Nothing Special   »   [go: up one dir, main page]

JPH11181569A - Selective cvd method using gaseous fluorine - Google Patents

Selective cvd method using gaseous fluorine

Info

Publication number
JPH11181569A
JPH11181569A JP36571197A JP36571197A JPH11181569A JP H11181569 A JPH11181569 A JP H11181569A JP 36571197 A JP36571197 A JP 36571197A JP 36571197 A JP36571197 A JP 36571197A JP H11181569 A JPH11181569 A JP H11181569A
Authority
JP
Japan
Prior art keywords
thin film
substrate
gas
vacuum chamber
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36571197A
Other languages
Japanese (ja)
Other versions
JP3976386B2 (en
Inventor
Yuriko Nakamura
友理子 中村
Eiichi Mizuno
栄一 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP36571197A priority Critical patent/JP3976386B2/en
Publication of JPH11181569A publication Critical patent/JPH11181569A/en
Application granted granted Critical
Publication of JP3976386B2 publication Critical patent/JP3976386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To selectively grow conductive thin film while cleaning the inside of a vacuum tank by a gas relatively weak in toxicity without using plasma by executing evacuation while gaseous fluorine is introduced into a vacuum tank before a substrate is carried therein and carrying the substrate after the passage of a prescribed time. SOLUTION: Before the formation of thin film of conductive substance, while the inside of a vacuum tank is evacuated, gaseous fluorine (gaseous F2 ) is introduced to fill the inside of the vacuum tank with the gaseous fluorine under certain pressure, the state is held for a certain time, and the precipitated conductive substance is removed. In the case a substrate is carried therein after the cleaning, and thermal CVD reaction is progressed, conductive thin film high in the film forming rate and small in particles can be obtd. In the case the introduction of the gaseous fluorine and the formation of the conductive thin film are repeated, cleaning effect is highest when the cleaning and the treatment of the substrate are alternately executed. It is possible that plural (e.g. <=10 pieces) substrates are treated per time of the cleaning.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CVD技術にかか
り、特に、パーティクルが少なく、真空槽の内部部材を
劣化させない選択CVD方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CVD technique, and more particularly to a selective CVD method in which particles are small and the internal members of a vacuum chamber are not deteriorated.

【0002】[0002]

【従来の技術】近年では、多層配線膜や微細孔を充填す
る導電性物質には、タングステン金属やチタン金属等、
アルミニウム以外の導電性物質が用いられており、その
ような導電性薄膜を基板表面に形成するために、スパッ
タリング装置やCVD装置が利用されている。
2. Description of the Related Art In recent years, conductive materials for filling a multilayer wiring film and micropores include tungsten metal and titanium metal.
A conductive material other than aluminum is used, and a sputtering device or a CVD device is used to form such a conductive thin film on a substrate surface.

【0003】特に、基板表面に露出したシリコン単結晶
層や金属配線層表面上に選択的に導電性薄膜を成長させ
る場合には、選択CVD方法が用いられている。
In particular, when a conductive thin film is selectively grown on the surface of a silicon single crystal layer or a metal wiring layer exposed on the surface of a substrate, a selective CVD method is used.

【0004】図5の符号102は、選択CVD方法を行
える従来技術のCVD装置であり、真空槽102を有し
ている。真空槽102の底壁上には、静電吸着装置10
3が配置されており、天井側には、ガス散布機構110
が設けられている。
[0004] Reference numeral 102 in FIG. 5 is a conventional CVD apparatus capable of performing a selective CVD method, and has a vacuum chamber 102. On the bottom wall of the vacuum chamber 102, an electrostatic chuck 10
3 and a gas distribution mechanism 110 on the ceiling side.
Is provided.

【0005】ガス散布機構110内には、第1の空間1
11と、第2の空間112とが独立に設けられており、
静電吸着装置103上に成膜対象物の基板を載置し、静
電吸着装置103によって基板を静電吸着し、静電吸着
装置103内蔵のヒータを発熱させ、加熱しながら真空
槽102内を真空排気しながら加熱する。
[0005] In the gas distribution mechanism 110, a first space 1 is provided.
11 and the second space 112 are provided independently,
The substrate on which a film is to be formed is placed on the electrostatic chucking device 103, the substrate is electrostatically sucked by the electrostatic chucking device 103, the heater inside the electrostatic chucking device 103 is heated, and the inside of the vacuum chamber 102 is heated. Is heated while evacuating.

【0006】基板が所定温度に達した後、ガス導入系1
13によって、第1の空間111内にフッ化タングステ
ン(WF6)ガスを導入し、第2の空間112内にモノシ
ランガス(SiH4)を導入し、CVD反応の原料ガスと
して真空槽102内に散布させると、基板表面の絶縁膜
に形成された微細孔底面上にタングステン薄膜が選択的
に成長し、絶縁膜表面には成長しない。このとき、防着
板105裏面を基板の縁部分に当接させ、基板の外周部
分にはタングステン薄膜が成長しないようにしておく。
After the substrate reaches a predetermined temperature, the gas introduction system 1
13, a tungsten fluoride (WF 6 ) gas is introduced into the first space 111, a monosilane gas (SiH 4 ) is introduced into the second space 112, and sprayed into the vacuum chamber 102 as a source gas for the CVD reaction. Then, the tungsten thin film selectively grows on the bottom surface of the fine hole formed in the insulating film on the substrate surface, but does not grow on the insulating film surface. At this time, the back surface of the deposition-preventing plate 105 is brought into contact with the edge portion of the substrate so that the tungsten thin film does not grow on the outer peripheral portion of the substrate.

【0007】このような選択CVD法によって基板表面
にタングステン薄膜を選択的に形成すれば、タングステ
ン薄膜を全面成膜するブランケットCVD方法に比べ、
エッチバックによる絶縁物表面のタングステン薄膜の除
去を行う必要がないという利点がある。
When a tungsten thin film is selectively formed on a substrate surface by such a selective CVD method, a blanket CVD method in which a tungsten thin film is formed over the entire surface can be used.
There is an advantage that it is not necessary to remove the tungsten thin film on the insulator surface by etch back.

【0008】しかし、タングステン薄膜は、基板の微細
孔底面の他、真空槽102内にもわずかながら析出して
しまう。上述の六フッ化タングステンガスとモノシラン
ガスを用いたCVD反応は熱CVD反応なので、高温の
部材表面への析出が著しい。
[0008] However, the tungsten thin film is slightly deposited in the vacuum chamber 102 in addition to the bottom surface of the fine holes of the substrate. Since the above-mentioned CVD reaction using a tungsten hexafluoride gas and a monosilane gas is a thermal CVD reaction, precipitation on a high-temperature member surface is remarkable.

【0009】防着板105は、タングステンが析出しに
くい石英で構成されているが、基板と接触しているた
め、静電吸着装置103内蔵のヒータで加熱され、タン
グステンが析出してしまう。
The deposition-preventing plate 105 is made of quartz in which tungsten is unlikely to precipitate, but is in contact with the substrate, so that it is heated by a heater built in the electrostatic attraction device 103 and tungsten is deposited.

【0010】そして、真空槽102内の部材に析出した
タングステン薄膜は、剥離するとパーティクルになり、
歩留まりを低下させてしまう。
The tungsten thin film deposited on the members in the vacuum chamber 102 becomes particles when peeled,
The yield will be reduced.

【0011】また、一旦部材上にタングステン薄膜が形
成されると、タングステンが析出可能な析出面積が増加
するため、基板表面へのタングステン薄膜の形成速度が
遅くなってしまう。
Further, once the tungsten thin film is formed on the member, the deposition area on which tungsten can be deposited increases, so that the speed of forming the tungsten thin film on the substrate surface is reduced.

【0012】そこで従来より、一定枚数の基板を処理す
る毎に真空槽102内部のクリーニングが行われてい
る。このCVD装置101では、RF電極121が、真
空槽102やガス散布機構110とは電気的に絶縁した
状態で設けられており、ガス散布機構110からNF3
ガス(三フッ化窒素ガス)やC26ガス(六フッ化エチレ
ンガス)等のクリーニングガスを真空槽102内に導入
し、RF電極121に高周波電圧を印加し、真空槽10
2内部にクリーニングガスのプラズマを発生させ、CV
D反応の逆反応によってタングステン薄膜を気体化し、
真空排気することによって除去していた。
Therefore, conventionally, the inside of the vacuum chamber 102 is cleaned every time a predetermined number of substrates are processed. In the CVD apparatus 101, RF electrode 121, the vacuum chamber 102 and the gas distribution mechanism 110 is provided in an electrically insulated state, NF 3 from the gas distribution mechanism 110
A cleaning gas such as a gas (nitrogen trifluoride gas) or a C 2 F 6 gas (ethylene hexafluoride gas) is introduced into the vacuum chamber 102, a high-frequency voltage is applied to the RF electrode 121, and
2 generates a cleaning gas plasma inside the CV
The tungsten thin film is gasified by the reverse reaction of the D reaction,
It was removed by evacuating.

【0013】しかしながら、上記のようなプラズマを用
いるクリーニング方法では、高周波電源が必要になる
他、真空槽102にRF電極121を設ける必要がある
ため、CVD装置101が複雑化し、コスト高になる。
However, in the above-described cleaning method using plasma, a high-frequency power source is required, and the RF electrode 121 must be provided in the vacuum chamber 102, so that the CVD apparatus 101 becomes complicated and the cost increases.

【0014】また、真空槽102内で、プラズマに曝さ
れる部品表面は速やかにクリーニングが進行するのに対
し、狭い空間や閉塞された空間内にはプラズマが進入で
きないため、クリーニングがされないかクリーニング速
度が小さいという問題がある。例えば、上述のCVD装
置101では、防着板105表面はクリーニングされ易
いが、裏面にもタングステンが析出するのに、その部分
はプラズマに曝されないため、クリーニングされ難いと
いう問題がある。
In the vacuum chamber 102, the surface of the component exposed to the plasma is rapidly cleaned, whereas the plasma cannot enter a narrow space or a closed space. There is a problem that the speed is low. For example, in the above-described CVD apparatus 101, the front surface of the deposition-preventing plate 105 is easily cleaned, but tungsten is deposited on the rear surface, but the portion is not exposed to plasma, so that there is a problem that cleaning is difficult.

【0015】この場合、クリーニングガスとして酸化力
が極めて強い三フッ化塩素(ClF3)ガスを用いると、
プラズマを発生させずにタングステン薄膜が除去できる
ため、防着板105裏面もクリーニングできる。
In this case, when chlorine trifluoride (ClF 3 ) gas having extremely strong oxidizing power is used as the cleaning gas,
Since the tungsten thin film can be removed without generating plasma, the back surface of the deposition-preventing plate 105 can also be cleaned.

【0016】しかし、三フッ化塩素ガスは、高温ではほ
とんど全ての有機物やニッケルとアルミニウム以外の金
属、及びその合金を腐食させてしまうため、Oリング等
の合成樹脂性のシール部材109やその他の部品が劣化
してしまう。
However, chlorine trifluoride gas corrodes almost all organic substances, metals other than nickel and aluminum, and alloys thereof at high temperatures, so that the synthetic resin sealing member 109 such as an O-ring or the like is used. Parts will deteriorate.

【0017】また、三フッ化塩素ガスは、他のクリーニ
ングガスに比べて腐食性が強いため、厳しい管理が必要
となり、取り扱いが面倒である。
Further, chlorine trifluoride gas is more corrosive than other cleaning gases, so strict control is required and handling is troublesome.

【0018】[0018]

【発明が解決しようとする課題】本発明は上記従来技術
の不都合を解決するために創作されたものであり、その
目的は、プラズマを用いず、比較的毒性の弱いガスで真
空槽内をクリーニングしながら導電性薄膜を選択成長さ
せられる技術を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned disadvantages of the prior art, and has as its object to clean the inside of a vacuum chamber with a relatively toxic gas without using plasma. Another object of the present invention is to provide a technique capable of selectively growing a conductive thin film while growing.

【0019】[0019]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は、真空槽内に搬入した基板を
昇温させ、前記真空槽内にCVD反応の原料ガスを導入
し、前記基板上に導電性薄膜を選択的に成長させる導電
性薄膜の選択CVD方法であって、前記真空槽内に前記
基板を搬入する前に、前記真空槽内にフッ素ガス(F2
ス)を導入しながら真空排気し、所定時間経過した後、
前記基板を搬入することを特徴とする。
According to a first aspect of the present invention, a substrate carried into a vacuum chamber is heated, and a source gas for a CVD reaction is introduced into the vacuum chamber. A selective CVD method of a conductive thin film for selectively growing a conductive thin film on the substrate, wherein the fluorine gas (F 2 gas) is introduced into the vacuum chamber before the substrate is carried into the vacuum chamber. Evacuate while introducing and after a predetermined time,
The substrate is loaded.

【0020】請求項2記載の発明は、前記フッ素ガスの
導入と前記導電性薄膜の形成を繰り返し行う請求項1記
載の選択CVD方法であって、前記フッ素ガスの導入
は、前記導電性薄膜を前記基板の所定枚数形成する毎に
行うことを特徴とする。
According to a second aspect of the present invention, there is provided the selective CVD method according to the first aspect, wherein the introduction of the fluorine gas and the formation of the conductive thin film are repeated. The method is performed every time a predetermined number of substrates are formed.

【0021】この場合、請求項3記載の発明のように、
前記所定枚数は1枚以上10枚以下にするとクリーニン
グ効果が高い。
In this case, as in the third aspect of the present invention,
When the predetermined number is 1 to 10 sheets, the cleaning effect is high.

【0022】以上説明した請求項1乃至請求項3のいず
れか1項記載の選択CVD方法については、請求項4記
載の発明のように、前記導電性薄膜は、金属シリサイド
薄膜、タングステン薄膜、チタン薄膜、タンタル薄膜、
窒化タングステン薄膜、又は窒化チタン薄膜のいずれか
1種にすることができる。
In the selective CVD method according to any one of claims 1 to 3, the conductive thin film is made of a metal silicide thin film, a tungsten thin film, or a titanium thin film. Thin film, tantalum thin film,
Any one of a tungsten nitride thin film and a titanium nitride thin film can be used.

【0023】本発明は上述のように構成されており、真
空槽内に搬入した基板を加熱し、熱CVD反応によっ
て、基板表面に露出する導電性物質上に、原料ガス中に
含まれる導電性物質の薄膜を析出させている。
The present invention is configured as described above, and heats a substrate carried into a vacuum chamber and, by a thermal CVD reaction, deposits a conductive material contained in a raw material gas on a conductive material exposed on the substrate surface. Deposits a thin film of material.

【0024】このような熱CVD反応は、基板表面の
他、真空槽内で高温に加熱される部品表面でも進行し、
パーティクル発生の原因となり、しかも、一旦部品表面
に導電性薄膜が付着すると、形成したい導電性薄膜の析
出面積が増加し、基板表面への析出速度が低下してしま
う。
Such a thermal CVD reaction proceeds not only on the substrate surface but also on the surface of a component heated to a high temperature in a vacuum chamber.
This causes the generation of particles, and once the conductive thin film adheres to the component surface, the deposition area of the conductive thin film to be formed increases, and the deposition rate on the substrate surface decreases.

【0025】本発明の選択CVD方法では、導電性物質
の薄膜を形成する前に、真空槽内を真空排気しながらフ
ッ素ガスを導入し、真空槽内を一定圧力のフッ素ガスで
充満させ、その状態を一定時間維持して析出した導電性
物質を除去しており、そのようなクリーニング後、基板
を搬入して熱CVD反応を進行させると、成膜速度が早
く、パーティクルの少ない導電性薄膜を得ることができ
る。
In the selective CVD method of the present invention, before forming a thin film of a conductive material, fluorine gas is introduced while evacuating the vacuum chamber, and the vacuum chamber is filled with fluorine gas at a constant pressure. The state is maintained for a certain period of time to remove the deposited conductive material.After such cleaning, when the substrate is carried in and the thermal CVD reaction is allowed to proceed, a film forming rate is high, and a conductive thin film with few particles is formed. Obtainable.

【0026】このようなフッ素ガスの導入と導電性薄膜
の形成を繰り返し行う場合、クリーニングと基板の処理
とを交互に行う場合(枚葉クリーニング)が、最もクリー
ニング効果が高い。クリーニング1回につき、複数枚の
基板を処理してもよく、実験によると、10枚以下の枚
数であれば、部品表面への導電性薄膜の付着やパーティ
クルの発生が観察されなかった。
When the introduction of the fluorine gas and the formation of the conductive thin film are repeatedly performed, the cleaning effect is highest when the cleaning and the processing of the substrate are alternately performed (single wafer cleaning). A plurality of substrates may be processed per cleaning, and according to an experiment, when the number of substrates is 10 or less, adhesion of the conductive thin film to the component surface and generation of particles were not observed.

【0027】[0027]

【発明の実施の形態】本発明の実施形態を、本発明に用
いられるCVD装置と共に説明する。図1の符号1は、
そのCVD装置であり、真空槽2を有している。真空槽
2の底壁上には、円盤状の静電吸着装置3が固定されて
おり、天井側には、ガス散布機構10が設けられてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described together with a CVD apparatus used in the present invention. Reference numeral 1 in FIG.
The CVD apparatus has a vacuum chamber 2. A disk-shaped electrostatic adsorption device 3 is fixed on the bottom wall of the vacuum chamber 2, and a gas distribution mechanism 10 is provided on the ceiling side.

【0028】真空槽2の底壁の、静電吸着装置3の裏面
位置には、複数の孔が設けられており、それらの孔内に
は、吸着用電極端子21aとヒータ用電極端子21bとが
挿入されている。
A plurality of holes are provided on the bottom wall of the vacuum chamber 2 at the back surface of the electrostatic attraction device 3, and in these holes, the attraction electrode terminals 21a and the heater electrode terminals 21b are provided. Is inserted.

【0029】静電吸着装置3内には、図示しない静電吸
着パターンと抵抗加熱ヒータとが設けられており、静電
吸着パターンは静電吸着用電極端子21aに接続され、
抵抗加熱ヒータはヒータ用電極端子21bに接続されて
いる。なお、図1(及び図2〜図4)では、1カ所だけ静
電吸着用電極端子21aとヒータ用電極端子21bが重な
って見えるが、各端子はそれぞれ2個づつ設けられてお
り、真空槽外に配置された2台の電源にそれぞれ接続さ
れ、抵抗加熱ヒータと静電吸着パターンとに、それぞれ
独立して電圧を印加できるように構成されている。
In the electrostatic chuck 3, an electrostatic chuck pattern (not shown) and a resistance heater are provided, and the electrostatic chuck pattern is connected to the electrode terminals 21a for electrostatic chuck.
The resistance heater is connected to the heater electrode terminal 21b. In FIG. 1 (and FIGS. 2 to 4), the electrode terminal 21a for electrostatic attraction and the electrode terminal 21b for the heater appear to be overlapped only at one place, but each terminal is provided two by two, and a vacuum chamber is provided. It is connected to two external power supplies, respectively, and is configured to be capable of independently applying voltages to the resistance heater and the electrostatic attraction pattern.

【0030】静電吸着装置3の縁部分上には、リング形
状の防着板5が乗せられている。真空槽2の底壁の、防
着板5の裏面位置には孔が設けられており、その孔内に
は昇降ロッド22が鉛直に挿通され、上端部が防着板5
の底面に取り付けられている。
A ring-shaped protection plate 5 is mounted on the edge of the electrostatic attraction device 3. A hole is provided in the bottom wall of the vacuum chamber 2 at a position on the back surface of the deposition-preventing plate 5, in which a lifting rod 22 is vertically inserted, and the upper end portion is formed of the deposition-preventing plate 5.
It is attached to the bottom of.

【0031】その昇降ロット22は、真空槽2の外部側
ではベローズ25内に挿通され、下端部を図示しない昇
降機構に取り付けられており、真空槽2内の真空雰囲気
を維持しながら上下移動できるように構成されている。
The lifting lot 22 is inserted through a bellows 25 on the outside of the vacuum tank 2 and has a lower end attached to a lifting mechanism (not shown), and can be moved up and down while maintaining the vacuum atmosphere in the vacuum tank 2. It is configured as follows.

【0032】このようなCVD装置1を用い、基板表面
に選択的にタングステン薄膜を形成する場合、先ず、真
空槽2内を真空排気し、図2に示すように、昇降ロッド
22を上昇させ、防着板5を持ち上げる。
When a tungsten thin film is selectively formed on the substrate surface by using such a CVD apparatus 1, first, the inside of the vacuum chamber 2 is evacuated, and as shown in FIG. Lift the protection plate 5.

【0033】真空槽2に隣接する搬送室内には、基板搬
送ロボットが設けられており、搬送ロボットのアーム3
0の先端のハンド32上には、成膜対象物である基板4
が載置されている(図2)。
In the transfer chamber adjacent to the vacuum chamber 2, a substrate transfer robot is provided.
On the hand 32 at the leading end of the substrate 4, a substrate 4 as a film formation target is placed.
Is placed (FIG. 2).

【0034】真空槽2と搬送室との間の側壁に設けられ
たゲートバルブを開け、搬出入口15から真空槽2内に
搬送ロボットのアーム30及びハンド32を挿入し、ハ
ンド32上の基板4を、防着板32と静電吸着装置3と
の間に静止させる。
The gate valve provided on the side wall between the vacuum chamber 2 and the transfer chamber is opened, the arm 30 and the hand 32 of the transfer robot are inserted into the vacuum tank 2 from the carry-in / out port 15, and the substrate 4 on the hand 32 is moved. Is stopped between the adhesion-preventing plate 32 and the electrostatic attraction device 3.

【0035】静電吸着装置3と真空槽2の底壁には、連
通する孔が設けられており、それらの孔内には、複数の
昇降ピン30が挿入されている。
Holes communicating with each other are provided on the bottom walls of the electrostatic chuck 3 and the vacuum chamber 2, and a plurality of lifting pins 30 are inserted into these holes.

【0036】昇降ピン30は、真空槽2の外部側では、
ベローズ26内に挿通されており、下端部は昇降支持台
24に取り付けられている。従って、昇降ピン30は、
昇降支持台24が上下移動すると、真空雰囲気を維持し
たまま、上下移動できるように構成されている。
The lifting pin 30 is located outside the vacuum chamber 2
It is inserted into the bellows 26, and the lower end is attached to the lifting support 24. Therefore, the lifting pin 30 is
When the lifting support 24 moves up and down, it can move up and down while maintaining the vacuum atmosphere.

【0037】昇降支持台24を降下させた状態では、昇
降ピン30は孔内に収納されており、その上端部は孔内
に隠れるようになっている。他方、昇降台24を上昇さ
せた状態では、図3に示すように、昇降ピン22の上端
部は基板4の裏面に当接され、ハンド32上から基板4
を持ち上げられるようになっている。
When the lifting support 24 is lowered, the lifting pins 30 are housed in the holes, and the upper ends thereof are hidden in the holes. On the other hand, when the elevator 24 is raised, as shown in FIG. 3, the upper end of the elevating pin 22 is in contact with the back surface of the substrate 4, and
Can be lifted.

【0038】基板4を持ち上げると、基板4は昇降ピン
30上に水平に乗せられた状態になり、静電吸着装置3
と防着板5の間からハンド32を抜き出し、搬送ロボッ
トのアーム30を搬送室内に戻し、ゲートバルブを閉
じ、昇降ピン22を降下させると、基板4は静電吸着装
置3上に載置される。
When the substrate 4 is lifted, the substrate 4 is placed horizontally on the elevating pins 30 and the electrostatic chuck 3
When the hand 32 is pulled out from the space between the base plate 4 and the deposition prevention plate 5, the arm 30 of the transfer robot is returned to the transfer room, the gate valve is closed, and the elevating pin 22 is lowered, and the substrate 4 is placed on the electrostatic suction device 3. You.

【0039】吸着用電極端子21によって静電吸着パタ
ーンに電圧を印加し、基板4を静電吸着装置3表面に静
電吸着する。静電吸着装置3内蔵の抵抗加熱ヒータは予
め通電されており、静電吸着された基板4は速やかに所
定温度に加熱される。このとき、図4に示すように、防
着板5を降下させ、基板4表面に密着させ、基板4周囲
に導電性薄膜が成長しないようにする。
A voltage is applied to the electrostatic attraction pattern by the attraction electrode terminal 21 to electrostatically attract the substrate 4 to the surface of the electrostatic attraction device 3. The resistance heater built in the electrostatic attraction device 3 is energized in advance, and the electrostatically attracted substrate 4 is quickly heated to a predetermined temperature. At this time, as shown in FIG. 4, the deposition-preventing plate 5 is lowered and brought into close contact with the surface of the substrate 4 so that the conductive thin film does not grow around the substrate 4.

【0040】基板4が300℃で安定した後、ガス散布
機構10内の第1の空間11と第2の空間12に、それ
ぞれ六フッ化タングステンガスとモノシランガスとを導
入すると、両方のガスが選択CVD反応の原料ガスとな
り、真空槽2内に散布される。
After the substrate 4 is stabilized at 300 ° C., when tungsten hexafluoride gas and monosilane gas are introduced into the first space 11 and the second space 12 in the gas distribution mechanism 10, respectively, both gases are selected. It becomes a source gas for the CVD reaction and is sprayed into the vacuum chamber 2.

【0041】ここでは六フッ化タングステンガスの流量
は50sccm、モノシランガスの流量は35sccmに設定
し、可変バルブを調節しながら真空槽2内の真空排気を
行い、真空槽2の内部圧力を1Paに維持した。
Here, the flow rate of the tungsten hexafluoride gas is set at 50 sccm, and the flow rate of the monosilane gas is set at 35 sccm. did.

【0042】真空槽2内の原料ガスは、静電吸着装置3
周囲に設けられている排気口16から排気され、基板4
表面に原料ガスの均一な流れが形成されるので、選択C
VD反応は、基板4表面で均一に行われる。
The raw material gas in the vacuum chamber 2 is supplied to the electrostatic adsorption device 3
The gas is exhausted from an exhaust port 16 provided around the
Since a uniform flow of the source gas is formed on the surface,
The VD reaction is performed uniformly on the surface of the substrate 4.

【0043】所定時間の選択CVD反応を行い、基板4
表面に膜厚1μmのタングステン薄膜が選択的に成長し
たところで、原料ガスの導入及び散布を停止する。
A selective CVD reaction is performed for a predetermined time to
When a 1 μm-thick tungsten thin film is selectively grown on the surface, the introduction and dispersion of the source gas are stopped.

【0044】昇降ロッド22及び昇降ピン23を上昇さ
せ、防着板5と基板4を持ち上げ(図3の状態)、基板搬
送ロボットのアーム30を基板4と静電吸着装置3との
間に挿入し、昇降ピン23を降下させ、基板4をハンド
32上に移し替える。
The elevating rod 22 and the elevating pins 23 are lifted to raise the deposition-preventing plate 5 and the substrate 4 (the state shown in FIG. 3), and the arm 30 of the substrate transfer robot is inserted between the substrate 4 and the electrostatic suction device 3. Then, the lifting pins 23 are lowered, and the substrate 4 is transferred onto the hand 32.

【0045】その状態でアーム30を搬送室に収納し、
タングステン薄膜が形成された基板4を真空槽2内から
搬出する。
In this state, the arm 30 is stored in the transfer chamber,
The substrate 4 on which the tungsten thin film is formed is carried out of the vacuum chamber 2.

【0046】ゲートバルブを閉じ、真空槽2内部を搬送
室から遮蔽した後、ガス導入系13によって、アルゴン
ガスに5%のフッ素ガス(F2ガス)が添加されたガスを
真空槽2内に導入すると、防着板5や真空槽2内の他の
部品に析出したタングステン薄膜がフッ素ガスと反応
し、ガス化される。なお、このときは、モノシランガス
等、他のガスは導入しない。
After the gate valve is closed and the inside of the vacuum chamber 2 is shielded from the transfer chamber, a gas obtained by adding 5% fluorine gas (F 2 gas) to argon gas is introduced into the vacuum chamber 2 by the gas introduction system 13. When introduced, the tungsten thin film deposited on the deposition-preventing plate 5 and other components in the vacuum chamber 2 reacts with fluorine gas to be gasified. At this time, no other gas such as a monosilane gas is introduced.

【0047】このとき、フッ素ガスが5%添加されたア
ルゴンガスの流量は100sccmに設定し、可変バルブで
排気速度を調節し、真空槽2が圧力50Paになるよう
にして真空槽2内の真空排気を行い、反応生成物を除去
した。
At this time, the flow rate of argon gas to which 5% of fluorine gas was added was set to 100 sccm, the exhaust speed was adjusted with a variable valve, and the vacuum in the vacuum chamber 2 was adjusted so that the pressure in the vacuum chamber 2 became 50 Pa. Evacuation was performed to remove reaction products.

【0048】このように、防着板5等のタングステンが
析出し易い部品は、加熱された状態でフッ素ガス雰囲気
中に置かれており、析出したタングステンとフッ素ガス
との間で、選択CVD反応とは逆の反応が生じ、タング
ステン薄膜はガス化され、真空排気によって除去され
る。
As described above, components such as the deposition-preventing plate 5 on which tungsten is easily deposited are placed in a fluorine gas atmosphere while being heated, and a selective CVD reaction is performed between the deposited tungsten and the fluorine gas. The reverse reaction occurs, and the tungsten thin film is gasified and removed by evacuation.

【0049】真空槽2内へのフッ素ガスの導入は、基板
搬送ロボットが、タングステン薄膜が形成された基板4
を未処理の基板と交換している30秒間行われる。その
期間が経過し、真空槽2内部がクリーニングされると、
フッ素ガスの導入及び散布を停止し、ゲートバルブを開
け、基板搬送ロボットによって未成膜の基板を真空槽2
内に搬入する。そして、静電吸着装置3上に載置し、上
記基板4と同様に、300℃に昇温させ、タングステン
薄膜を選択的に成長させると、クリーニングされた状態
の真空槽2内でタングステン薄膜の選択CVDを行うこ
とができる。
The introduction of the fluorine gas into the vacuum chamber 2 is performed by a substrate transport robot, which controls the substrate 4 on which the tungsten thin film is formed.
For 30 seconds while exchanging with an untreated substrate. After that period has elapsed and the inside of the vacuum chamber 2 has been cleaned,
Stop the introduction and spraying of the fluorine gas, open the gate valve, and remove the undeposited substrate from the vacuum
Carry in. Then, the substrate is placed on the electrostatic attraction device 3 and heated to 300 ° C. in the same manner as the substrate 4 to selectively grow a tungsten thin film. Selective CVD can be performed.

【0050】更に、その基板にタングステン薄膜が形成
された後、フッ素ガスによるクリーニングを行う。この
ように、1枚の基板に薄膜形成を行う毎にクリーニング
を行い、所定枚数の基板を処理する場合には、選択CV
D反応は、常にクリーニングがされた真空槽2内で行わ
れるので(枚葉クリーニング)、パーティクルの発生や成
膜形成速度の低下がなく、品質のよいタングステン薄膜
を得ることができる。
Further, after a tungsten thin film is formed on the substrate, cleaning with fluorine gas is performed. As described above, cleaning is performed each time a thin film is formed on one substrate, and when a predetermined number of substrates are processed, the selection CV
Since the D reaction is always performed in the vacuum chamber 2 that has been cleaned (single wafer cleaning), a high quality tungsten thin film can be obtained without generating particles or lowering the film formation speed.

【0051】以上説明したタングステン薄膜形成工程
を、50ロット(1ロット25枚)の基板に対して行い、
基板表面での成膜速度、表面のパーティクル数、シール
部材9の劣化状況、真空槽2内の部品へのタングステン
薄膜の付着状況を観察した。
The above-described tungsten thin film forming process is performed on 50 lots (25 lots per lot) of substrates.
The film forming speed on the substrate surface, the number of particles on the surface, the state of deterioration of the seal member 9, and the state of adhesion of the tungsten thin film to the components in the vacuum chamber 2 were observed.

【0052】比較例として、クリーニングを全く行わな
かった場合と、三フッ化塩素ガス導入による1ロット毎
のクリーニングを行った場合と、三フッ化窒素ガスによ
る1ロット毎のプラズマクリーニングを行った場合と、
三フッ化窒素ガスによる枚葉プラズマクリーニングを行
った場合について、同様に、成膜速度、表面のパーティ
クル数、シール部材の劣化状況、真空槽2内の部品への
タングステン薄膜の付着状況を観察した。タングステン
薄膜の形成条件は上記実施例と同じにした。その結果を
下記表1に示す。
As comparative examples, no cleaning was performed, cleaning was performed for each lot by introducing chlorine trifluoride gas, and plasma cleaning was performed for each lot using nitrogen trifluoride gas. When,
Similarly, when performing single-wafer plasma cleaning with nitrogen trifluoride gas, the film forming speed, the number of particles on the surface, the deterioration state of the seal member, and the adhesion state of the tungsten thin film to the components in the vacuum chamber 2 were observed. . The conditions for forming the tungsten thin film were the same as in the above embodiment. The results are shown in Table 1 below.

【0053】[0053]

【表1】 [Table 1]

【0054】上記表1から分かるように、フッ素ガスを
用いた本発明の選択CVD方法は、三フッ化窒素ガスを
用いて枚葉のプラズマクリーニングを行った場合と同様
のクリーニング効果があることが分かる。
As can be seen from Table 1 above, the selective CVD method of the present invention using fluorine gas has the same cleaning effect as the case of performing single-wafer plasma cleaning using nitrogen trifluoride gas. I understand.

【0055】次に、上記CVD装置1を用い、基板1枚
毎にクリーニングを行うのではなく、複数枚の基板を処
理する毎にクリーニングを行った。1ロットの基板を処
理する毎にクリーニングを行った場合は、部品表面への
タングステン薄膜の付着が観察されたが、1回のクリー
ニング後の基板の処理枚数を10枚まで減少させたとこ
ろ、部品表面へのタングステン薄膜の付着は観察され
ず、パーティクルの増加も認められなかった。
Next, the above-described CVD apparatus 1 was used to perform cleaning each time a plurality of substrates were processed, instead of performing cleaning for each substrate. When cleaning was performed every time one lot of substrates was processed, adhesion of a tungsten thin film to the surface of the component was observed. However, when the number of processed substrates after one cleaning was reduced to ten, the component was cleaned. No attachment of a tungsten thin film to the surface was observed, and no increase in particles was observed.

【0056】1回のクリーニングによる処理枚数は、形
成するタングステン薄膜の膜厚、クリーニング時間等に
影響されるが、本発明の選択CVD方法では、1枚以上
10枚以下を単位として、クリーニングを行うとよいこ
とが分かる。
The number of processed wafers per cleaning is affected by the thickness of the tungsten thin film to be formed, the cleaning time, and the like. In the selective CVD method of the present invention, cleaning is performed in units of 1 to 10 wafers. It turns out that it is good.

【0057】なお、上記実施例では、5%のフッ素ガス
を添加したアルゴンガスを用いたが、他の割合で添加し
てもよい。一般的には3%〜20%のフッ素添加アルゴ
ンガスが入手しやすい。また、アルゴンガスに替え、他
の不活性ガスにフッ素ガスを添加したガスを用いてもよ
い。更に、フッ素ガスだけを用いることも可能である。
In the above embodiment, the argon gas to which 5% fluorine gas is added is used, but it may be added at another ratio. Generally, a 3% to 20% fluorine-added argon gas is easily available. Further, instead of the argon gas, a gas obtained by adding a fluorine gas to another inert gas may be used. Further, it is also possible to use only fluorine gas.

【0058】また、本発明は、タングステン薄膜を形成
するCVD方法に限定されるものではなく、銅薄膜とア
ルミニウム薄膜以外の導電性物質に広く用いることがで
きる(現状では、フッ素ガスによる銅又はアルミニウム
の除去は確認されていない)。
The present invention is not limited to the CVD method for forming a tungsten thin film, but can be widely used for conductive materials other than a copper thin film and an aluminum thin film. Removal has not been confirmed).

【0059】[0059]

【発明の効果】導電性薄膜の析出のない真空槽内で選択
CVD反応を行えるので、成膜速度が安定し、パーティ
クルの付着がない。
According to the present invention, the selective CVD reaction can be carried out in a vacuum chamber in which no conductive thin film is deposited, so that the deposition rate is stable and no particles adhere.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用できるCVD装置の一例FIG. 1 shows an example of a CVD apparatus that can be used in the present invention.

【図2】そのCVD装置に未処理の基板を搬入した状
態、又は処理後の基板を搬出する状態を示す図
FIG. 2 is a view showing a state in which an unprocessed substrate is loaded into the CVD apparatus or a state in which a processed substrate is unloaded.

【図3】そのCVD装置の昇降ピンに未処理の基板を乗
せた状態、又は処理後の基板を持ち上げた状態を示す図
FIG. 3 is a diagram showing a state in which an unprocessed substrate is placed on elevating pins of the CVD apparatus, or a state in which the processed substrate is lifted.

【図4】そのCVD装置の静電吸着装置上に基板が載置
された状態を説明するための図
FIG. 4 is a view for explaining a state in which a substrate is placed on an electrostatic chuck of the CVD apparatus.

【図5】従来技術のCVD装置を説明するための図FIG. 5 is a view for explaining a conventional CVD apparatus.

【符号の説明】[Explanation of symbols]

1……CVD装置 2……真空槽 4……基板 1 CVD apparatus 2 Vacuum chamber 4 Substrate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 真空槽内に搬入した基板を昇温させ、前
記真空槽内にCVD反応の原料ガスを導入し、前記基板
上に導電性薄膜を選択的に成長させる導電性薄膜の選択
CVD方法であって、前記真空槽内に前記基板を搬入す
る前に、前記真空槽内にフッ素ガス(F2ガス)を導入し
ながら真空排気し、所定時間経過した後、前記基板を搬
入することを特徴とする選択CVD方法。
1. The method of claim 1, wherein the temperature of the substrate carried into the vacuum chamber is increased, a source gas for a CVD reaction is introduced into the vacuum chamber, and a conductive thin film is selectively grown on the substrate by selective CVD. The method, before carrying the substrate into the vacuum chamber, evacuating while introducing a fluorine gas (F 2 gas) into the vacuum chamber, and carrying the substrate after a predetermined time has elapsed. A selective CVD method characterized by the above-mentioned.
【請求項2】 前記フッ素ガスの導入と前記導電性薄膜
の形成を繰り返し行う請求項1記載の選択CVD方法で
あって、 前記フッ素ガスの導入は、前記導電性薄膜を前記基板の
所定枚数形成する毎に行うことを特徴とする選択CVD
方法。
2. The selective CVD method according to claim 1, wherein the introduction of the fluorine gas and the formation of the conductive thin film are repeatedly performed, wherein the introduction of the fluorine gas forms the predetermined number of the conductive thin films on the substrate. Selective CVD characterized by being performed every time
Method.
【請求項3】 前記所定枚数は1枚以上10枚以下であ
ることを特徴とする請求項2記載の選択CVD方法。
3. The selective CVD method according to claim 2, wherein the predetermined number is one or more and ten or less.
【請求項4】 前記導電性薄膜は、金属シリサイド薄
膜、タングステン薄膜、チタン薄膜、タンタル薄膜、窒
化タングステン薄膜、又は窒化チタン薄膜のいずれか1
種であることを特徴とする請求項1乃至請求項3のいず
れか1項記載の選択CVD方法。
4. The conductive thin film is one of a metal silicide thin film, a tungsten thin film, a titanium thin film, a tantalum thin film, a tungsten nitride thin film, and a titanium nitride thin film.
The selective CVD method according to claim 1, wherein the selective CVD method is a seed.
JP36571197A 1997-12-22 1997-12-22 Selective CVD method using fluorine gas Expired - Fee Related JP3976386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36571197A JP3976386B2 (en) 1997-12-22 1997-12-22 Selective CVD method using fluorine gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36571197A JP3976386B2 (en) 1997-12-22 1997-12-22 Selective CVD method using fluorine gas

Publications (2)

Publication Number Publication Date
JPH11181569A true JPH11181569A (en) 1999-07-06
JP3976386B2 JP3976386B2 (en) 2007-09-19

Family

ID=18484925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36571197A Expired - Fee Related JP3976386B2 (en) 1997-12-22 1997-12-22 Selective CVD method using fluorine gas

Country Status (1)

Country Link
JP (1) JP3976386B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054247A3 (en) * 2001-12-13 2004-02-26 Showa Denko Kk Cleaning gas composition for semiconductor production equipment and cleaning method using the gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101835902B1 (en) 2010-05-28 2018-03-07 스미또모 베이크라이트 가부시키가이샤 Method of manufacturing esterified substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054247A3 (en) * 2001-12-13 2004-02-26 Showa Denko Kk Cleaning gas composition for semiconductor production equipment and cleaning method using the gas

Also Published As

Publication number Publication date
JP3976386B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
EP0630990B1 (en) Method of limiting sticking of body to a susceptor in a deposition treatment
KR102158307B1 (en) Plasma treatment process to improve in-situ chamber cleaning efficiency in plasma processing chamber
US8951913B2 (en) Method for removing native oxide and associated residue from a substrate
JP5439771B2 (en) Deposition equipment
CN112259457B (en) Plasma etching method, plasma etching apparatus, and substrate mounting table
TW200915402A (en) Method and apparatus for cleaning a substrate surface
JP2006128485A (en) Semiconductor processing apparatus
US10879081B2 (en) Methods of reducing or eliminating defects in tungsten film
JP2004232080A (en) Method and apparatus for depositing film
EP1138801B1 (en) Method of forming thin film onto semiconductor substrate
JP4656364B2 (en) Plasma processing method
JP4038599B2 (en) Cleaning method
KR101800487B1 (en) Method for forming copper wiring and storage mideum
KR101941766B1 (en) Substrate processing method and recording medium
JPH11181569A (en) Selective cvd method using gaseous fluorine
CN100564587C (en) Form the film of Ti film
JP2002008991A (en) Cleaning method
JP3754157B2 (en) Plasma processing method and plasma processing apparatus
US7972961B2 (en) Purge step-controlled sequence of processing semiconductor wafers
JP2004225162A (en) Film deposition method
WO2024070685A1 (en) Film forming method, film forming device, and film forming system
JPH0786170A (en) Single wafer hot wall processing system and cleaning method therefor
JP2001131752A (en) Plasma cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees