar to obtain a catalyst K in which 20 mass% of barium chloride was mixed with respect to the total amount of catalyst D and barium chloride. Using this catalyst K, a NOx reduction removal reaction was performed in the same manner as in Example 1, and the NOx removal rate (%) was calculated. The results are shown in Table 2.
【0042】比較例7 実施例2で調製した触媒D4.0gと酸化バリウム(B
aO、関東化学社製)1.0gを乳鉢を用いて良く混合
し、触媒Dと酸化バリウムの合計量に対して20質量%
の酸化バリウムを混合した触媒Lを得た。この触媒Lを
用い、実施例1と同様にしてNOxの還元除去反応を行
い、NOx除去率(%)を算出した。結果を表2に合わ
せて示す。Comparative Example 7 4.0 g of the catalyst D prepared in Example 2 and barium oxide (B
aO, manufactured by Kanto Chemical Co., Ltd.) 1.0 g was mixed well using a mortar, and 20% by mass relative to the total amount of Catalyst D and barium oxide.
The catalyst L obtained by mixing the barium oxide was obtained. Using this catalyst L, a reduction removal reaction of NOx was performed in the same manner as in Example 1, and the NOx removal rate (%) was calculated. The results are shown in Table 2.
【0043】実施例5 酢酸コバルト(Co(CH3CO2)2・4H2O、関
東化学社製、特級)0.85gを蒸留水6.86gに溶
解し、この水溶液に実施例1で用いたアルミナ9.8g
を浸漬させ5時間放置し、エバポレーターで乾燥後(7
0℃)、空気中で550℃で3時間焼成し、2質量%C
o担持アルミナ(触媒Mとする)を得た。このうちの
4.5gと実施例1で用いた硫酸バリウム0.5gを実
施例1と同様に乳鉢で良く混合し、触媒全質量に対して
10質量%の硫酸バリウムを混合した触媒Nを得た。こ
の触媒Nを用い、実施例1と同様にしてNOxの還元除
去反応を行い、NOx除去率(%)を算出した。結果を
表3に合わせて示す。Example 5 0.85 g of cobalt acetate (Co (CH 3 CO 2 ) 2 .4H 2 O, manufactured by Kanto Chemical Co., Ltd., special grade) was dissolved in 6.86 g of distilled water. 9.8g of alumina
Immersed and allowed to stand for 5 hours, dried with an evaporator (7
0 ° C.), calcined in air at 550 ° C. for 3 hours, 2 mass% C
o-supported alumina (referred to as catalyst M) was obtained. 4.5 g of this and 0.5 g of barium sulfate used in Example 1 were mixed well in a mortar in the same manner as in Example 1 to obtain a catalyst N in which 10% by mass of barium sulfate was mixed with respect to the total mass of the catalyst. Was. Using this catalyst N, a NOx reduction removal reaction was performed in the same manner as in Example 1, and the NOx removal rate (%) was calculated. The results are shown in Table 3.
【0044】実施例6 硝酸インジウム(In(NO3)3・3H2O、関東化
学社製、特級)0.62gを蒸留水6.86gに溶解
し、この水溶液に実施例1で用いたアルミナ9.8gを
浸漬させ5時間放置し、エバポレーターで乾燥後(70
℃)、空気中で550℃で3時間焼成し、2質量%In
担持アルミナ(触媒Oとする)を得た。このうちの4.
0gと実施例1で用いた硫酸バリウム1.0gを実施例
1と同様に乳鉢で良く混合し、触媒全質量に対して20
質量%の硫酸バリウムを混合した触媒Pを得た。この触
媒Pを用い、実施例1と同様にしてNOxの還元除去反
応を行い、NOx除去率(%)を算出した。結果を表3
に合わせて示す。[0044] Example 6 of indium nitrate (In (NO 3) 3 · 3H 2 O, manufactured by Kanto Chemical Co., Inc., special grade) 0.62 g were dissolved in distilled water 6.86 g, alumina used in Example 1 to the aqueous solution 9.8 g was immersed and left for 5 hours, and dried with an evaporator (70 g).
℃), calcined in air at 550 ℃ for 3 hours, 2 mass% In
A supported alumina (referred to as catalyst O) was obtained. 4. of these
0 g and 1.0 g of barium sulfate used in Example 1 were mixed well in a mortar in the same manner as in Example 1, and 20 g with respect to the total mass of the catalyst.
Catalyst P was obtained by mixing barium sulfate in a mass%. Using this catalyst P, a reduction removal reaction of NOx was performed in the same manner as in Example 1, and the NOx removal rate (%) was calculated. Table 3 shows the results
Shown along with.
【0045】実施例7 硝酸銀(AgNO3、関東化学社製、特級)0.16g
を蒸留水6.93gに溶解し、この水溶液に実施例1で
用いたアルミナ9.9gを浸漬させ5時間放置し、エバ
ポレーターで乾燥後(70℃)、空気中で550℃で3
時間焼成し、1質量%Ag担持アルミナ(触媒Qとす
る)を得た。このうちの4.75gと実施例1で用いた
硫酸バリウム0.25gを実施例1と同様に乳鉢で良く
混合し、触媒全質量に対して5質量%の硫酸バリウムを
混合した触媒Rを得た。この触媒Rを用い、実施例1と
同様にしてNOxの還元除去反応を行い、NOx除去率
(%)を算出した。結果を表3に合わせて示す。Example 7 0.16 g of silver nitrate (AgNO 3 , manufactured by Kanto Chemical Co., Ltd., special grade)
Was dissolved in 6.93 g of distilled water, 9.9 g of the alumina used in Example 1 was immersed in this aqueous solution, allowed to stand for 5 hours, dried by an evaporator (70 ° C.), and dried at 550 ° C. in air at 550 ° C.
Calcination was performed for 1 hour to obtain 1% by mass of Ag-supported alumina (referred to as catalyst Q). 4.75 g of this and 0.25 g of barium sulfate used in Example 1 were mixed well in a mortar in the same manner as in Example 1 to obtain Catalyst R in which 5% by mass of barium sulfate was mixed with respect to the total mass of the catalyst. Was. Using this catalyst R, a NOx reduction and removal reaction was performed in the same manner as in Example 1, and the NOx removal rate (%) was calculated. The results are shown in Table 3.
【0046】実施例8 塩化アンチモン(SbCl3、関東化学社製、特級)
0.94gを蒸留水6.65gに溶解し、この水溶液に
実施例1で用いたアルミナ9.5gを浸漬させ5時間放
置し、エバポレーターで乾燥後(70℃)、空気中で5
50℃で3時間焼成し、5質量%Sb担持アルミナ(触
媒Sとする)を得た。このうちの4.5gと実施例1で
用いた硫酸バリウム0.5gを実施例1と同様に乳鉢で
良く混合し、触媒全質量に対して10質量%の硫酸バリ
ウムを混合した触媒Tを得た。この触媒Tを用い、実施
例1と同様にしてNOxの還元除去反応を行い、NOx
除去率(%)を算出した。結果を表3に合わせて示す。Example 8 Antimony chloride (SbCl 3 , Kanto Chemical Co., special grade)
0.94 g was dissolved in 6.65 g of distilled water, 9.5 g of the alumina used in Example 1 was immersed in this aqueous solution, allowed to stand for 5 hours, dried by an evaporator (70 ° C.), and dried in air.
The mixture was calcined at 50 ° C. for 3 hours to obtain 5 mass% Sb-supported alumina (referred to as catalyst S). 4.5 g of this and 0.5 g of barium sulfate used in Example 1 were mixed well in a mortar in the same manner as in Example 1 to obtain a catalyst T in which 10% by mass of barium sulfate was mixed with respect to the total mass of the catalyst. Was. Using this catalyst T, a reduction removal reaction of NOx was performed in the same manner as in Example 1, and NOx was removed.
The removal rate (%) was calculated. The results are shown in Table 3.
【0047】比較例8〜11 実施例5で調製した触媒M(比較例8)、実施例6で調
製した触媒O(比較例9)、実施例7で調製した触媒Q
(比較例10)、実施例8で調製した触媒S(比較例1
1)をそれぞれ用い、実施例1と同様にしてNOxの還
元除去反応を行い、NOx除去率(%)を算出した。結
果を表3に合わせて示す。Comparative Examples 8 to 11 Catalyst M prepared in Example 5 (Comparative Example 8), Catalyst O prepared in Example 6 (Comparative Example 9), Catalyst Q prepared in Example 7
(Comparative Example 10), Catalyst S prepared in Example 8 (Comparative Example 1)
Using each of 1), a NOx reduction removal reaction was performed in the same manner as in Example 1, and the NOx removal rate (%) was calculated. The results are shown in Table 3.
【0048】実施例9 実施例2で用いた塩化スズ0.59gと硝酸ガリウム
(Ga(NO3)3・8H2O、関東化学社製、特級)
1.15gを蒸留水6.72gに溶解し、この水溶液に
実施例1で用いたアルミナ9.6gを浸漬させ5時間放
置し、エバポレーターで乾燥後(70℃)、空気中で5
50℃で3時間焼成し、2質量%Sn−2質量%Ga担
持アルミナ(触媒Uとする)を得た。このうちの4.5
gと実施例1で用いた硫酸バリウム0.5gを実施例1
と同様に乳鉢で良く混合し、触媒全質量に対して10質
量%の硫酸バリウムを混合した触媒Vを得た。この触媒
Vを用い、実施例1と同様にしてNOxの還元除去反応
を行い、NOx除去率(%)を算出した。結果を表4に
合わせて示す。[0048] Tin 0.59g nitrate gallium chloride used in Example 9 Example 2 (Ga (NO 3) 3 · 8H 2 O, manufactured by Kanto Chemical Co., Inc., special grade)
1.15 g was dissolved in 6.72 g of distilled water, 9.6 g of the alumina used in Example 1 was immersed in this aqueous solution, allowed to stand for 5 hours, dried with an evaporator (70 ° C.), and dried in air.
It was calcined at 50 ° C. for 3 hours to obtain 2 mass% Sn-2 mass% Ga-supported alumina (referred to as catalyst U). 4.5 of these
g and 0.5 g of barium sulfate used in Example 1.
In the same manner as in the above, the mixture was mixed well in a mortar to obtain a catalyst V in which 10% by mass of barium sulfate was mixed with the total mass of the catalyst. Using this catalyst V, a NOx reduction removal reaction was performed in the same manner as in Example 1, and the NOx removal rate (%) was calculated. The results are shown in Table 4.
【0049】比較例12 実施例9で調製した触媒Uを用い、実施例1と同様にし
てNOxの還元除去反応を行い、NOx除去率(%)を
算出した。結果を表4に合わせて示す。Comparative Example 12 Using the catalyst U prepared in Example 9, a reduction removal reaction of NOx was carried out in the same manner as in Example 1, and the NOx removal rate (%) was calculated. The results are shown in Table 4.
【0050】比較例13 実施例6の触媒Oの調製方法と同様にして調製した20
質量%In担持アルミナと実施例1で用いた硫酸バリウ
ムを乳鉢を用いて良く混合し、このIn担持アルミナと
硫酸バリウムの合計量に対して20質量%の硫酸バリウ
ムを混合した触媒Wを得た。この触媒Wを用い、実施例
1と同様にしてNOxの還元除去反応を行い、NOx除
去率(%)を算出した。結果を表4に合わせて示す。Comparative Example 13 20 prepared in the same manner as in the method for preparing catalyst O of Example 6.
The mass% In-supported alumina and the barium sulfate used in Example 1 were mixed well using a mortar to obtain a catalyst W in which 20 mass% of barium sulfate was mixed with respect to the total amount of the In-supported alumina and barium sulfate. . Using this catalyst W, a NOx reduction removal reaction was performed in the same manner as in Example 1, and the NOx removal rate (%) was calculated. The results are shown in Table 4.
【0051】比較例14 実施例7で用いた硝酸銀0.79gを蒸留水4.56g
に溶解し、この水溶液に実施例1で用いた硫酸バリウム
9.5gを浸漬させ5時間放置し、エバポレーターで乾
燥後(70℃)、空気中で550℃で3時間焼成し、5
質量%Ag担持硫酸バリウム(触媒Xとする)を得た。
このうちの1.0gと実施例1で用いたアルミナ4.0
gを実施例1と同様に乳鉢で良く混合し、触媒全質量に
対して20質量%の上記Ag担持硫酸バリウムを混合し
た触媒Yを得た。この触媒Yを用い、実施例1と同様に
してNOxの還元除去反応を行い、NOx除去率(%)
を算出した。結果を表4に合わせて示す。COMPARATIVE EXAMPLE 14 0.79 g of silver nitrate used in Example 7 was replaced with 4.56 g of distilled water.
9.5 g of barium sulfate used in Example 1 was immersed in this aqueous solution, allowed to stand for 5 hours, dried by an evaporator (70 ° C.), and calcined at 550 ° C. for 3 hours in air.
Barium sulfate (mass% Ag) (catalyst X) was obtained.
1.0 g of this and the alumina 4.0 used in Example 1 were used.
g was mixed well in a mortar in the same manner as in Example 1 to obtain a catalyst Y in which 20% by mass of the above-mentioned barium sulfate carrying Ag was mixed with respect to the total mass of the catalyst. Using this catalyst Y, a NOx reduction removal reaction was performed in the same manner as in Example 1, and the NOx removal rate (%)
Was calculated. The results are shown in Table 4.
【0052】比較例15 実施例1で調製した触媒Aに、実施例7の触媒Qの調製
方法と同様にして1質量%のAgを担持させた触媒Zを
得た。この触媒Zを用い、実施例1と同様にしてNOx
の還元除去反応を行い、NOx除去率(%)を算出し
た。結果を表4に合わせて示す。Comparative Example 15 A catalyst Z in which 1% by weight of Ag was supported on the catalyst A prepared in Example 1 in the same manner as in the preparation method of the catalyst Q in Example 7 was obtained. Using this catalyst Z, NOx was obtained in the same manner as in Example 1.
, And a NOx removal rate (%) was calculated. The results are shown in Table 4.
【0053】実施例10 実施例1で調製した触媒Aを用い、プロピレンの代わり
にメタノールを約3000ppm含むガスを用い、反応
温度を表3に示すようにする以外は、実施例1と同様に
してNOxの還元除去反応を行い、NOx除去率(%)
を算出した。結果を表5に合わせて示す。Example 10 The same procedure as in Example 1 was carried out except that the catalyst A prepared in Example 1 was used, a gas containing about 3000 ppm of methanol was used instead of propylene, and the reaction temperature was as shown in Table 3. NOx reduction reaction is performed and NOx removal rate (%)
Was calculated. The results are shown in Table 5.
【0054】実施例11 実施例3で調製した触媒Fを用い、プロピレンの代わり
にプロパンを約1000ppm含むガスを用い、反応温
度を表4に示すようにする以外は、実施例1と同様にし
てNOxの還元除去反応を行い、NOx除去率(%)を
算出した。結果を表4に合わせて示す。Example 11 The procedure of Example 1 was repeated, except that the catalyst F prepared in Example 3 was used, a gas containing about 1000 ppm of propane was used instead of propylene, and the reaction temperature was as shown in Table 4. The NOx reduction reaction was performed, and the NOx removal rate (%) was calculated. The results are shown in Table 4.
【0055】比較例16 比較例2で調製した触媒Cを用いる以外は、実施例10
と同様にしてNOxの還元除去反応を行い、NOx除去
率(%)を算出した。結果を表3に合わせて示す。Comparative Example 16 Example 10 was repeated except that the catalyst C prepared in Comparative Example 2 was used.
NOx reduction reaction was performed in the same manner as described above, and the NOx removal rate (%) was calculated. The results are shown in Table 3.
【0056】比較例17 実施例2で調製した触媒Dを用いる以外は、実施例11
と同様にしてNOxの還元除去反応を行い、NOx除去
率(%)を算出した。結果を表4に合わせて示す。Comparative Example 17 Example 11 was repeated except that the catalyst D prepared in Example 2 was used.
NOx reduction reaction was performed in the same manner as described above, and the NOx removal rate (%) was calculated. The results are shown in Table 4.
【0057】比較例18 実施例3で調製した触媒Fを用い、酸素濃度を0vol
%にする以外は、実施例1と同様にしてNOxの還元除
去反応を行った。NOx除去率(%)を算出した。結果
を表5に示す。Comparative Example 18 Using the catalyst F prepared in Example 3, the oxygen concentration was 0 vol.
%, A reduction and removal reaction of NOx was performed in the same manner as in Example 1. The NOx removal rate (%) was calculated. Table 5 shows the results.
【0058】[0058]
【表1】 [Table 1]
【0059】[0059]
【表2】 [Table 2]
【0060】[0060]
【表3】 [Table 3]
【0061】[0061]
【表4】 [Table 4]
【0062】表1〜4から明らかなように、アルミナや
第3成分担持アルミナに、硫酸バリウムを物理混合した
触媒では、NOのN2への還元活性が向上することが判
る。また、第3成分担持アルミナに硫酸バリウムを物理
混合した触媒は、第3成分を担持していないアルミナに
硫酸バリウムを物理混合した触媒に比して、より低温で
高いNO還元率が得られ、実排ガス温度への適応性が高
いことが判る。更に、硫酸バリウムをシリカに含浸担持
したものを、アルミナあるいは第3成分含有アルミナに
物理混合して得られる触媒は、低温活性がより一層高
く、上記よりも良好な効果が得られることが判る。これ
らに対し、第3成分担持アルミナに、バリウムを担持し
た触媒、塩化バリウムや酸化バリウムを物理混合した触
媒では、NO還元活性が低いことが判る。As is clear from Tables 1 to 4, it is found that the catalyst obtained by physically mixing barium sulfate with alumina or alumina carrying the third component has an improved activity of reducing NO to N 2 . Further, the catalyst obtained by physically mixing barium sulfate with the third component-supported alumina can obtain a higher NO reduction rate at a lower temperature than the catalyst obtained by physically mixing barium sulfate with alumina not supporting the third component, It can be seen that the adaptability to the actual exhaust gas temperature is high. Furthermore, it can be seen that the catalyst obtained by physically mixing barium sulfate impregnated and supported on silica with alumina or alumina containing the third component has a much higher low-temperature activity and a better effect than the above can be obtained. On the other hand, it can be seen that the catalyst in which barium is supported on the third component-supported alumina and the catalyst in which barium chloride or barium oxide is physically mixed have low NO reduction activity.
【0063】[0063]
【表5】 [Table 5]
【0064】[0064]
【表6】 [Table 6]
【0065】表5から明らかなように、メタノールやプ
ロパンを還元剤として用いる場合も、本発明の触媒は有
効に作用することが判る。また、表6から明らかなよう
に、本発明の触媒は、酸素が存在しない雰囲気では有効
に作用しないことが判る。As is clear from Table 5, the catalyst of the present invention works effectively even when methanol or propane is used as the reducing agent. Further, as is apparent from Table 6, it is understood that the catalyst of the present invention does not work effectively in an atmosphere in which oxygen does not exist.
【0066】[0066]
【発明の効果】以上詳述したように、本発明によれば、
酸素が存在する酸化雰囲気中、実用条件下において、ガ
ソリン機関、ディーゼル機関、その他種々の設備から発
生する排ガス中のNOxを、効率的に除去することがで
きる。As described in detail above, according to the present invention,
Under practical conditions in an oxidizing atmosphere in which oxygen is present, NOx in exhaust gas generated from gasoline engines, diesel engines, and various other facilities can be efficiently removed.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉成 知博 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomohiro Yoshinari 1134-2 Gongendo, Satte City, Saitama Prefecture, Cosmo Research Institute R & D Center
Claims (4)
て、該触媒が、アルミナに、触媒全質量に対して0.1
〜50質量%の硫酸バリウムを物理的に混合したもので
あることを特徴とする窒素酸化物除去触媒。1. A catalyst for reducing and removing nitrogen oxides, wherein the catalyst is added to alumina in an amount of 0.1% based on the total mass of the catalyst.
What is claimed is: 1. A catalyst for removing nitrogen oxides, which is obtained by physically mixing barium sulfate in an amount of up to 50% by mass.
IIb族、同IVb族および同Vb族の典型元素の中か
ら選ばれる少なくとも1種以上の金属元素を0.01〜
15質量%含有することを特徴とする請求項1記載の窒
素酸化物除去触媒。2. The method according to claim 1, wherein the alumina is selected from the group consisting of transition elements and Periodic Table I.
At least one metal element selected from the group consisting of typical elements of the IIb group, the IVb group and the Vb group;
The nitrogen oxide removing catalyst according to claim 1, wherein the catalyst is contained in an amount of 15% by mass.
IVb族および同Vb族の典型元素の中から選ばれる金
属元素が、Sn、Co、Ag、In、Ga、Sbの中か
ら選ばれる少なくとも1種以上であることを特徴とする
請求項2記載の窒素酸化物除去触媒。3. The transition element and at least one metal element selected from the group IIIb, group IVb and group Vb of the periodic table selected from Sn, Co, Ag, In, Ga and Sb. The nitrogen oxide removal catalyst according to claim 2, wherein the catalyst is one or more types.
しくは含酸素有機化合物の存在下において、請求項1〜
3のいずれかに記載の触媒を用いることを特徴とする窒
素酸化物除去方法。4. The method according to claim 1, wherein in an atmosphere in which oxygen is present, in the presence of a hydrocarbon or an oxygen-containing organic compound.
3. A method for removing nitrogen oxides, comprising using the catalyst according to any one of 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11034894A JPH11319566A (en) | 1998-03-17 | 1999-02-12 | Catalyst for removing nitrogen oxide and method for removing nitrogen oxide |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-88211 | 1998-03-17 | ||
JP8821198 | 1998-03-17 | ||
JP11034894A JPH11319566A (en) | 1998-03-17 | 1999-02-12 | Catalyst for removing nitrogen oxide and method for removing nitrogen oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11319566A true JPH11319566A (en) | 1999-11-24 |
Family
ID=26373767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11034894A Pending JPH11319566A (en) | 1998-03-17 | 1999-02-12 | Catalyst for removing nitrogen oxide and method for removing nitrogen oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11319566A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010013730A1 (en) * | 2008-07-29 | 2010-02-04 | バブコック日立株式会社 | Catalyst for cleaning up nitrogen oxides and a method for producing same |
JP2010058113A (en) * | 2008-09-04 | 2010-03-18 | Haldor Topsoe As | Process and catalyst system for reducing nitrogen oxides |
WO2014156746A1 (en) * | 2013-03-28 | 2014-10-02 | エヌ・イーケムキャット株式会社 | Alumina material containing barium sulfate and method for producing same, and catalyst for use in purification of exhaust gas which comprises same |
-
1999
- 1999-02-12 JP JP11034894A patent/JPH11319566A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010013730A1 (en) * | 2008-07-29 | 2010-02-04 | バブコック日立株式会社 | Catalyst for cleaning up nitrogen oxides and a method for producing same |
CN102123791A (en) * | 2008-07-29 | 2011-07-13 | 巴布考克日立株式会社 | Catalyst for cleaning up nitrogen oxides and a method for producing same |
US8664141B2 (en) | 2008-07-29 | 2014-03-04 | Babcock-Hitachi Kabushiki Kaisha | Catalyst for cleaning up nitrogen oxides and a method for producing same |
JP2010058113A (en) * | 2008-09-04 | 2010-03-18 | Haldor Topsoe As | Process and catalyst system for reducing nitrogen oxides |
WO2014156746A1 (en) * | 2013-03-28 | 2014-10-02 | エヌ・イーケムキャット株式会社 | Alumina material containing barium sulfate and method for producing same, and catalyst for use in purification of exhaust gas which comprises same |
JPWO2014156746A1 (en) * | 2013-03-28 | 2017-02-16 | エヌ・イーケムキャット株式会社 | Alumina material containing barium sulfate and method for producing the same, and exhaust gas purification catalyst using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920009112B1 (en) | Three-way catalysts for lean exhaust system | |
EP0781592B1 (en) | Exhaust gas purification method by reduction of nitrogen oxides | |
JPH0884911A (en) | Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same | |
CN100560204C (en) | Catalyst for purification of nitrogen oxides in the sulfur-bearing oxygen enrichment tail gas | |
JP4764609B2 (en) | Nitrogen oxide removal catalyst | |
JPH11319566A (en) | Catalyst for removing nitrogen oxide and method for removing nitrogen oxide | |
JP2547124B2 (en) | Method for reducing and removing nitrogen oxides | |
JP2506598B2 (en) | Nitrogen oxide removal method | |
JP4301348B2 (en) | Nitrogen oxide decomposition catalyst and diesel engine exhaust gas purification method using the same | |
JP3316564B2 (en) | Purification method of exhaust gas containing nitrogen oxides | |
JP2553433B2 (en) | Method for removing nitrogen oxides in exhaust gas | |
JP2691644B2 (en) | Method for removing nitrogen oxides in exhaust gas | |
JP3711363B2 (en) | Nitrogen oxide catalytic reduction removal catalyst and nitrogen oxide catalytic reduction removal method | |
JP2506589B2 (en) | Method for removing nitrogen oxides in exhaust gas | |
JP3711361B2 (en) | Nitrogen oxide catalytic reduction removal catalyst and method for producing the same | |
JPH04210241A (en) | Catalyst for cleaning exhaust gas | |
JP3546104B2 (en) | Method for reducing and removing nitrogen oxides | |
JPH1066867A (en) | Catalyst for cleaning exhaust gas and method for cleaning exhaust gas by the catalyst | |
JP3316566B2 (en) | Reduction and purification method of exhaust gas containing nitrogen oxides | |
JPH08243355A (en) | Removing method of nitrogen oxide by catalytic reduction | |
JP3854325B2 (en) | Exhaust gas purification material and exhaust gas purification method | |
JP2016155049A (en) | Exhaust gas purification three-way catalyst | |
JPH08257405A (en) | Catalyst for decomposition of nitrogen oxide and method for removing nitrogen oxide in exhaust gas from diesel engine by using the same | |
JPH09234348A (en) | Reductive purification of nitrogen oxide-containing exhaust gas | |
JP2005279371A (en) | Denitrification catalyst and denitrification method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |