JPH10335236A - Aligner, optical cleaning method thereof and manufacture of semiconductor device - Google Patents
Aligner, optical cleaning method thereof and manufacture of semiconductor deviceInfo
- Publication number
- JPH10335236A JPH10335236A JP9155856A JP15585697A JPH10335236A JP H10335236 A JPH10335236 A JP H10335236A JP 9155856 A JP9155856 A JP 9155856A JP 15585697 A JP15585697 A JP 15585697A JP H10335236 A JPH10335236 A JP H10335236A
- Authority
- JP
- Japan
- Prior art keywords
- photosensitive substrate
- optical system
- light
- light beam
- projection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70908—Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
- G03F7/70925—Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70075—Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- General Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば、LSI等
の半導体素子、CCD等の撮像素子、液晶表示素子、あ
るいは薄膜磁気ヘッド等のデバイス(以下、総称して半
導体デバイスと呼ぶ)を製造するための光リソグラフィ
ー工程において、マスク(又はレチクル)等の投影原版
上のパターンをウエハ等の感光性基板に露光するための
投影露光装置に関し、特にその光洗浄方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention manufactures devices such as semiconductor devices such as LSIs, imaging devices such as CCDs, liquid crystal display devices, and thin-film magnetic heads (hereinafter collectively referred to as semiconductor devices). The present invention relates to a projection exposure apparatus for exposing a pattern on a projection original such as a mask (or reticle) to a photosensitive substrate such as a wafer in an optical lithography process, and particularly to an optical cleaning method.
【0002】[0002]
【従来の技術】半導体デバイスを製造する主要な工程と
して光リソグラフィー工程があるが、半導体デバイスの
高集積化に伴い、この光リソグラフィー工程において使
用される投影露光装置も、長足の進歩を遂げてきてい
る。投影露光装置に搭載されている投影光学系の解像力
は、Rayleighの式で良く知られているように、 R=k×λ/NA の関係で表される。ここで、Rは投影光学系の解像力、
λは露光用の光の波長、NAは投影光学系の開口数、k
はレジストの解像力の他にプロセスによって決定される
定数である。半導体デバイスの高集積化に対応して、投
影光学系で必要とされる解像力を実現するために、上式
から分かるように、露光用の光源の短波長化や、投影光
学系の開口数を大きくする高NA化への努力が続けられ
ている。近年では、248nmの出力波長を持つKrF
(弗化クリプトン)エキシマレーザを露光用光源とし、
投影光学系の開口数も0.6以上の露光装置が商品化さ
れ、0.25μmにも達する微細なパターンの露光が実
現されてきている。2. Description of the Related Art An optical lithography process is a main process for manufacturing a semiconductor device. With the increase in the degree of integration of a semiconductor device, a projection exposure apparatus used in the optical lithography process has made great progress. I have. The resolving power of the projection optical system mounted on the projection exposure apparatus is represented by the relationship of R = k × λ / NA, as is well known by the Rayleigh equation. Here, R is the resolution of the projection optical system,
λ is the wavelength of light for exposure, NA is the numerical aperture of the projection optical system, k
Is a constant determined by the process in addition to the resolution of the resist. As can be seen from the above equation, in order to realize the resolution required for the projection optical system in response to the high integration of semiconductor devices, the wavelength of the light source for exposure must be shortened, and the numerical aperture of the projection optical system must be reduced. Efforts to increase the NA are continuing. In recent years, KrF with an output wavelength of 248 nm
(Krypton fluoride) excimer laser as the light source for exposure,
Exposure apparatuses having a projection optical system having a numerical aperture of 0.6 or more have been commercialized, and exposure of fine patterns as large as 0.25 μm has been realized.
【0003】特に、最近では、KrFエキシマレーザに
続く光源として、193nmの出力波長を持つArF
(弗化アルゴン)エキシマレーザが注目されてきてい
る。このArFエキシマレーザを露光用光源とする露光
装置が実現できれば、0.18μmから0.13〜0.
15μmにまで及ぶ微細加工が可能となることが期待さ
れている。このArFエキシマレーザの出力波長(19
3nm)の波長域では、透過率の観点から、レンズとし
て使用可能な材料が現段階では合成石英ガラス、弗化カ
ルシウム(蛍石)の2種に限定されている。そこで、こ
の種の露光装置用の光学材料として、十分な透過率と内
部均一性を有する材料の開発が行われており、合成石英
ガラスでは内部透過率が0.995/cm以上、弗化カ
ルシウムでは内部吸収が無視できるレベルにまで到達し
ている。またArFエキシマレーザを露光用光源とする
ときには、光学材料の表面にコートされる反射防止膜用
の材料も、KrFエキシマレーザの出力波長(248n
m)の波長域のものと比べて選択範囲が非常に狭く、設
計上の自由度に大きな制約を受ける。しかしながら精力
的な開発努力により、各レンズ面での損失が0.005
以下というレベルまで実現されてきている。In particular, recently, as a light source following a KrF excimer laser, an ArF having an output wavelength of 193 nm is used.
(Argon fluoride) excimer lasers are attracting attention. If an exposure apparatus using this ArF excimer laser as an exposure light source can be realized, 0.18 μm to 0.13-0.
It is expected that fine processing down to 15 μm will be possible. The output wavelength of this ArF excimer laser (19)
In the wavelength range of 3 nm), materials that can be used as lenses are limited to two types at this stage, synthetic quartz glass and calcium fluoride (fluorite), from the viewpoint of transmittance. Therefore, as an optical material for this type of exposure apparatus, a material having sufficient transmittance and internal uniformity has been developed. In the case of synthetic quartz glass, the internal transmittance is 0.995 / cm or more, and calcium fluoride is used. Has reached negligible levels of internal absorption. When an ArF excimer laser is used as the light source for exposure, the material for the antireflection film coated on the surface of the optical material is also the output wavelength of the KrF excimer laser (248 nm).
The selection range is much narrower than that in the wavelength range of m), and the degree of freedom in design is greatly restricted. However, due to vigorous development efforts, the loss on each lens surface is 0.005.
The following levels have been realized.
【0004】[0004]
【発明が解決しようとする課題】ArFエキシマレーザ
を光源とする露光装置では、光学材料あるいは反射防止
膜による光の吸収による発熱によって、レンズ等の光学
部材の特性が変化し、これが結像特性の変動要因とな
る。そのため、極力高い透過率を実現し、熱特性変化を
できるたけ小さくすることが必須の課題である。しかし
ながら、200nm以下の遠紫外域の光では、光学材料
や反射防止膜による吸収を上記のレベルにまで低減した
としても、空気中の作業環境で露光装置用の光学部品を
取り扱った場合、空気中の水分や有機物の付着により、
レンズ等の光学部品の透過率が急速に低下するという問
題があることが、本発明者らの実験により明らかとなっ
てきた。その吸収量は、例えばレンズ1面当たりで0.
01にまで達し、光学部品内部での吸収や反射防止膜で
の吸収と比べても大きく、最大の吸収要因となる。In an exposure apparatus using an ArF excimer laser as a light source, the characteristics of an optical member such as a lens are changed by heat generated by absorption of light by an optical material or an anti-reflection film, and this is a characteristic of an image forming characteristic. It becomes a fluctuation factor. Therefore, it is essential to achieve as high a transmittance as possible and to make the change in thermal characteristics as small as possible. However, in the case of light in the deep ultraviolet region of 200 nm or less, even if the absorption by the optical material and the antireflection film is reduced to the above level, when the optical components for the exposure apparatus are handled in the working environment in the air, Due to moisture and organic matter
The inventors' experiments have revealed that there is a problem that the transmittance of an optical component such as a lens rapidly decreases. The amount of absorption is, for example, 0.1 per lens.
01, which is larger than the absorption inside the optical component and the absorption by the antireflection film, and is the largest absorption factor.
【0005】光学部品の表面に付着した付着物の洗浄方
法として、紫外線を照射する方法が、例えば特開平7−
294705号公報にて知られている。しかしながら、
この技術は光学部品単体の洗浄方法に関するものであ
り、露光装置として組み立てられた後に、露光装置の光
学部品の全体もしくは主要部を洗浄する方法を開示する
ものではない。しかも、紫外線の照射により一時的な洗
浄効果が現れるものの、紫外線により光学部品の表面が
活性化され、その後、通常の作業環境に放置した場合に
は、却って周囲の水分や有機物を吸着しやすくなること
が、本発明者らの実験により判ってきた。A method of irradiating an ultraviolet ray as a method of cleaning the adhered matter adhered to the surface of the optical component is disclosed in, for example, Japanese Patent Application Laid-Open No.
This is known from 294705. However,
This technique relates to a method of cleaning a single optical component, and does not disclose a method of cleaning the entire optical component or a main part of the exposure device after the optical component is assembled as an exposure device. In addition, although a temporary cleaning effect is exhibited by the irradiation of ultraviolet light, the surface of the optical component is activated by the ultraviolet light, and when left in a normal working environment thereafter, it becomes easier to adsorb ambient moisture and organic substances. This has been found by experiments of the present inventors.
【0006】そのため、たとえ光学部品を紫外線で洗浄
したとしても、その後に水分や有機物質から完全に隔離
された状態で、レンズ等の光学部品を組み立てて投影光
学系を構成することは、実際上において不可能である。
このことが、ArFエキシマレーザ用の露光装置の光学
系を実現する上で大きな障害になっている。本発明は以
上の問題点に鑑みてなされたものであり、光学素子の表
面に水分や有機物質が付着したとしても、これらの付着
物質を消失せしてめて、高い光学性能を維持することが
できる露光装置、露光装置の光洗浄方法及び光洗浄方法
を用いた半導体デバイスの製造方法を提供することを課
題とする。[0006] Therefore, even if the optical parts are cleaned with ultraviolet rays, it is practically impossible to construct a projection optical system by assembling optical parts such as lenses in a state where they are completely isolated from moisture and organic substances. Is not possible in
This is a major obstacle in realizing an optical system of an exposure apparatus for an ArF excimer laser. The present invention has been made in view of the above problems, and even when moisture and organic substances adhere to the surface of an optical element, these adhered substances are eliminated to maintain high optical performance. An object of the present invention is to provide an exposure apparatus, a method for cleaning an exposure apparatus, and a method for manufacturing a semiconductor device using the method.
【0007】[0007]
【課題を解決するための手段】感光性基板への露光を行
っているときには、露光光によって露光装置の各光学部
品は自己洗浄されることから、本発明においては、感光
性基板への露光を行っていないときにも光洗浄を行うこ
ととし、これによって上記の課題を解決したものであ
る。また、本発明においては、露光工程中に何らかの要
因によって投影光学系や照明光学系の透過率や投影光学
系の像面上での照度分布が変化したり、あるいは露光工
程中に照明コヒーレンシーを変更した場合に投影光学系
や照明光学系の透過率や投影光学系の像面上での照度分
布が変化することがあるため、露光工程前に限らず、露
光工程中においても一旦露光動作を停止して光洗浄を行
って、上記課題を解決するものである。すなわち、本発
明による露光装置は、露光装置内の所定の空間よりも前
記感光性基板側の光路を、該感光性基板の露光を行うと
きの光束よりも拡大させる光学手段を設けることとし
た。この光学手段としては、露光装置内の所定の空間よ
りも感光性基板側の光束が、感光性基板の露光を行うと
きの光束よりも拡大するように、前記所定の空間に光拡
散手段を挿脱可能に配置したものとすることが好まし
い。According to the present invention, when exposing a photosensitive substrate, the optical components of the exposing apparatus are self-cleaned by exposure light. Light cleaning is performed even when the cleaning is not performed, thereby solving the above problem. Further, in the present invention, the transmittance of the projection optical system or the illumination optical system or the illuminance distribution on the image plane of the projection optical system changes due to some factors during the exposure process, or the illumination coherency is changed during the exposure process. In such a case, the transmittance of the projection optical system or the illumination optical system and the illuminance distribution on the image plane of the projection optical system may change, so that the exposure operation is temporarily stopped not only before the exposure process but also during the exposure process. Then, light cleaning is performed to solve the above problem. That is, the exposure apparatus according to the present invention is provided with an optical unit that enlarges an optical path on the photosensitive substrate side from a predetermined space in the exposure apparatus to be larger than a light beam when exposing the photosensitive substrate. As the optical means, a light diffusing means is inserted into the predetermined space so that a light flux on the photosensitive substrate side with respect to a predetermined space in the exposure apparatus is larger than a light flux when performing exposure of the photosensitive substrate. It is preferable that they are removably arranged.
【0008】また、投影光学系と感光性基板との間に挿
脱可能にシャッターを配置し、洗浄光によって感光性基
板を露光してしまうことがないようにし、更には光洗浄
工程中に、感光性基板の交換やアライメント工程などを
並行して行えるようにし、光洗浄の工程に伴うスループ
ット低下を低減することを可能とした。また、シャッタ
ーの投影光学系側の面を反射面とし、投影光学系を通過
してきた洗浄光を反射して投影光学系に逆行させること
により、光洗浄効果をさらに高めるよう工夫した。ま
た、感光性基板を載置したステージに、投影光学系を透
過した光束の強度を測定する透過光検出器を設け、ある
いは露光装置内の所定の光路に、シャッター表面の反射
面によって反射した光束の強度を測定する反射光検出器
を設け、更には投影光学系よりも光源側の光路に、光源
側から入射する光束の強度を測定する入射光検出器を設
けて、照明光学系と投影光学系の透過率の変化を測定で
きるように構成し、したがってその測定結果に基づい
て、光洗浄工程の開始、及び終了の判断を行えるように
した。In addition, a shutter is disposed between the projection optical system and the photosensitive substrate so as to be insertable and removable so as to prevent the photosensitive substrate from being exposed by the cleaning light. The replacement of the photosensitive substrate, the alignment process, and the like can be performed in parallel, thereby making it possible to reduce the decrease in throughput due to the optical cleaning process. In addition, the surface on the side of the projection optical system of the shutter is used as a reflection surface, and the cleaning light that has passed through the projection optical system is reflected back to the projection optical system to further enhance the light cleaning effect. In addition, a transmitted light detector that measures the intensity of the light beam transmitted through the projection optical system is provided on the stage on which the photosensitive substrate is mounted, or the light beam reflected by the reflecting surface of the shutter surface is provided on a predetermined optical path in the exposure apparatus. A reflected light detector for measuring the intensity of the light, and an incident light detector for measuring the intensity of the light beam incident from the light source side on the optical path closer to the light source than the projection optical system. The system was configured to be able to measure the change in transmittance of the system, so that the start and end of the optical cleaning step could be determined based on the measurement result.
【0009】[0009]
【発明の実施の形態】図1は本発明の第1の実施例を示
す。ArFエキシマレーザ1から発せられた光束は、ビ
ーム整形光学系2によってフライアイレンズ3の入射面
形状に応じた形に整形された後、フライアイレンズ3に
より分割され、フライアイレンズ3の射出面近傍に複数
の2次光源を形成する。複数の2次光源からの光束は、
開口絞り4にて形状を制限された後、集光レンズ前群5
aと集光レンズ後群5bによって視野絞り6上に重ね合
わせられ、均一な照明光を形成する。視野絞り6上に形
成された均一な照明光は、視野絞り結像光学系前群7と
視野絞り結像光学系後群9により所望の倍率で拡大ある
いは縮小され、投影原版としてのマスク10を照明す
る。マスク10上に形成されている微細パターンは、投
影光学系11によって感光性基板としてのウエハ12上
に投影露光される。FIG. 1 shows a first embodiment of the present invention. A light beam emitted from the ArF excimer laser 1 is shaped by the beam shaping optical system 2 into a shape corresponding to the shape of the incident surface of the fly-eye lens 3, then divided by the fly-eye lens 3, and emitted from the fly-eye lens 3. A plurality of secondary light sources are formed in the vicinity. The luminous flux from the multiple secondary light sources is
After the shape is restricted by the aperture stop 4, the front group 5 of the condenser lens
a is superimposed on the field stop 6 by the condenser lens rear group 5b to form uniform illumination light. The uniform illumination light formed on the field stop 6 is enlarged or reduced at a desired magnification by the front group 7 of the field stop image forming optical system and the rear group 9 of the field stop image forming optical system. Light up. The fine pattern formed on the mask 10 is projected and exposed by a projection optical system 11 onto a wafer 12 as a photosensitive substrate.
【0010】ここで、集光レンズ前群5a、集光レンズ
後群5b、結像光学系前群7及び結像光学系後群9が、
オプティカルインテグレータとしてのフライアイレンズ
3により形成される複数の2次光源からの光をそれぞれ
集光してマスク10上を重畳的に照明するコンデンサー
光学系を構成している。なお、オプティカルインテグレ
ータとしては、多数の棒状の光学素子を束ねて構成され
たフライアイレンズ3に限ることなく、内面反射型のロ
ッド状の光学部材としても良く、更には、オプティカル
インテグレータは1つに限ることなく、複数のオプティ
カルインテグレータを直列的に配置したものであっても
良い。The front group 5a of the condenser lens, the rear group 5b of the condenser lens, the front group 7 of the imaging optical system and the rear group 9 of the imaging optical system
A condenser optical system for condensing light from a plurality of secondary light sources formed by a fly-eye lens 3 as an optical integrator and illuminating the mask 10 in a superimposed manner is configured. Note that the optical integrator is not limited to the fly-eye lens 3 configured by bundling a large number of rod-shaped optical elements, but may be an internal reflection type rod-shaped optical member. Without limitation, a plurality of optical integrators may be arranged in series.
【0011】ここで前述のように、ArFエキシマレー
ザ1から発せられる光束のように著しく波長が短いとき
には、照明光学系2〜9から投影光学系11までの各光
学素子の表面には、空気中に浮遊する水分や有機物が付
着して汚染され、屈折素子については透過率の低下を招
き、反射素子については反射率の低下を招く。これらの
汚染は、ウエハ12の露光を行うために、ArFエキシ
マレーザ1からの光束が通過しているときには、その光
束によって自己洗浄されるが、露光を行っていないとき
には、時間の経過と共に再び汚染されて行く。そこで本
実施例では、ウエハ12の露光に先立ち、ArFエキシ
マレーザ1からの光束を各光学素子に通過させて、光学
素子表面の汚染を洗浄できるように構成している。As described above, when the wavelength is extremely short, such as the light beam emitted from the ArF excimer laser 1, the surfaces of the optical elements from the illumination optical systems 2 to 9 to the projection optical system 11 are exposed to air. Water and organic substances floating on the surface are attached and contaminated, causing a decrease in the transmittance of the refraction element and a decrease in the reflectance of the reflection element. These contaminants are self-cleaned by the light beam from the ArF excimer laser 1 when the light beam from the ArF excimer laser 1 passes to perform the exposure of the wafer 12. Go being. Therefore, in the present embodiment, prior to exposure of the wafer 12, a light beam from the ArF excimer laser 1 is passed through each optical element, so that contamination on the surface of the optical element can be cleaned.
【0012】先ず洗浄による効果は、エネルギー密度が
大きいほど効果が大きい。したがってマスク10の着脱
に要するタイムロスなどを考慮せずに、投影光学系11
の洗浄だけに着目すれば、マスク10を取り外した状態
で洗浄を行うことが好ましい。しかし投影光学系の開口
数は、マスク10を透過した照明光学系からの光束のほ
か、マスク10によって回折した回折光をも取り込める
ように構成されており、すなわち一般に照明光学系の開
口数は投影光学系の開口数よりも小さい。したがってマ
スク10を除去した状態では、投影光学系を構成するレ
ンズの周辺部には光の当たらない部分が生じ、レンズ周
辺部に洗浄されない部分が発生する。また、光の当たる
部分だけに限って見ても、レンズの周辺部の方が中心部
よりもエネルギー密度が小さいために、洗浄の不十分な
部分が発生するおそれがある。同様にマスク10を装着
した状態で光洗浄を行うとしても、レンズの周辺部の方
が中心部よりもエネルギー密度が小さいために、洗浄の
不十分な部分が発生するおそれがある。First, the effect of cleaning is greater as the energy density is higher. Therefore, the projection optical system 11 can be used without considering the time loss required for attaching and detaching the mask 10.
If attention is paid only to the above cleaning, it is preferable to perform cleaning with the mask 10 removed. However, the numerical aperture of the projection optical system is configured so as to capture not only the light flux from the illumination optical system that has passed through the mask 10 but also the diffracted light diffracted by the mask 10. It is smaller than the numerical aperture of the optical system. Therefore, in a state where the mask 10 is removed, a portion that is not exposed to light is generated around the lens constituting the projection optical system, and a portion that is not cleaned is generated around the lens. Further, even when viewed only in a portion where light is irradiated, there is a possibility that an insufficiently cleaned portion may occur because the energy density is lower at the peripheral portion of the lens than at the central portion. Similarly, even if optical cleaning is performed with the mask 10 mounted, the peripheral portion of the lens has a lower energy density than the central portion, so that insufficient cleaning may occur.
【0013】そのため本実施例では、視野絞り結像光学
系後群9と投影光学系11の間に位置するマスク10の
代わりに、光拡散手段としての拡散板13を配置した。
拡散板13は、挿入装置22によって光路内外に挿脱駆
動されており、この挿入装置22は制御装置21によっ
て制御されている。この構成により、光洗浄を行おうと
するときには、拡散板13を光路内に挿入して投影光学
系11に入射する光を拡散させることができ、したがっ
て投影光学系11の各レンズの周辺部にまで、十分な洗
浄効果が得られる光量の光束が照射される。このとき拡
散板13による拡散角Δは、洗浄照射を行うときの照明
光学系の開口数をNAiとし、投影光学系の開口数をN
Apとしたときに、 Δ≧NAp−NAi とすることが望ましい。なお光洗浄時には、照明光学系
の開口数を特に絞る必要はないから、一般にはNA
iは、照明光学系の最大開口数とすることが好ましい。For this reason, in this embodiment, instead of the mask 10 located between the rear group 9 of the field stop imaging optical system and the projection optical system 11, a diffusing plate 13 as light diffusing means is arranged.
The diffusion plate 13 is driven to be inserted into and removed from the optical path by an insertion device 22. The insertion device 22 is controlled by a control device 21. With this configuration, when light cleaning is to be performed, the light incident on the projection optical system 11 can be diffused by inserting the diffusion plate 13 into the optical path. In this case, a light beam having a light amount sufficient to obtain a sufficient cleaning effect is applied. At this time, the diffusion angle Δ by the diffusion plate 13 is such that the numerical aperture of the illumination optical system when performing cleaning irradiation is NA i and the numerical aperture of the projection optical system is N
When the A p, is preferably set to Δ ≧ NA p -NA i. It is not necessary to reduce the numerical aperture of the illumination optical system during light cleaning.
i is preferably the maximum numerical aperture of the illumination optical system.
【0014】ここで光拡散手段としては、石英や蛍石な
どを荒擦り加工したものや、回折格子など、光の屈折、
回折、反射作用などを利用したものがあげられる。ま
た、荒擦りだけでは拡散角Δが大きすぎる場合や、光量
ロスが大きい場合には、荒擦り後にフツ酸(フツ化水
素)などの薬品にて表面処理を行い、拡散角Δをコント
ロールすることが可能である。また回折格子を利用する
場合には、格子間隔を適切に設定することにより、回折
角をコントロールすることが出来る。Here, as the light diffusing means, a material obtained by roughly rubbing quartz or fluorite, a diffraction grating, etc.
Those utilizing diffraction, reflection and the like can be mentioned. If the diffusion angle Δ is too large or the loss of light amount is large only by rough rubbing, the surface is treated with a chemical such as hydrofluoric acid (hydrogen fluoride) after rough rubbing to control the diffusion angle Δ. Is possible. When a diffraction grating is used, the diffraction angle can be controlled by appropriately setting the grating interval.
【0015】また本実施例においては、投影光学系11
とウエハ12の間に、駆動装置23によって光路内外に
挿脱駆動されたシャッター14を配置することにより、
光洗浄時にウエハ12が感光することを防止しており、
こうして光洗浄中のウエハ交換やアライメント工程を同
時に行えるようにしている。さらにシャッター14の投
影光学系11側の面は反射ミラーに形成されており、こ
うして投影光学系11を通過してきた洗浄光を反射して
逆行させることにより、さらに洗浄効果を高めている。
このとき反射ミラーの法線の方向を、投影光学系の光軸
と一致させずに、駆動装置23によって任意の方向に傾
角できるように構成することにより、さらに効率の良い
洗浄効果が得られる。In this embodiment, the projection optical system 11
By disposing the shutter 14 that is driven into and out of the optical path by the driving device 23 between the and the wafer 12,
Prevents the wafer 12 from being exposed during light cleaning,
Thus, the wafer exchange and the alignment process during the light cleaning can be performed at the same time. Further, the surface of the shutter 14 on the side of the projection optical system 11 is formed as a reflection mirror, and the cleaning light that has passed through the projection optical system 11 is reflected and reversed to further enhance the cleaning effect.
At this time, by configuring the driving device 23 so that the direction of the normal line of the reflection mirror can be tilted in an arbitrary direction without matching the optical axis of the projection optical system, a more efficient cleaning effect can be obtained.
【0016】なお本実施例では、マスク10に代えて拡
散板13を光路内に挿入しているが、マスク10の光源
1側、又はマスク10のウエハ12側に拡散板13を挿
入することもできる。この場合、露光を行おうとするマ
スク10を配置したまま洗浄を行っても差し支えない。
しかしその場合には、マスク10の透過率分だけ投影光
学系11に入射する洗浄光のエネルギーが減少するた
め、洗浄時間が増大する。他方、マスク10を除去して
洗浄を行えば洗浄時間は短縮されるが、別途マスク10
の抜き差しに要する時間が必要となる。したがってマス
ク10の着脱に要する時間の方が長い場合には、あえて
マスク10を配置したまま洗浄を行っても良い。また拡
散板13を配置する場所は、光洗浄を必要とする部分よ
りも手前側であれば良い。したがって所望により、照明
光学系の内部や投影光学系の内部に配置することもでき
る。ただし照明光学系の内部に拡散板13を配置すると
きには、拡散板13以降の光学系は、照明光学系の開口
数に応じた有効径では不十分となり、投影光学系11の
開口数に応じた十分な有効径が必要である。In this embodiment, the diffusion plate 13 is inserted in the optical path instead of the mask 10. However, the diffusion plate 13 may be inserted on the light source 1 side of the mask 10 or on the wafer 12 side of the mask 10. it can. In this case, cleaning may be performed while the mask 10 to be exposed is arranged.
However, in this case, the energy of the cleaning light incident on the projection optical system 11 is reduced by the transmittance of the mask 10, so that the cleaning time increases. On the other hand, if the cleaning is performed by removing the mask 10, the cleaning time is shortened.
The time required for insertion and removal of the device is required. Therefore, when the time required for attaching and detaching the mask 10 is longer, the cleaning may be performed while the mask 10 is arranged. Further, the place where the diffusion plate 13 is arranged may be any side as far as the front side of the portion requiring light cleaning. Therefore, if desired, it can be arranged inside the illumination optical system or inside the projection optical system. However, when the diffusing plate 13 is disposed inside the illumination optical system, the effective diameter of the optical system subsequent to the diffusing plate 13 cannot be sufficiently large according to the numerical aperture of the illumination optical system. A sufficient effective diameter is required.
【0017】また、本実施例では、ウエハ面での光の強
度を測定するために、ウエハを載置するステージ15
に、投影光学系11を透過した光束の強度を測定する透
過光検出器16が取り付けられており、透過光検出器1
6の出力は透過率計測装置20に入力されている。この
構成により、ArFエキシマレーザ1から投影光学系1
1までのすべての光学素子の合計の透過率の変化を、次
のようにして測定する。すなわちステージ15を駆動し
て透過光検出器16を投影光学系11の光路内に配置
し、シャッター14を開放して透過光検出器16の出力
を測定する。そしてこの出力を監視し、出力が飽和した
状態を最良の光強度として透過率計測装置20内に記憶
する。以降は、現時点での光強度を、透過率計測装置2
0内に記憶された最良の光強度と比較することにより、
現時点でのすべての光学素子の合計の透過率を直ちに知
ることができる。したがって洗浄工程を開始すべきか否
かの判定や、終了すべきか否かの判定を容易に行うこと
ができる。In this embodiment, the stage 15 on which the wafer is placed is used to measure the light intensity on the wafer surface.
A transmission light detector 16 for measuring the intensity of a light beam transmitted through the projection optical system 11 is attached to the transmission light detector 1.
The output of 6 is input to the transmittance measuring device 20. With this configuration, the ArF excimer laser 1 and the projection optical system 1
The change in the total transmittance of all the optical elements up to 1 is measured as follows. That is, the stage 15 is driven to dispose the transmitted light detector 16 in the optical path of the projection optical system 11, and the shutter 14 is opened to measure the output of the transmitted light detector 16. Then, this output is monitored, and the state where the output is saturated is stored in the transmittance measuring device 20 as the best light intensity. After that, the light intensity at the present time is
By comparing with the best light intensity stored in 0,
The total transmittance of all the optical elements at the present time can be immediately known. Therefore, it is possible to easily determine whether or not the cleaning process should be started and whether or not to end the cleaning process.
【0018】なお、透過率測定装置20は、ステージ1
5上に設けられた光電検出器としての透過光検出器16
の出力に基づいて、投影光学系11の像面上での透過率
を計測し、光洗浄工程を開始するか否か判断している
が、これに限ることはない。つまり、透過率測定装置2
0は、ステージ15上に設けられた光電検出器としての
透過光検出器16の出力に基づいて、投影光学系11の
像面上での透過率分布、即ち照度分布を計測し、所定の
照度分布となったか否かを判断し、これによって光洗浄
工程を開始するか否か判断するように構成しても良いこ
とは言うまでもない。Note that the transmittance measuring device 20 includes a stage 1
Transmitted light detector 16 as a photoelectric detector provided on 5
Is measured on the image plane of the projection optical system 11 to determine whether or not to start the optical cleaning step, but the present invention is not limited to this. That is, the transmittance measuring device 2
0 measures the transmittance distribution on the image plane of the projection optical system 11, that is, the illuminance distribution, based on the output of the transmitted light detector 16 serving as a photoelectric detector provided on the stage 15; It is needless to say that the configuration may be such that it is determined whether or not the distribution is obtained, and whether or not the light cleaning process is started is determined based on the determination.
【0019】次に図2は本発明の第2の実施例を示す。
図1の構成の場合には、シャッター14を閉じていると
きにはウエハ面上では光強度を計測することが出来な
い。そこで図2の構成では、照明光学系内の開口絞り4
と集光レンズ前群5aとの間にハーフミラーを配置し、
シャッター14の反射面側よりハーフミラーに入射する
光束の反射光路に、この光束の強度を測定する反射光検
出器17を設けたものである。この構成によれば、Ar
Fエキシマレーザ1から開口絞り4までの光学素子の往
路と、集光レンズ前群5aから投影光学系11までの光
学素子の往復路との合計の透過率の変化を常時監視する
ことができ、したがって洗浄工程中に透過率測定をリア
ルタイムで行うことが可能となり、洗浄工程の終了判定
などに有用である。なおハーフミラーを介在させる位置
は特に問題とはならず、照明光学系あるいは投影光学系
中の任意の位置に介在させることができる。FIG. 2 shows a second embodiment of the present invention.
In the configuration of FIG. 1, when the shutter 14 is closed, the light intensity cannot be measured on the wafer surface. Therefore, in the configuration of FIG. 2, the aperture stop 4 in the illumination optical system is used.
A half mirror between the lens and the front lens group 5a,
A reflected light detector 17 for measuring the intensity of the light beam incident on the half mirror from the reflection surface side of the shutter 14 is provided in the reflected light path. According to this configuration, Ar
It is possible to constantly monitor the change in the total transmittance of the forward path of the optical element from the F excimer laser 1 to the aperture stop 4 and the round trip path of the optical element from the front lens group 5a to the projection optical system 11. Therefore, the transmittance can be measured in real time during the cleaning step, which is useful for determining the end of the cleaning step. The position at which the half mirror is interposed does not particularly matter, and can be interposed at any position in the illumination optical system or the projection optical system.
【0020】次に図3は本発明の第3の実施例を示す。
図1の構成や図2の構成では、ArFエキシマレーザ1
の出力変動があると、その分だけ透過率が変化したもの
と誤認される。そこで図3の構成では、ステージ15に
透過光検出器16を設けるほか、照明光学系内の開口絞
り4と集光レンズ前群5aとの間にハーフミラーを配置
し、ArFエキシマレーザ1側よりハーフミラーに入射
する光束の反射光路に、この光束の強度を測定する入射
光検出器18を設け、入射光検出器18と透過光検出器
16との出力の差に基づいて透過率を求めたものであ
る。この構成によれば、ArFエキシマレーザ1の出力
変化に関せずに、集光レンズ前群5aから投影光学系1
1までの光学素子の透過率の変化を測定することができ
る。なお、図3に示す透過率測定装置20は、ステージ
15上に設けられた光電検出器としての透過光検出器1
6の出力に基づいて、投影光学系11の像面上での透過
率分布、即ち照度分布を計測し、所定の照度分布となっ
たか否かを判断し、これによって光洗浄工程を開始する
か否か判断するように構成しても良い。FIG. 3 shows a third embodiment of the present invention.
In the configuration shown in FIG. 1 or FIG. 2, the ArF excimer laser 1 is used.
It is erroneously recognized that the transmittance has changed by that amount. Therefore, in the configuration of FIG. 3, in addition to providing the transmitted light detector 16 on the stage 15, a half mirror is arranged between the aperture stop 4 in the illumination optical system and the front group 5 a of the condenser lens, so that the ArF excimer laser 1 side. An incident light detector 18 for measuring the intensity of this light beam is provided on the reflected light path of the light beam incident on the half mirror, and the transmittance is obtained based on the difference between the outputs of the incident light detector 18 and the transmitted light detector 16. Things. According to this configuration, the projection optical system 1 can be moved from the front lens group 5a regardless of a change in the output of the ArF excimer laser 1.
The change in transmittance of the optical element up to 1 can be measured. The transmittance measuring device 20 shown in FIG. 3 is a transmission light detector 1 as a photoelectric detector provided on the stage 15.
6, the transmittance distribution on the image plane of the projection optical system 11, that is, the illuminance distribution is measured, and it is determined whether or not a predetermined illuminance distribution is obtained. It may be configured to judge whether or not.
【0021】次に図4は本発明の第4の実施例を示す。
図3の構成では、シャッター14を閉じているときには
ウエハ面上では光強度を計測することが出来ない。そこ
で図4の構成では、照明光学系内の開口絞り4と集光レ
ンズ前群5aとの間にハーフミラーを配置し、ArFエ
キシマレーザ1側よりハーフミラーに入射する光束の反
射光路に、この光束の強度を測定する入射光検出器18
を設け、シャッター14の反射面側よりハーフミラーに
入射する光束の反射光路に、この光束の強度を測定する
反射光検出器17を設け、入射光検出器18と反射光検
出器17との出力の差に基づいて透過率を求めたもので
ある。この構成によれば、ArFエキシマレーザ1の出
力変化に関せずに、且つシャッター14を閉じたまま、
集光レンズ前群5aから投影光学系11までの光学素子
の透過率の変化を常時監視することができる。FIG. 4 shows a fourth embodiment of the present invention.
In the configuration of FIG. 3, when the shutter 14 is closed, the light intensity cannot be measured on the wafer surface. Therefore, in the configuration of FIG. 4, a half mirror is arranged between the aperture stop 4 in the illumination optical system and the condenser lens front group 5a, and the reflected light path of the light beam incident on the half mirror from the ArF excimer laser 1 side is provided. Incident light detector 18 for measuring the intensity of light flux
And a reflected light detector 17 for measuring the intensity of the light beam entering the half mirror from the reflection surface side of the shutter 14 is provided. The output of the incident light detector 18 and the reflected light detector 17 is provided. The transmittance is obtained based on the difference. According to this configuration, regardless of the change in the output of the ArF excimer laser 1, and with the shutter 14 closed,
The change in the transmittance of the optical element from the front lens group 5a to the projection optical system 11 can be constantly monitored.
【0022】以上の各実施例では、光洗浄工程を露光工
程に先立って実行することについて主に述べたが、露光
工程中に何らかの要因によって投影光学系11や照明光
学系の透過率や投影光学系11の像面上での照度分布が
変化する可能性がある。このため、露光工程中において
露光動作を一旦停止して定期的に光洗浄工程を実行する
ことが好ましい。更には、露光工程中において照明光学
系中の開口絞り4の開口径を変化させて照明コヒーレン
シー(σ値)を変更した場合には、投影光学系11や照
明光学系にて露光のための必要とされる透過率や投影光
学系11の像面上での所望の照度分布が得られない可能
性がある。従って、照明コヒーレンシー(σ値)を変更
する場合には、露光工程中において露光動作を一旦停止
して、光洗浄工程を行うことが好ましい。なお、照明コ
ヒーレンシーとしてのσ値は、照明光学系の開口数をN
Aiとし、投影光学系の開口数をNApとするとき、 σ=NAi/NAp の関係で定義されるものである。In each of the above embodiments, the description has been made mainly on the fact that the light cleaning step is performed prior to the exposure step. However, during the exposure step, the transmittance of the projection optical system 11 and the illumination optical system and the projection optical system The illuminance distribution on the image plane of the system 11 may change. For this reason, it is preferable to temporarily stop the exposure operation during the exposure process and periodically execute the optical cleaning process. Further, when the illumination coherency (σ value) is changed by changing the aperture diameter of the aperture stop 4 in the illumination optical system during the exposure process, the projection optical system 11 and the illumination optical system need to perform exposure. And the desired illuminance distribution on the image plane of the projection optical system 11 may not be obtained. Therefore, when changing the illumination coherency (σ value), it is preferable to temporarily stop the exposure operation during the exposure step and perform the light cleaning step. It should be noted that the σ value as the illumination coherency is determined by setting the numerical aperture of the illumination optical system to N.
Let A i be the numerical aperture of the projection optical system and NA p be the definition of σ = NA i / NA p .
【0023】[0023]
【発明の効果】以上の如く、本発明によれば、特にAr
Fエキシマレーザ等の遠紫外線波長を用いる投影露光装
置において、露光装置を構成する光学系に付着する水分
や有機物等を光洗浄によって除去することができるた
め、良好なるレチクルパターン像を感光性基板上に転写
することができる。すなわち、露光方法を含む光リソグ
ラフィー工程において、投影光学系の透過率が低下した
としても、光洗浄工程を新たに採用することにより、投
影光学系の透過率を十分に回復させることができるた
め、より微細なパターンを感光性基板上に転写すること
ができるため、より高集積度なLSI等の半導体デバイ
スを製造することができる。また、本発明による光洗浄
工程を投影光学系を製造する際に用いれば、通常の作業
環境のもとでの投影光学系の組立て調整作業が可能とな
り、投影光学系の透過率を十分に確保することができ
る。As described above, according to the present invention, in particular, Ar
In a projection exposure apparatus using a far-ultraviolet wavelength such as an F excimer laser, moisture and organic substances adhering to an optical system constituting the exposure apparatus can be removed by light cleaning, so that a good reticle pattern image can be formed on a photosensitive substrate. Can be transferred to That is, in the optical lithography step including the exposure method, even if the transmittance of the projection optical system is reduced, the transmittance of the projection optical system can be sufficiently recovered by newly adopting the light cleaning step, Since a finer pattern can be transferred onto the photosensitive substrate, a highly integrated semiconductor device such as an LSI can be manufactured. In addition, if the light cleaning process according to the present invention is used when manufacturing a projection optical system, the assembly and adjustment work of the projection optical system under a normal working environment becomes possible, and the transmittance of the projection optical system is sufficiently secured. can do.
【図1】本発明の第1の実施例を示す概略断面図FIG. 1 is a schematic sectional view showing a first embodiment of the present invention.
【図2】本発明の第2の実施例を示す概略断面図FIG. 2 is a schematic sectional view showing a second embodiment of the present invention.
【図3】本発明の第3の実施例を示す概略断面図FIG. 3 is a schematic sectional view showing a third embodiment of the present invention.
【図4】本発明の第4の実施例を示す概略断面図FIG. 4 is a schematic sectional view showing a fourth embodiment of the present invention.
1…ArFエキシマレーザ 2…ビーム整形光学
系 3…フライアイレンズ 4…開口絞り 5a…集光レンズ前群 5b…集光レンズ後
群 6…視野絞り 7…視野絞り結像光
学系前群 9…視野絞り結像光学系後群 10…マスク 11…投影光学系 12…ウエハ 13…拡散板 14…シャッター 15…ステージ 16…透過光検出器 17…反射光検出器 18…入射光検出器 20…透過率測定装置 21…制御装置 22…挿入装置 23…駆動装置DESCRIPTION OF SYMBOLS 1 ... ArF excimer laser 2 ... Beam shaping optical system 3 ... Fly eye lens 4 ... Aperture stop 5a ... Condensing lens front group 5b ... Condensing lens rear group 6 ... Field stop 7 ... Field stop imaging optical system 9 ... Field stop imaging optical system rear group 10 mask 11 projection optical system 12 wafer 13 diffuser 14 shutter 15 stage 16 transmitted light detector 17 reflected light detector 18 incident light detector 20 transmission Rate measuring device 21 ... Control device 22 ... Insertion device 23 ... Drive device
Claims (13)
されたパターンを照明する照明光学系と、前記パターン
を透過した光束を感光性基板上に結像して該感光性基板
を露光する投影光学系とを有する露光装置において、 前記双方の光学系の内の所定の空間よりも前記感光性基
板側の光束が、該感光性基板の露光を行うときの光束よ
りも拡大するように、前記所定の空間に光拡散手段を挿
脱可能に配置したことを特徴とする露光装置。An illumination optical system for illuminating a pattern formed on a projection original with a light beam from a light source, and a projection for exposing the photosensitive substrate by forming an image of a light beam transmitted through the pattern on a photosensitive substrate. In an exposure apparatus having an optical system, the light flux on the photosensitive substrate side than a predetermined space in both of the optical systems is larger than the light flux when performing exposure of the photosensitive substrate, An exposure apparatus, wherein a light diffusing unit is disposed in a predetermined space so as to be insertable and removable.
置した、請求項1記載の露光装置。2. An exposure apparatus according to claim 1, wherein said light diffusing means is arranged in place of said projection original.
脱可能にシャッターを配置した、請求項1又は2記載の
露光装置。3. The exposure apparatus according to claim 1, wherein a shutter is disposed between the projection optical system and the photosensitive substrate so as to be insertable and removable.
反射面に形成した、請求項3記載の露光装置。4. An exposure apparatus according to claim 3, wherein a surface of said shutter on a side of said projection optical system is formed as a reflection surface.
に形成した、請求項4記載の露光装置。5. The exposure apparatus according to claim 4, wherein a direction of a normal line of said reflection surface is variable.
記投影光学系を透過した光束の強度を測定する透過光検
出器を設けた、請求項1〜5のいずれか1項記載の露光
装置。6. The exposure according to claim 1, wherein a transmission light detector for measuring the intensity of a light beam transmitted through the projection optical system is provided on a stage on which the photosensitive substrate is mounted. apparatus.
面によって反射した光束の強度を測定する反射光検出器
を設けた、請求項4又は5記載の露光装置。7. The exposure apparatus according to claim 4, further comprising a reflected light detector for measuring the intensity of the light beam reflected by the reflection surface, in any one of the optical paths in the exposure apparatus.
に、光源側から入射する光束の強度を測定する入射光検
出器を設けた、請求項6又は7記載の露光装置。8. The exposure apparatus according to claim 6, wherein an incident light detector for measuring the intensity of a light beam incident from the light source side is provided on an optical path closer to the light source than the projection optical system.
る照明光学系と、前記パターンを透過した光束を感光性
基板上に結像して該感光性基板を露光する投影光学系と
を有する露光装置の光洗浄方法において、 前記感光性基板を光路外に除去し、又は前記感光性基板
の直前にシャッターを挿入する工程と、 前記双方の光学系の内の所定の空間よりも前記感光性基
板側の光束が、該感光性基板の露光を行うときの光束よ
りも拡大するように、前記所定の空間に光拡散手段を挿
入する工程とを含むことを特徴とする露光装置の光洗浄
方法。9. An illumination optical system for illuminating a pattern formed on a projection original, and a projection optical system for exposing the photosensitive substrate by forming a light beam transmitted through the pattern on a photosensitive substrate. In the light cleaning method of the exposure apparatus, a step of removing the photosensitive substrate out of an optical path or inserting a shutter immediately before the photosensitive substrate; and a method of removing the photosensitive substrate from a predetermined space in both the optical systems. Inserting a light diffusing means into the predetermined space so that a light beam on the substrate side is larger than a light beam when performing exposure of the photosensitive substrate. .
する照明光学系と、前記パターンを透過した光束を感光
性基板上に結像して該感光性基板を露光する投影光学系
とを有する露光装置を用いる半導体デバイスの製造方法
において、 前記感光性基板を光路内に配置して該感光性基板を露光
する工程と、 前記感光性基板を光路外に除去し又は前記感光性基板の
直前にシャッターを挿入した後に、前記双方の光学系の
内の所定の空間よりも前記感光性基板側の光束が、該感
光性基板の露光を行うときの光束よりも拡大するよう
に、前記所定の空間に光拡散手段を挿入する工程とを含
むことを特徴とする半導体デバイスの製造方法。10. An illumination optical system for illuminating a pattern formed on a projection original, and a projection optical system for imaging a light beam transmitted through the pattern on a photosensitive substrate to expose the photosensitive substrate. In a method of manufacturing a semiconductor device using an exposure apparatus, a step of exposing the photosensitive substrate by arranging the photosensitive substrate in an optical path, and removing the photosensitive substrate out of the optical path or immediately before the photosensitive substrate After inserting the shutter, the predetermined space so that the light flux on the photosensitive substrate side is larger than the light flux when performing exposure of the photosensitive substrate than the predetermined space in the two optical systems. Inserting a light diffusing means into the semiconductor device.
成されたパターンを照明する照明光学系と、前記パター
ンを介した光束を感光性基板上に結像して該感光性基板
を露光する投影光学系とを有する露光装置において、 前記双方の光学系の内の所定の空間よりも前記感光性基
板側の光束が、該感光性基板の露光を行うときの光束よ
りも拡大させる光学手段を設けたことを特徴とする露光
装置。11. An illumination optical system for illuminating a pattern formed on a projection original with a light beam from a light source, and a projection for exposing the photosensitive substrate by forming an image of the light beam via the pattern on the photosensitive substrate. In an exposure apparatus having an optical system, a light beam on the photosensitive substrate side than a predetermined space in both of the optical systems is provided with optical means for expanding the light beam when performing exposure of the photosensitive substrate. An exposure apparatus characterized in that:
成されたパターンを照明する照明光学系と、前記パター
ンを介した光束を感光性基板上に結像して該感光性基板
を露光する投影光学系とを有する露光装置の光洗浄方法
において、 前記露光装置の露光工程中あるいは前記露光装置の露光
工程に先立って、前記双方の光学系の内の所定の空間よ
りも前記感光性基板側の光束を、該感光性基板の露光を
行うときの光束よりも拡大させる工程を有することを特
徴とする光洗浄方法。12. An illumination optical system for illuminating a pattern formed on a projection original with a light beam from a light source, and a projection for exposing the photosensitive substrate by forming an image of the light beam through the pattern on the photosensitive substrate. In an optical cleaning method for an exposure apparatus having an optical system, during the exposure step of the exposure apparatus or prior to the exposure step of the exposure apparatus, the photosensitive substrate side more than a predetermined space in both the optical systems. A light cleaning method, comprising a step of expanding a light beam more than a light beam when exposing the photosensitive substrate.
上に形成されたパターンを照明し、前記パターンを投影
光学系を介して感光性基板上に露光する露光工程を含む
半導体デバイスの製造方法において、 前記露光工程中あるいは前記露光工程に先立って、前記
双方の光学系の内の所定の空間よりも前記感光性基板側
の光束を、該感光性基板の露光を行うときの光束よりも
拡大させる工程を有することを特徴とする半導体デバイ
スの製造方法。13. A method for manufacturing a semiconductor device, comprising an exposure step of illuminating a pattern formed on a projection original with a light beam from an illumination optical system and exposing the pattern onto a photosensitive substrate via a projection optical system. During the exposure step or prior to the exposure step, the light flux on the photosensitive substrate side is larger than a predetermined space in the two optical systems than the light flux when exposing the photosensitive substrate. A method for manufacturing a semiconductor device, comprising the steps of:
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9155856A JPH10335236A (en) | 1997-05-28 | 1997-05-28 | Aligner, optical cleaning method thereof and manufacture of semiconductor device |
DE69817663T DE69817663T2 (en) | 1997-04-23 | 1998-04-22 | Optical exposure apparatus and optical cleaning process |
EP19980107355 EP0874283B1 (en) | 1997-04-23 | 1998-04-22 | Optical exposure apparatus and photo-cleaning method |
US09/195,880 US6268904B1 (en) | 1997-04-23 | 1998-11-19 | Optical exposure apparatus and photo-cleaning method |
US09/870,718 US6642994B2 (en) | 1997-04-23 | 2001-06-01 | Optical exposure apparatus and photo-cleaning method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9155856A JPH10335236A (en) | 1997-05-28 | 1997-05-28 | Aligner, optical cleaning method thereof and manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10335236A true JPH10335236A (en) | 1998-12-18 |
Family
ID=15615003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9155856A Pending JPH10335236A (en) | 1997-04-23 | 1997-05-28 | Aligner, optical cleaning method thereof and manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10335236A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006147982A (en) * | 2004-11-24 | 2006-06-08 | Oki Electric Ind Co Ltd | Self-cleaning method of exposure device and exposure device |
KR100748449B1 (en) * | 2002-01-18 | 2007-08-10 | 에이에스엠엘 네델란즈 비.브이. | Lithographic apparatus, apparatus cleaning method, device manufacturing method and device manufactured thereby |
JP2010171075A (en) * | 2009-01-20 | 2010-08-05 | Lintec Corp | Light irradiating device and light irradiating method |
JP2010182998A (en) * | 2009-02-09 | 2010-08-19 | Lintec Corp | Light irradiation device and light irradiation method |
US8169591B2 (en) | 2004-08-03 | 2012-05-01 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US9250537B2 (en) | 2004-07-12 | 2016-02-02 | Nikon Corporation | Immersion exposure apparatus and method with detection of liquid on members of the apparatus |
US9760026B2 (en) | 2003-07-28 | 2017-09-12 | Nikon Corporation | Exposure apparatus, method for producing device, and method for controlling exposure apparatus |
-
1997
- 1997-05-28 JP JP9155856A patent/JPH10335236A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100748449B1 (en) * | 2002-01-18 | 2007-08-10 | 에이에스엠엘 네델란즈 비.브이. | Lithographic apparatus, apparatus cleaning method, device manufacturing method and device manufactured thereby |
US9760026B2 (en) | 2003-07-28 | 2017-09-12 | Nikon Corporation | Exposure apparatus, method for producing device, and method for controlling exposure apparatus |
US10185232B2 (en) | 2003-07-28 | 2019-01-22 | Nikon Corporation | Exposure apparatus, method for producing device, and method for controlling exposure apparatus |
US9250537B2 (en) | 2004-07-12 | 2016-02-02 | Nikon Corporation | Immersion exposure apparatus and method with detection of liquid on members of the apparatus |
US8169591B2 (en) | 2004-08-03 | 2012-05-01 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
JP2006147982A (en) * | 2004-11-24 | 2006-06-08 | Oki Electric Ind Co Ltd | Self-cleaning method of exposure device and exposure device |
US7733460B2 (en) | 2004-11-24 | 2010-06-08 | Oki Semiconductor Co., Ltd. | Aligner and self-cleaning method for aligner |
JP4617143B2 (en) * | 2004-11-24 | 2011-01-19 | Okiセミコンダクタ株式会社 | Exposure apparatus and self-cleaning method |
JP2010171075A (en) * | 2009-01-20 | 2010-08-05 | Lintec Corp | Light irradiating device and light irradiating method |
JP2010182998A (en) * | 2009-02-09 | 2010-08-19 | Lintec Corp | Light irradiation device and light irradiation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6642994B2 (en) | Optical exposure apparatus and photo-cleaning method | |
EP0874283B1 (en) | Optical exposure apparatus and photo-cleaning method | |
US7116397B2 (en) | Exposure apparatus and device manufacturing method | |
US8920569B2 (en) | Pollutant removal method and apparatus, and exposure method and apparatus | |
US6538722B2 (en) | Projection exposure method, projection exposure apparatus, and methods of manufacturing and optically cleaning the exposure apparatus | |
JP3232473B2 (en) | Projection exposure apparatus and device manufacturing method using the same | |
US20110285978A1 (en) | Illumination system for a microlithographic projection exposure apparatus | |
JP2005191381A (en) | Exposure method and system thereof | |
WO2006043458A1 (en) | Lighting optical device, exposure system, and exposure method | |
US6492649B1 (en) | Projection exposure apparatus, projection exposure method, optical cleaning method and method of fabricating semiconductor device | |
TW201925929A (en) | Apparatus for decontaminating extreme ultraviolet source | |
US20060086371A1 (en) | Particle remover, exposure apparatus having the same, and device manufacturing method | |
JPH10335236A (en) | Aligner, optical cleaning method thereof and manufacture of semiconductor device | |
JP3491212B2 (en) | Exposure apparatus, illumination optical apparatus, illumination optical system design method and exposure method | |
JPH10335235A (en) | Aligner, optical cleaning method thereof and manufacture of semiconductor device | |
JPH10303097A (en) | Projection exposure device, exposure method, manufacture of semiconductor device, and manufacture of projection optical system | |
JP2006120985A (en) | Illumination optical device, and exposure apparatus and method | |
US7307693B2 (en) | Illumination optical device, photolithography machine, and exposure method | |
KR101369132B1 (en) | Microlithographic projection illumination system, and method for producing microstructured components | |
JP3261684B2 (en) | Projection exposure apparatus and semiconductor device manufacturing method | |
JPH11340138A (en) | Removal of standing wave existing in photoresist | |
JPH11191525A (en) | Projection aligner | |
JP2007012637A (en) | Optical material, optical member, optical system, aligner, and exposure method | |
KR20220000809A (en) | Method of manufacturing transmission type optical element, exposure apparatus, method of manufacturing article, and transmission type optical element | |
JP2001093796A (en) | Projection aligner |