JPH111129A - Slip control device for four-wheel drive vehicle - Google Patents
Slip control device for four-wheel drive vehicleInfo
- Publication number
- JPH111129A JPH111129A JP15404097A JP15404097A JPH111129A JP H111129 A JPH111129 A JP H111129A JP 15404097 A JP15404097 A JP 15404097A JP 15404097 A JP15404097 A JP 15404097A JP H111129 A JPH111129 A JP H111129A
- Authority
- JP
- Japan
- Prior art keywords
- wheel
- wheel speed
- speed
- difference
- turning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Arrangement And Driving Of Transmission Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、前輪側と後輪側と
のトルク伝達配分をトランスファクラッチを介して可変
することで、車輪のスリップを防止する4輪駆動車のス
リップ制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slip control device for a four-wheel drive vehicle that prevents a wheel from slipping by varying the torque transmission distribution between a front wheel side and a rear wheel side via a transfer clutch.
【0002】[0002]
【従来の技術】周知のように、4輪駆動車では、4輪駆
動の走行状態で転舵しながら旋回すると、前後輪の間に
旋回半径の相違に伴う回転速度差を生じ、タイトコーナ
ブレーキ現象が発生する。2. Description of the Related Art As is well known, in a four-wheel drive vehicle, when turning while steering in a four-wheel drive state, a rotational speed difference occurs between the front and rear wheels due to a difference in turning radius, and a tight corner brake is applied. The phenomenon occurs.
【0003】このため、本出願人は、先に、特公平1−
29725号公報において、2輪駆動と4輪駆動との駆
動切換用のトランスファクラッチに容量変化可能な油圧
クラッチを用い、転舵による旋回走行中に前後輪のスリ
ップ率に応じてトランスファクラッチの容量を低減し、
前輪側あるいは後輪側の駆動力を減じる技術を提案して
いる。[0003] For this reason, the present applicant has previously disclosed
In Japanese Patent No. 29725, a hydraulic clutch having a variable capacity is used as a transfer clutch for switching between two-wheel drive and four-wheel drive, and the capacity of the transfer clutch is changed according to the slip ratio of the front and rear wheels during turning by turning. Reduce
A technique for reducing the driving force on the front wheel side or the rear wheel side has been proposed.
【0004】[0004]
【発明が解決しようとする課題】ところで、4輪駆動車
を制御する機能の1つとして、前後輪の回転差に応じて
前後輪のトルク伝達配分を可変することで、前輪又は後
輪の過剰なスリップを防止するスリップ制御機能があ
り、前述のトランスファクラッチを用いるシステムで
は、トランスファクラッチへ供給する油圧を制御してト
ランスファクラッチの締結力を可変し、前後輪のトルク
伝達配分を決定するようにしている。One of the functions for controlling a four-wheel drive vehicle is to vary the torque transmission distribution between the front and rear wheels in accordance with the rotation difference between the front and rear wheels, so that the excess of the front wheels or the rear wheels is achieved. In the system using the above-mentioned transfer clutch, the hydraulic pressure supplied to the transfer clutch is controlled to vary the transfer clutch engagement force, and the torque transmission distribution between the front and rear wheels is determined. ing.
【0005】しかしながら、車輪のスリップを防止する
ためには、前後輪の回転差に応じてトランスファクラッ
チを直結方向に制御することが必要である反面、タイト
コーナブレーキング現象を防止するためには、前後輪に
回転差が生じた場合、トランスファクラッチを解放方向
にする必要がある。However, in order to prevent the wheels from slipping, it is necessary to control the transfer clutch in the direct connection direction according to the rotation difference between the front and rear wheels. On the other hand, in order to prevent the tight corner braking phenomenon, When a rotation difference occurs between the front and rear wheels, it is necessary to set the transfer clutch in the release direction.
【0006】このため、従来のスリップ制御では、前後
輪の車輪速差に対して比較的大きな不感帯(制御を行わ
ない領域)を設けることで極低速旋回時の前後輪の回転
差を吸収し、タイトコーナブレーキング現象を防止する
ようにしており、転舵発進時等には、多大な不感帯のた
め、スリップ制御に入り難くなってしまうという問題が
ある。For this reason, in the conventional slip control, by providing a relatively large dead zone (region in which control is not performed) with respect to the difference in wheel speed between the front and rear wheels, the difference in rotation between the front and rear wheels during extremely low speed turning is absorbed. The tight corner braking phenomenon is prevented, and there is a problem that it is difficult to start the slip control due to a large dead zone at the time of steering start.
【0007】この場合、上記不感帯を単純に狭くする
と、極低速旋回時の車輪の軌跡差による車輪速度差をス
リップと誤判定してトランスファクラッチの締結力を増
加させる方向に制御してしまい、結果的にタイトコーナ
ブレーキ現象の発生を促すことになってしまう。In this case, if the dead zone is simply narrowed, a difference in wheel speed due to a difference in the trajectory of the wheel during extremely low speed turning is erroneously determined as a slip and is controlled in a direction to increase the engagement force of the transfer clutch. This will cause the tight corner braking phenomenon to occur.
【0008】本発明は上記事情に鑑みてなされたもの
で、極低速旋回時のタイトコーナブレーキ現象を防止し
つつ、スリップ制御における不感帯の幅を可能な限り狭
くし、確実にスリップを防止することのできる4輪駆動
車のスリップ制御装置を提供することを目的としてい
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to prevent a tight corner braking phenomenon at an extremely low speed turning and to make a width of a dead zone in a slip control as narrow as possible to surely prevent a slip. It is an object of the present invention to provide a slip control device for a four-wheel drive vehicle that can be operated.
【0009】[0009]
【課題を解決するための手段】請求項1記載の発明は、
前輪側と後輪側とのトルク伝達配分をトランスファクラ
ッチを介して可変し、車輪のスリップを防止する4輪駆
動車のスリップ制御装置において、車両旋回時の各車輪
の軌跡差を解消するよう、車輪速度を補正する手段と、
前輪側と後輪側との補正後の車輪速度の差に応じて上記
トランスファクラッチの締結力を可変する手段とを備え
たことを特徴とする。According to the first aspect of the present invention,
In a slip control device of a four-wheel drive vehicle that varies a torque transmission distribution between a front wheel side and a rear wheel side via a transfer clutch to prevent wheel slippage, a trajectory difference of each wheel at the time of vehicle turning is eliminated. Means for correcting the wheel speed;
Means for varying the engagement force of the transfer clutch according to the difference between the corrected wheel speeds on the front wheel side and the rear wheel side.
【0010】請求項2記載の発明は、請求項1記載の発
明において、4つの車輪の中の任意の1つを基準車輪と
し、この基準車輪の旋回軌跡と他の車輪の旋回軌跡との
差に基づいて他の車輪の車輪速度を補正することを特徴
とする。According to a second aspect of the present invention, in the first aspect of the invention, any one of the four wheels is used as a reference wheel, and a difference between a turning locus of the reference wheel and a turning locus of another wheel is determined. The wheel speeds of the other wheels are corrected based on
【0011】請求項3記載の発明は、請求項1記載の発
明において、前輪側と後輪側とのいずれか一方を基準車
輪とし、この基準車輪の旋回軌跡と前輪側あるいは後輪
側の旋回軌跡との差に基づいて、前輪側あるいは後輪側
の車輪速度を補正することを特徴とする。According to a third aspect of the present invention, in the first aspect of the invention, one of the front wheel side and the rear wheel side is used as a reference wheel, and the turning locus of the reference wheel and the turning of the front wheel side or the rear wheel side. It is characterized in that the wheel speed on the front wheel side or the rear wheel side is corrected based on the difference from the trajectory.
【0012】すなわち、本発明による4輪駆動車のスリ
ップ制御装置では、車両旋回時の各車輪の軌跡差を解消
するよう車輪速度を補正し、前輪側と後輪側との補正後
の車輪速度の差に応じてトランスファクラッチの締結力
を可変することで、前輪側と後輪側とのトルク伝達配分
を変更して車輪のスリップを防止する。That is, in the slip control device for a four-wheel drive vehicle according to the present invention, the wheel speed is corrected so as to eliminate the difference in trajectory of each wheel when the vehicle turns, and the corrected wheel speed for the front wheels and the rear wheels is corrected. By varying the engagement force of the transfer clutch according to the difference between the two, the torque transmission distribution between the front wheel side and the rear wheel side is changed to prevent the wheels from slipping.
【0013】その際、4つの車輪の中の任意の1つを基
準車輪とし、この基準車輪の旋回軌跡と他の車輪の旋回
軌跡との差に基づいて他の車輪の車輪速度を補正しても
良く、前輪側と後輪側とのいずれか一方を基準車輪と
し、この基準車輪の旋回軌跡と前輪側あるいは後輪側の
旋回軌跡との差に基づいて、前輪側あるいは後輪側の車
輪速度を補正しても良い。At this time, any one of the four wheels is set as a reference wheel, and the wheel speed of the other wheel is corrected based on the difference between the turning locus of this reference wheel and the turning locus of the other wheel. One of the front wheel side and the rear wheel side may be used as a reference wheel, and a wheel on the front wheel side or the rear wheel side may be determined based on a difference between a turning locus of the reference wheel and a turning locus on the front wheel side or the rear wheel side. The speed may be corrected.
【0014】[0014]
【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1〜図5は本発明の実施の第1
形態に係わり、図1はクラッチ制御機能のブロック図、
図2は駆動制御系の全体構成図、図3はクラッチ制御ル
ーチンのフローチャート、図4は4輪モデルによる車輪
速補正量算出の説明図、図5はスリップ判定マップの説
明図である。Embodiments of the present invention will be described below with reference to the drawings. 1 to 5 show a first embodiment of the present invention.
FIG. 1 is a block diagram of a clutch control function,
2 is an overall configuration diagram of a drive control system, FIG. 3 is a flowchart of a clutch control routine, FIG. 4 is an explanatory diagram of calculating a wheel speed correction amount by a four-wheel model, and FIG. 5 is an explanatory diagram of a slip determination map.
【0015】図2において、符号1は車両前部に配置さ
れたエンジンを示し、このエンジン1の出力軸に、流体
トルクコンバータを使用した自動変速機あるいはクラッ
チ機構部を含むマニュアル変速機等の変速機構部2が連
設され、この変速機構部2後部に、センターディファレ
ンシャル装置3が連設されている。In FIG. 2, reference numeral 1 denotes an engine disposed at the front of the vehicle. The output shaft of the engine 1 is provided with a transmission such as an automatic transmission using a fluid torque converter or a manual transmission including a clutch mechanism. A mechanism 2 is provided in series, and a center differential device 3 is provided in a rear portion of the transmission mechanism 2.
【0016】上記センターディファレンシャル装置3
は、トランスファドライブギヤ4、トランスファドリブ
ンギヤ5、ドライブピニオン軸部となっているフロント
ドライブ軸6を介してフロントディファレンシャル装置
7に連結されるとともに、油圧多板式トランスファクラ
ッチ8を介してリヤドライブ軸9に連結され、このリヤ
ドライブ軸9からプロペラシャフト10、ドライブピニ
オン軸部11を介してリヤディファレンシャル装置12
に連結されている。The above-mentioned center differential device 3
Is connected to a front differential device 7 via a transfer drive gear 4, a transfer driven gear 5, and a front drive shaft 6 serving as a drive pinion shaft, and is connected to a rear drive shaft 9 via a hydraulic multi-plate transfer clutch 8. The rear differential device 12 is connected to the rear drive shaft 9 via a propeller shaft 10 and a drive pinion shaft 11.
It is connected to.
【0017】上記トランスファクラッチ8は、図示しな
い油圧系統からクラッチ制御弁13を介して供給される
油圧力によって締結力が可変されるものであり、解放状
態では、上記センターディファレンシャル装置3のトル
ク配分をそのまま出力し、完全に締結されると、前後輪
に等分にトルクを配分する直結状態となる。In the transfer clutch 8, the fastening force is varied by hydraulic pressure supplied from a hydraulic system (not shown) via a clutch control valve 13. In the disengaged state, the torque distribution of the center differential device 3 is distributed. When the output is performed as it is and the vehicle is completely fastened, a direct connection state is achieved in which the torque is equally distributed to the front and rear wheels.
【0018】尚、上記変速機構部2、センターディファ
レンシャル装置3、及び、フロントディファレンシャル
装置7等は、一体にケース14内に設けられている。The transmission mechanism 2, the center differential device 3, the front differential device 7, and the like are integrally provided in a case 14.
【0019】また、上記フロントディファレンシャル置
7には、前輪左ドライブ軸15Lを介して左前輪16L
が連設されるとともに、前輪右ドライブ軸15Rを介し
て右前輪16Rが連設されており、上記リヤディファレ
ンシャル装置12には、後輪左ドライブ軸17Lを介し
て左後輪18Lが連設されるとともに、後輪右ドライブ
軸17Rを介して右後輪18Rが連設されている。The front differential 7 has a front left wheel 16L via a front left drive shaft 15L.
And a right front wheel 16R is continuously provided via a front right drive shaft 15R. A left rear wheel 18L is continuously provided to the rear differential device 12 via a rear left drive shaft 17L. In addition, a right rear wheel 18R is continuously provided via a rear wheel right drive shaft 17R.
【0020】一方、符号30は、前後輪16L,16
R,18L,18Rにそれぞれに取り付けらた各車輪速
センサ19L,19R,20L,20Rからの信号に基
づいて、図示しないブレーキ系統の油圧を制御し、制動
時の車輪のロックを回避するABSユニットであり、ま
た、符号40は、上記トランスファクラッチ8の締結力
を制御する制御ユニットで、例えばシリアル回線を介し
て上記ABSユニット30と接続されている。On the other hand, reference numeral 30 denotes front and rear wheels 16L, 16L.
An ABS unit that controls the hydraulic pressure of a brake system (not shown) based on signals from wheel speed sensors 19L, 19R, 20L, and 20R attached to R, 18L, and 18R, respectively, to avoid locking the wheels during braking. Reference numeral 40 denotes a control unit that controls the engagement force of the transfer clutch 8, and is connected to the ABS unit 30 via, for example, a serial line.
【0021】上記制御ユニット40には、ステアリング
ホイール21のステアリングコラムに設けられたハンド
ル角θを検出するハンドル角センサ22、車両の実際の
ヨーレートγを検出するヨーレートセンサ23等のセン
サ類が接続されるとともに、上記トランスファクラッチ
8への油圧を制御する上述のクラッチ制御弁13等のア
クチュエータ類が接続されており、上記トランスファク
ラッチ8の締結力を制御して、前後輪の速度差に応じて
前後輪へのトルク配分を可変し、摩擦係数μの低い路面
での車輪のスリップを防止するスリップ制御等を行う。The control unit 40 is connected to sensors such as a steering wheel angle sensor 22 provided on a steering column of the steering wheel 21 for detecting a steering wheel angle θ and a yaw rate sensor 23 for detecting an actual yaw rate γ of the vehicle. In addition, actuators such as the above-described clutch control valve 13 for controlling the hydraulic pressure to the transfer clutch 8 are connected, and control the engagement force of the transfer clutch 8 so as to control the hydraulic pressure applied to the front and rear wheels according to the speed difference between the front and rear wheels. Slip control is performed to vary the torque distribution to the wheels and to prevent the wheels from slipping on a road surface having a low friction coefficient μ.
【0022】すなわち、前後の摩擦係数μが異なる路面
での発進や、後輪偏重の4WDの加速時等のように、前
後輪の車輪速差(回転数差)が生じた場合、上記クラッ
チ制御弁13を介して上記トランスファクラッチ8の締
結力を強化し、直結方向に近づけてスリップを抑える。That is, when a difference in wheel speed (difference in rotational speed) between the front and rear wheels occurs, for example, when starting on a road surface having different front and rear friction coefficients μ, or when accelerating with 4WD with rear wheel bias, The fastening force of the transfer clutch 8 is strengthened via the valve 13 to reduce the slip by approaching the direct coupling direction.
【0023】この場合、上記制御ユニット40には、例
えば図5に示すような車輪速差に関するスリップ判定マ
ップが内蔵されており、このスリップ判定マップを参照
して不感帯(制御を行わない領域)を越えた値に比例す
る締結力が発生するよう、上記クラッチ制御弁13を介
して上記トランスファクラッチ8を直結方向に制御する
が、スリップ制御の制御効率を向上させるためには、上
記スリップ判定マップにおける不感帯の幅を可能な限り
狭くすることが望ましい。In this case, the control unit 40 has a built-in slip determination map relating to the wheel speed difference as shown in FIG. 5, for example, and refers to the slip determination map to determine a dead zone (region where no control is performed). The transfer clutch 8 is controlled in the direct connection direction via the clutch control valve 13 so that the engagement force proportional to the exceeded value is generated. However, in order to improve the control efficiency of the slip control, the transfer control in the slip determination map is performed. It is desirable to make the width of the dead zone as narrow as possible.
【0024】しかしながら、摩擦係数μが比較的高い路
面での極低速旋回走行においては、各輪の軌跡差によっ
て前後輪の車輪速差が生じるため、上記スリップ判定マ
ップの不感帯を単純に狭くすると、この軌跡差による車
輪速差をスリップと誤判定して上記トランスファクラッ
チ8の締結力を増加させる方向に制御してしまい、結果
的にタイトコーナブレーキ現象の発生を促すことになっ
てしまう。However, in extremely low-speed turning on a road surface having a relatively high friction coefficient μ, a difference in trajectory between the wheels causes a difference in wheel speed between the front and rear wheels. Therefore, if the dead zone of the slip determination map is simply narrowed, The wheel speed difference due to this trajectory difference is erroneously determined to be a slip, and is controlled in a direction to increase the engagement force of the transfer clutch 8, and as a result, the occurrence of a tight corner braking phenomenon is promoted.
【0025】このため、上記制御ユニット40では、各
輪の中の一輪を基準車輪とし、この基準車輪に合わせる
ように残りの各輪の車輪速を補正することで、極低速旋
回走行における車輪軌跡誤差を取り除き、補正した車輪
速の差に基づいてスリップ制御を行うようにしている。For this reason, the control unit 40 uses one of the wheels as a reference wheel, and corrects the wheel speed of each of the remaining wheels so as to match the reference wheel. The error is removed, and the slip control is performed based on the corrected wheel speed difference.
【0026】上記制御ユニット40のクラッチ締結制御
に係わる機能は、図1に示すように、ハンドル角センサ
22及びヨーレートセンサ23からの信号に基づいて各
輪の車輪速の補正量を算出する補正量算出部41、上記
ABSユニット30から読み込んだ各車輪速を上記補正
量に基づいて補正し、補正後の車輪速を算出する各機能
部、すなわち、前輪外輪速度を算出する前輪外輪速度算
出部42、前輪内輪速度を算出する前輪内輪速度算出部
43、後輪外輪速度を算出する後輪外輪速度算出部4
4、後輪内輪速度を算出する後輪内輪速度算出部45、
及び、補正後の前後輪の車輪速差に基づいてクラッチ制
御弁13を制御し、トランスファクラッチ8の締結力を
可変するクラッチ制御部46から構成されている。The function of the control unit 40 relating to the clutch engagement control is, as shown in FIG. 1, a correction amount for calculating a correction amount of the wheel speed of each wheel based on signals from the steering wheel angle sensor 22 and the yaw rate sensor 23. The calculating unit 41 corrects each wheel speed read from the ABS unit 30 based on the correction amount and calculates each wheel speed after the correction, that is, a front wheel outer wheel speed calculating unit 42 that calculates a front wheel outer wheel speed. A front wheel inner wheel speed calculator 43 for calculating front wheel inner wheel speeds; a rear wheel outer wheel speed calculator 4 for calculating rear wheel outer wheel speeds.
4. a rear wheel inner wheel speed calculator 45 for calculating a rear wheel inner wheel speed;
The clutch control unit 46 controls the clutch control valve 13 based on the corrected wheel speed difference between the front and rear wheels, and varies the engagement force of the transfer clutch 8.
【0027】以下、上記構成によるクラッチ締結制御処
理について、図3のフローチャートに従って説明する。
尚、以下の説明では、旋回中心に対し、前輪の外側車輪
を基準車輪として残りの各輪の車輪速を補正する例につ
いて説明し、前輪外輪速度の補正量は0とする。Hereinafter, the clutch engagement control process according to the above configuration will be described with reference to the flowchart of FIG.
In the following description, an example of correcting the wheel speed of each of the remaining wheels with respect to the turning center using the outer wheel of the front wheel as a reference wheel will be described, and the correction amount of the front wheel outer wheel speed is set to 0.
【0028】図3のクラッチ締結制御ルーチンでは、ま
ず、ステップS10で、ハンドル角センサ22によって検
出したハンドル角θ、ヨーレートセンサ23によって検
出したヨーレートγを読み込むとともに、ABSユニッ
ト3からの各輪の車輪速データを読み込む。尚、旋回中
心に対する各車輪速データは、前輪外輪速度Vα01、前
輪内輪速度Vα02、後輪外輪速度Vα03、後輪内輪速度
Vα04とする。In the clutch engagement control routine shown in FIG. 3, first, in step S10, the steering wheel angle θ detected by the steering wheel angle sensor 22 and the yaw rate γ detected by the yaw rate sensor 23 are read, and the wheels of the respective wheels from the ABS unit 3 are read. Read speed data. The wheel speed data for the turning center is the front wheel outer wheel speed Vα01, the front wheel inner wheel speed Vα02, the rear wheel outer wheel speed Vα03, and the rear wheel inner wheel speed Vα04.
【0029】次に、ステップS20へ進み、前輪外輪を基
準車輪とし、この基準車輪に対する旋回半径の差による
各輪の速度補正量を算出する。例えば、図4に示すよう
に、車両が左旋回する例で説明すると、基準車輪に対す
る各輪の速度差ΔV12,ΔV13,ΔV14は、以下の(1)〜
(3)式に示すように、基準車輪の旋回半径と各輪の旋回
半径との差にヨーレートγを乗じた値として求めること
ができ、これらを各輪の補正量とする。 ΔV12=(R1−R2)・γ …(1) ΔV13=(R1−R3)・γ …(2) ΔV14=(R1−R4)・γ …(3) 但し、R1:前輪外輪(基準車輪)の旋回半径 R2:前輪内輪の旋回半径 R3:後輪外輪の旋回半径 R4:後輪内輪の旋回半径Next, the process proceeds to step S20, in which the front wheel outer wheel is used as a reference wheel, and the speed correction amount of each wheel based on the difference in turning radius with respect to this reference wheel is calculated. For example, as illustrated in FIG. 4, assuming that the vehicle makes a left turn, the speed differences ΔV12, ΔV13, and ΔV14 of the respective wheels with respect to the reference wheel are represented by the following (1) to
As shown in equation (3), the difference between the turning radius of the reference wheel and the turning radius of each wheel can be obtained as a value obtained by multiplying the difference by the yaw rate γ, and these are used as the correction amounts of each wheel. ΔV12 = (R1−R2) · γ (1) ΔV13 = (R1−R3) · γ (2) ΔV14 = (R1−R4) · γ (3) where R1: the front wheel outer wheel (reference wheel) Turning radius R2: Turning radius of front wheel inner wheel R3: Turning radius of rear wheel outer wheel R4: Turning radius of rear wheel inner wheel
【0030】ここで、図4に示すように、車両の定常旋
回を幾何学的に記述した場合、前輪内輪の旋回半径R2
は、以下の(4)式のように、前輪外輪の旋回半径R1から
前輪のトレッドDfを減算した値に略等しいみなすこと
ができ、また、後輪外輪の旋回半径R3は、車両の極低
速走行時の車両重心の横すべり角をβ0とすると、この
横すべり角β0と車両のホイールベースLとから、以下
の(5)式で近似することができる。 R2=R1−Df …(4) R3=R1−L・sinβ0 …(5)Here, as shown in FIG. 4, when the steady turning of the vehicle is described geometrically, the turning radius R2 of the front inner wheel is calculated.
Can be regarded as substantially equal to the value obtained by subtracting the tread Df of the front wheel from the turning radius R1 of the front wheel outer wheel, as shown in the following equation (4). Assuming that the side slip angle of the center of gravity of the vehicle during traveling is β0, the side slip angle β0 and the wheel base L of the vehicle can be approximated by the following equation (5). R2 = R1−Df (4) R3 = R1−L · sin β0 (5)
【0031】また、後輪内輪の旋回半径R4は、後輪外
輪の旋回半径R3から後輪のトレッドDrを減算した値
に等しいみなすことができるため、上記(5)式を用いて
変形すると、以下の(6)式で示すことができる。 R4=R3−Dr=R1−L・sinβ0−Dr …(6)The turning radius R4 of the rear wheel inner wheel can be regarded as being equal to a value obtained by subtracting the rear wheel tread Dr from the turning radius R3 of the rear wheel outer wheel. It can be expressed by the following equation (6). R4 = R3−Dr = R1−L · sin β0−Dr (6)
【0032】さらに、車両重心の横すべり角β0、車両
重心の旋回半径RM、及び、後軸−重心間距離Lrの幾
何学的関係は、以下の(7)式によって求めることがで
き、車両重心の旋回半径RMは、以下の(8)式に示すよう
に、ホイールベースLと実舵角δ(δ=θ/N;Nはス
テアリングギヤ比)とによって求めることができる。こ
れらの式を用い、横すべり角β0は、以下の(9)式によっ
て求めることができる。 tanβ0=Lr/RM …(7) RM=L/tanδ …(8) β0=tan-1(Lr・tanδ/L) …(9)Further, the geometric relationship between the side slip angle β0 of the vehicle center of gravity, the turning radius RM of the vehicle center of gravity, and the distance Lr between the rear axle and the center of gravity can be obtained by the following equation (7). The turning radius RM can be obtained from the wheel base L and the actual steering angle δ (δ = θ / N; N is the steering gear ratio) as shown in the following equation (8). Using these equations, the sideslip angle β0 can be obtained by the following equation (9). tanβ0 = Lr / RM (7) RM = L / tanδ (8) β0 = tan -1 (Lrtanδ / L) (9)
【0033】従って、最終的に、上記(1)〜(3)式に示す
各輪の補正量ΔV12,ΔV13,ΔV14は、上記(4)〜(6)式
を用いて変形し、さらに、上記(9)式による横すべり角
β0を用いることで、以下の(10)〜(12)式によって求め
ることができる。 ΔV12=Df・γ …(10) ΔV13=L・sin(tan-1(Lr・tanδ/L))・γ …(11) ΔV14=L・sin(tan-1(Lr・tanδ/L))・γ+Dr・γ…(12)Therefore, finally, the correction amounts ΔV12, ΔV13, ΔV14 of the respective wheels shown in the above equations (1) to (3) are transformed using the above equations (4) to (6). By using the sideslip angle β0 according to the equation (9), it can be obtained by the following equations (10) to (12). ΔV12 = Df · γ (10) ΔV13 = L · sin (tan −1 (Lr · tan δ / L)) · γ (11) ΔV14 = L · sin (tan −1 (Lr · tan δ / L)) · γ + Dr · γ (12)
【0034】以上により、各輪の補正量ΔV12,ΔV13,
ΔV14を算出すると、次にステップS30へ進み、ABS
ユニット30から読み込んだ各輪の車輪速Vα01,Vα0
2,Vα03,Vα04を以下の(13)〜(16)に従って補正し、
各輪の車輪速Vα1,Vα2,Vα3,Vα4を算出する。
尚、基準車輪である前輪外輪の車輪速は補正せず(補正
量0)、ABSユニット30から読み込んだデータを採
用する。 Vα1=Vα01 …(13) Vα2=Vα02+ΔV12 …(14) Vα3=Vα03+ΔV13 …(15) Vα4=Vα04+ΔV14 …(16)As described above, the correction amounts ΔV12, ΔV13,
After calculating ΔV14, the process proceeds to step S30, where ABS
Wheel speed Vα01, Vα0 of each wheel read from unit 30
2, Vα03 and Vα04 are corrected according to the following (13) to (16),
The wheel speeds Vα1, Vα2, Vα3, Vα4 of each wheel are calculated.
Note that the wheel speed of the front outer wheel, which is the reference wheel, is not corrected (correction amount is 0), and data read from the ABS unit 30 is adopted. Vα1 = Vα01 (13) Vα2 = Vα02 + ΔV12 (14) Vα3 = Vα03 + ΔV13 (15) Vα4 = Vα04 + ΔV14 (16)
【0035】その後、ステップS40へ進み、前輪外輪と
前輪内輪との車輪速和(Vα1+Vα2)で前輪速度を代
表するとともに、後輪外輪と後輪内輪との車輪速(Vα
3+Vα4)で後輪速度を代表し、前輪と後輪との速度差
が図5に示すスリップ判定マップの不感帯を越えている
か否かを判定する。その結果、前輪と後輪との速度差が
不感帯幅内にあるときには、上記ステップS40からルー
チンを抜け、不感帯を越えているとき、上記ステップS4
0からステップS50へ進んでトランスファクラッチ8の締
結力に関するクラッチ制御を行う。Thereafter, the process proceeds to step S40, in which the front wheel speed is represented by the sum of the wheel speeds (Vα1 + Vα2) of the front wheel outer wheel and the front wheel inner wheel, and the wheel speed (Vα) of the rear wheel outer wheel and the rear wheel inner wheel.
3 + Vα4) is representative of the rear wheel speed, and it is determined whether or not the speed difference between the front wheel and the rear wheel exceeds the dead zone of the slip determination map shown in FIG. As a result, when the speed difference between the front wheel and the rear wheel is within the dead zone width, the routine exits from the step S40, and when the speed difference exceeds the dead zone, the step S4
From 0, the process proceeds to step S50 to perform clutch control relating to the engagement force of the transfer clutch 8.
【0036】このステップS50におけるクラッチ制御で
は、前輪と後輪の速度差(Vαf−Vαr)が図5に示
すスリップ判定マップの不感帯を越えた値に応じてクラ
ッチ制御弁13に対する制御量、例えばクラッチ制御弁
13としてデューティソレノイド弁を使用する場合に
は、トランスファクラッチ8の作動油圧を制御するデュ
ーティ比を算出し、トランスファクラッチ8の締結力を
増減する。In the clutch control in step S50, the control amount for the clutch control valve 13, for example, the clutch control amount, depends on the value of the speed difference (Vαf−Vαr) between the front wheel and the rear wheel exceeding the dead zone of the slip determination map shown in FIG. When a duty solenoid valve is used as the control valve 13, a duty ratio for controlling the operating oil pressure of the transfer clutch 8 is calculated, and the engagement force of the transfer clutch 8 is increased or decreased.
【0037】この場合、前後輪の速度差は、極低速旋回
走行における車輪軌跡誤差を取り除くように補正されて
いるため、上記スリップ判定マップの不感帯幅を従来よ
りも狭くしてもタイトコーナブレーキ現象が発生するこ
とはなく、適正な不感帯幅によるスリップ制御効率の向
上とタイトコーナブレーキ現象の発生防止とを両立する
ことができる。すなわち、転舵発進時等のスリップを確
実に防止するとともに、極低速旋回時のタイトコーナブ
レーキ現象の発生による乗り心地の悪化を防止すること
ができる。In this case, since the speed difference between the front and rear wheels is corrected so as to remove the wheel trajectory error at extremely low speed turning, even if the dead zone width of the slip determination map is made narrower than before, the tight corner braking phenomenon occurs. Is not generated, and the improvement of the slip control efficiency by the appropriate dead zone width and the prevention of the tight corner braking phenomenon can be achieved at the same time. That is, it is possible to reliably prevent the slippage at the time of turning start and the like, and to prevent the deterioration of the riding comfort due to the occurrence of the tight corner braking phenomenon at the extremely low speed turning.
【0038】図6〜図8は本発明の実施の第2形態に係
わり、図6は駆動制御系の全体構成図、図7はクラッチ
制御機能のブロック図、図8は2輪モデルによる車輪速
補正量算出の説明図である。6 to 8 relate to a second embodiment of the present invention. FIG. 6 is an overall configuration diagram of a drive control system, FIG. 7 is a block diagram of a clutch control function, and FIG. FIG. 9 is an explanatory diagram of correction amount calculation.
【0039】本形態は、前述の第1形態に対し、4輪の
各輪毎に車輪速を計測することなく、前輪側の左右の車
輪速の平均値に相当する前輪車速信号と後輪側の左右の
車輪速の平均値に相当する後輪車速信号とを用い、後輪
側と前輪側とのいずれか一方を基準として補正を行うも
のである。This embodiment differs from the first embodiment in that a front wheel speed signal corresponding to an average value of left and right wheel speeds on the front wheel side and a rear wheel side speed signal are not measured for each of the four wheels. And a rear wheel speed signal corresponding to the average value of the left and right wheel speeds, and the correction is performed based on one of the rear wheel side and the front wheel side.
【0040】このため、図6に示すように、制御ユニッ
ト40では、各輪毎の車輪速センサを使用することな
く、変速機構部2のフロントディファレンシャル装置7
にケーブルを介して連結されるインストルメントパネル
内の第1の車速センサ24から前輪側の車輪速データを
取得するとともに、トランスファクラッチ8の出力軸の
回転を検出するためケース14に取り付けられた第2の
車速センサ25から後輪側の車輪速データを取得する。For this reason, as shown in FIG. 6, the control unit 40 does not use a wheel speed sensor for each wheel, but uses the front differential device 7 of the transmission mechanism 2.
The front wheel-side wheel speed data is obtained from a first vehicle speed sensor 24 in an instrument panel connected to the vehicle via a cable, and the rotation of the output shaft of the transfer clutch 8 is detected. The rear wheel side wheel speed data is acquired from the second vehicle speed sensor 25.
【0041】本形態における制御ユニット40のクラッ
チ制御に係わる機能は、図7に示すように、第1形態の
補正量算出部41の処理を変更し、ハンドル角センサ2
2及びヨーレートセンサ23からの信号に基づいて後輪
側と前輪側との軌跡差による車輪速の補正量を算出する
補正量算出部41A、第1の車速センサ24からの信号
及び上記補正量に基づいて前輪側の車輪速を算出する前
輪速度算出部47、第2の車速センサからの信号及び上
記補正量に基づいて後輪側の車輪速を算出する後輪速度
算出部48、第1形態と同様、補正後の前後輪の車輪速
差に基づいてクラッチ制御弁13を制御し、トランスフ
ァクラッチ8の締結力を可変するクラッチ制御部46か
ら構成されている。As shown in FIG. 7, the function relating to the clutch control of the control unit 40 in the present embodiment changes the processing of the correction amount calculating section 41 of the first embodiment, and
2 and a correction amount calculation unit 41A that calculates a correction amount of the wheel speed based on the trajectory difference between the rear wheel side and the front wheel side based on the signal from the yaw rate sensor 23, the signal from the first vehicle speed sensor 24 and the correction amount. A front wheel speed calculating unit 47 that calculates a wheel speed on the front wheel side based on a signal from the second vehicle speed sensor and a rear wheel speed calculating unit 48 that calculates a wheel speed on the rear wheel side based on the correction amount; Similarly to the above, the clutch control unit 13 controls the clutch control valve 13 on the basis of the corrected wheel speed difference between the front and rear wheels, and varies the engagement force of the transfer clutch 8.
【0042】本形態の補正量算出部41Aの処理では、
前輪側、後輪側のいずれか一方を基準として車輪速を補
正するため、後輪側を基準とする場合には、第1の車速
センサ24からの信号に基づく前輪側の車輪速Vαf0
に対する補正量を算出し、第2の車速センサ25からの
信号に基づく後輪側の車輪速Vαr0に対する補正量は
0とする。また、前輪側を基準とする場合には、第1の
車速センサ24からの信号に基づく前輪側の車輪速Vα
f0に対する補正量は0とし、第2の車速センサ25か
らの信号に基づく後輪側の車輪速Vαr0に対する補正
量を算出する。In the processing of the correction amount calculator 41A of the present embodiment,
In order to correct the wheel speed based on either the front wheel side or the rear wheel side, when the rear wheel side is used as a reference, the front wheel side wheel speed Vαf0 based on a signal from the first vehicle speed sensor 24 is used.
The correction amount for the rear wheel speed Vαr0 based on the signal from the second vehicle speed sensor 25 is set to 0. When the front wheel side is used as a reference, the front wheel side wheel speed Vα based on the signal from the first vehicle speed sensor 24 is used.
The correction amount for f0 is set to 0, and the correction amount for the rear-wheel-side wheel speed Vαr0 based on the signal from the second vehicle speed sensor 25 is calculated.
【0043】図8に示すように、後輪側を基準とし、車
両が左旋回する例で説明すると、後輪側と後輪側との速
度差Δは、以下の式(18)に示すように、後輪側の旋回半
径Rrと前輪側の旋回半径Rfとの差にヨーレートγを
乗じた値として求めることができる。 Δ=(Rr−Rf)・γ …(17)As shown in FIG. 8, a description will be given of an example in which the vehicle turns left on the basis of the rear wheel side. The speed difference Δ between the rear wheel side and the rear wheel side is expressed by the following equation (18). Can be obtained as a value obtained by multiplying the difference between the turning radius Rr on the rear wheel side and the turning radius Rf on the front wheel side by the yaw rate γ. Δ = (Rr−Rf) · γ (17)
【0044】第1形態で説明したように、車両の定常旋
回を幾何学的に記述した場合、図8から、後輪側の旋回
半径Rrは、車両重心の横すべり角β0と車両のホイー
ルベースLとから、以下の(18)式で近似することができ
る。 Rr=Rf−L・sinβ0 …(18)As described in the first embodiment, when the steady turning of the vehicle is geometrically described, the turning radius Rr on the rear wheel side is determined from FIG. From this, it can be approximated by the following equation (18). Rr = Rf−L · sin β0 (18)
【0045】また、横すべり角β0は、第1形態と同
様、後輪側の旋回半径Rrと後軸−重心間距離Lrとの
幾何学的関係から求めた以下の(19)式と、ホイールベー
スLと実舵角δf(δf=θ/N;Nはステアリングギ
ヤ比)とによって後輪側の旋回半径Rrを求めた以下の
(20)式とを用い、以下の(21)式によって求めることがで
きる。 tanβ0=Lr/Rr …(19) Rr=L/tanδf …(20) β0=tan-1(Lr・tanδf/L) …(21)Similarly to the first embodiment, the side slip angle β0 is calculated by the following equation (19) obtained from the geometric relationship between the turning radius Rr on the rear wheel side and the distance Lr between the rear axle and the center of gravity. L and the actual steering angle δf (δf = θ / N; N is the steering gear ratio) determine the turning radius Rr on the rear wheel side.
It can be obtained by the following equation (21) using the equation (20). tan β 0 = Lr / Rr (19) Rr = L / tan δf (20) β 0 = tan -1 (Lr · tan δf / L) (21)
【0046】従って、上記(17)式による速度差(補正
量)Δは、上記(18),(21)式を用いて、以下の(22)式に
よって求めることができ、以下の(23),(24)式に示すよ
うに、第1の車速センサ24による前輪側の車輪速Vα
f0に補正量Δを加算して補正後の前輪側の車輪速Vα
fを算出し、一方、後輪側の車輪速Vαrは、第2の車
速センサ25による後輪側の車輪速Vαr0を、そのま
ま採用する。 Δ=−L・sin(tan-1(Lr・tanδf/L))・γ …(22) Vαf=Vαf0+Δ …(23) Vαr=Vαr0 …(24)Therefore, the speed difference (correction amount) Δ by the above equation (17) can be obtained by the following equation (22) using the above equations (18) and (21), and the following equation (23) As shown in the equation (24), the wheel speed Vα on the front wheel side by the first vehicle speed sensor 24 is obtained.
The wheel speed Vα on the front wheel side after correction by adding the correction amount Δ to f0
On the other hand, the rear wheel speed Vαr0 obtained by the second vehicle speed sensor 25 is used as it is as the rear wheel speed Vαr. Δ = −L · sin (tan −1 (Lr · tan δf / L)) · γ (22) Vαf = Vαf0 + Δ (23) Vαr = Vαr0 (24)
【0047】そして、第1形態と同様、クラッチ制御部
46で、前輪側の車輪速Vαfと後輪側の車輪速Vαr
と差がスリップ判定マップの不感帯を越えた値に応じて
クラッチ制御弁13に対する制御量を算出し、トランス
ファクラッチ8の締結力を増減する。Then, similarly to the first embodiment, the clutch control unit 46 controls the front wheel side wheel speed Vαf and the rear wheel side wheel speed Vαr.
The control amount for the clutch control valve 13 is calculated in accordance with the value of which the difference exceeds the dead zone of the slip determination map, and the engagement force of the transfer clutch 8 is increased or decreased.
【0048】本形態においても、前述の第1形態と同
様、極低速旋回時のタイトコーナブレーキ現象の発生を
抑えつつ、転舵発進時等のスリップを確実に防止するこ
とができる。In this embodiment, as in the case of the first embodiment described above, it is possible to reliably prevent the occurrence of the tight corner braking phenomenon at the time of extremely low speed turning, and to surely prevent the slippage at the time of starting the steering.
【0049】[0049]
【発明の効果】以上説明したように本発明によれば、車
両旋回時の各車輪の軌跡差を解消するよう車輪速度を補
正し、前輪側と後輪側との補正後の車輪速度の差に応じ
てトランスファクラッチの締結力を可変することで、前
輪側と後輪側とのトルク伝達配分を変更して車輪のスリ
ップを防止するため、前後輪の車輪速差に対する不感帯
の幅を従来よりも狭くしても極低速旋回時にタイトコー
ナブレーキ現象が発生することがなく、適正な不感帯幅
によるスリップ制御効率の向上とタイトコーナブレーキ
現象の発生防止とを両立することができ、転舵発進時等
のスリップを確実に防止するとともに、極低速旋回時の
タイトコーナブレーキ現象の発生による乗り心地の悪化
を防止することができる等優れた効果が得られる。As described above, according to the present invention, the wheel speed is corrected so as to eliminate the difference between the trajectories of the wheels when the vehicle turns, and the difference between the corrected wheel speeds of the front wheel and the rear wheel is obtained. The width of the dead zone for the difference in wheel speed between the front and rear wheels is increased by changing the transfer clutch engagement force according to the change in the torque transmission distribution between the front and rear wheels to prevent the wheels from slipping. The tight corner braking phenomenon does not occur when turning at extremely low speeds even if it is narrow, so that it is possible to improve the slip control efficiency and prevent the tight corner braking phenomenon from occurring with an appropriate dead zone width. In addition to the above, excellent effects can be obtained, such as being able to reliably prevent slippage and the like, and to prevent deterioration of ride comfort due to the occurrence of a tight corner braking phenomenon during extremely low speed turning.
【図1】本発明の実施の第1形態に係わり、クラッチ制
御機能のブロック図FIG. 1 is a block diagram of a clutch control function according to a first embodiment of the present invention.
【図2】同上、駆動制御系の全体構成図FIG. 2 is an overall configuration diagram of a drive control system according to the first embodiment;
【図3】同上、クラッチ制御ルーチンのフローチャートFIG. 3 is a flowchart of a clutch control routine according to the first embodiment;
【図4】同上、4輪モデルによる車輪速補正量算出の説
明図FIG. 4 is an explanatory diagram of calculating a wheel speed correction amount by using a four-wheel model.
【図5】同上、スリップ判定マップの説明図FIG. 5 is an explanatory diagram of a slip determination map according to the embodiment;
【図6】本発明の実施の第2形態に係わり、駆動制御系
の全体構成図FIG. 6 is an overall configuration diagram of a drive control system according to a second embodiment of the present invention.
【図7】同上、クラッチ制御機能のブロック図FIG. 7 is a block diagram of a clutch control function according to the first embodiment;
【図8】同上、2輪モデルによる車輪速補正量算出の説
明図FIG. 8 is an explanatory diagram of calculating a wheel speed correction amount using a two-wheel model;
8 …トランスファクラッチ 41…補正量算出部 42…前輪外輪速度算出部 43…前輪内輪速度算出部 44…後輪外輪速度算出部 45…後輪内輪速度算出部 46…クラッチ制御部 8 Transfer clutch 41 Correction amount calculation unit 42 Front wheel outer wheel speed calculation unit 43 Front wheel inner wheel speed calculation unit 44 Rear wheel outer wheel speed calculation unit 45 Rear wheel inner wheel speed calculation unit 46 Clutch control unit
Claims (3)
ランスファクラッチを介して可変し、車輪のスリップを
防止する4輪駆動車のスリップ制御装置において、 車両旋回時の各車輪の軌跡差を解消するよう、車輪速度
を補正する手段と、 前輪側と後輪側との補正後の車輪速度の差に応じて上記
トランスファクラッチの締結力を可変する手段とを備え
たことを特徴とする4輪駆動車のスリップ制御装置。1. A slip control device for a four-wheel drive vehicle that varies a torque transmission distribution between a front wheel side and a rear wheel side via a transfer clutch to prevent wheel slippage. Means for correcting the wheel speed, and means for varying the fastening force of the transfer clutch according to the difference between the corrected wheel speeds on the front wheel side and the rear wheel side. A slip control device for a four-wheel drive vehicle.
とし、この基準車輪の旋回軌跡と他の車輪の旋回軌跡と
の差に基づいて他の車輪の車輪速度を補正することを特
徴とする請求項1記載の4輪駆動車のスリップ制御装
置。2. A method according to claim 1, wherein any one of the four wheels is used as a reference wheel, and the wheel speeds of the other wheels are corrected based on the difference between the turning locus of the reference wheel and the turning locus of another wheel. The slip control device for a four-wheel drive vehicle according to claim 1, wherein:
車輪とし、この基準車輪の旋回軌跡と前輪側あるいは後
輪側の旋回軌跡との差に基づいて、前輪側あるいは後輪
側の車輪速度を補正することを特徴とする請求項1記載
の4輪駆動車のスリップ制御装置。3. One of the front wheel side and the rear wheel side is set as a reference wheel, and a front wheel side or a rear wheel side is determined based on a difference between a turning track of the reference wheel and a turning track of the front wheel side or the rear wheel side. The slip control device for a four-wheel drive vehicle according to claim 1, wherein the wheel speed is corrected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15404097A JPH111129A (en) | 1997-06-11 | 1997-06-11 | Slip control device for four-wheel drive vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15404097A JPH111129A (en) | 1997-06-11 | 1997-06-11 | Slip control device for four-wheel drive vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH111129A true JPH111129A (en) | 1999-01-06 |
Family
ID=15575612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15404097A Pending JPH111129A (en) | 1997-06-11 | 1997-06-11 | Slip control device for four-wheel drive vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH111129A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002234355A (en) * | 2001-02-08 | 2002-08-20 | Fuji Heavy Ind Ltd | Control device for four-wheel drive vehicle |
US6575261B2 (en) | 2000-02-28 | 2003-06-10 | Toyoda Koki Kabushiki Kaisha | Drive-force distribution controller |
EP1407914A2 (en) * | 2002-09-24 | 2004-04-14 | Fuji Jukogyo Kabushiki Kaisha | Slip control device of four-wheel-drive vehicle |
JP2006117113A (en) * | 2004-10-21 | 2006-05-11 | Fuji Heavy Ind Ltd | Driving force distribution control device of vehicle |
JP4891333B2 (en) * | 2005-12-02 | 2012-03-07 | ボルグワーナー トルクトランスファー システムズ エービー | Method and system for adjusting vehicle dynamics |
JP2017043209A (en) * | 2015-08-26 | 2017-03-02 | 富士重工業株式会社 | Driving power control device for vehicle |
-
1997
- 1997-06-11 JP JP15404097A patent/JPH111129A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6575261B2 (en) | 2000-02-28 | 2003-06-10 | Toyoda Koki Kabushiki Kaisha | Drive-force distribution controller |
JP2002234355A (en) * | 2001-02-08 | 2002-08-20 | Fuji Heavy Ind Ltd | Control device for four-wheel drive vehicle |
EP1407914A2 (en) * | 2002-09-24 | 2004-04-14 | Fuji Jukogyo Kabushiki Kaisha | Slip control device of four-wheel-drive vehicle |
EP1407914A3 (en) * | 2002-09-24 | 2004-05-26 | Fuji Jukogyo Kabushiki Kaisha | Slip control device of four-wheel-drive vehicle |
US7127343B2 (en) | 2002-09-24 | 2006-10-24 | Fuji Jukogyo Kabushiki Kaisha | Slip control device of four-wheel-drive vehicle |
JP2006117113A (en) * | 2004-10-21 | 2006-05-11 | Fuji Heavy Ind Ltd | Driving force distribution control device of vehicle |
JP4684618B2 (en) * | 2004-10-21 | 2011-05-18 | 富士重工業株式会社 | Vehicle driving force distribution control device |
JP4891333B2 (en) * | 2005-12-02 | 2012-03-07 | ボルグワーナー トルクトランスファー システムズ エービー | Method and system for adjusting vehicle dynamics |
JP2017043209A (en) * | 2015-08-26 | 2017-03-02 | 富士重工業株式会社 | Driving power control device for vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3617680B2 (en) | 4-wheel drive traction control system | |
US7073621B2 (en) | Vehicle steering control device | |
US20020003057A1 (en) | Drive-force distribution controller | |
JPH0794207B2 (en) | Drive force distribution controller for four-wheel drive vehicle | |
JPH0763077A (en) | Traction control unit of vehicle | |
JPH01114523A (en) | Drive power controller for four-wheel-drive vehicle | |
JPH10138785A (en) | Yaw moment control device for vehicle | |
US20040064239A1 (en) | Power distribution control apparatus for four wheel drive vehicle | |
JPH0386627A (en) | Unequal torque distribution controller for four-wheel drive vehicle | |
JP4223255B2 (en) | Slip control device for four-wheel drive vehicles | |
JPH111129A (en) | Slip control device for four-wheel drive vehicle | |
JP2000339596A (en) | Vehicle motion controller | |
JP2776123B2 (en) | Left and right driving force control device for vehicles | |
JPH05278490A (en) | Driving force distribution device for four-wheel drive vehicle | |
JP2518444B2 (en) | Driving force distribution switchable four-wheel drive vehicle | |
JP2861611B2 (en) | Left and right driving force control device for vehicles | |
JP3551038B2 (en) | Torque distribution device for four-wheel drive vehicles | |
JP5007269B2 (en) | Torque distribution control device for four-wheel drive vehicles | |
JP3738748B2 (en) | Torque distribution control device for four-wheel drive vehicles | |
JPH0735130B2 (en) | Four-wheel drive vehicle | |
JPH01114526A (en) | Torque split controller for four-wheel-drive vehicle | |
JPS62279129A (en) | Torque distribution controller for four-wheel drive vehicle | |
JP2001071776A (en) | Differential limitation control method and control system | |
JPH0419230A (en) | Driving force distribution switching type four-wheel drive automobile | |
JPH03128729A (en) | Car drive torque control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040601 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070904 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080924 |
|
A02 | Decision of refusal |
Effective date: 20090224 Free format text: JAPANESE INTERMEDIATE CODE: A02 |