JPH10316615A - Production of 2,6-naphthalenedicarboxylic acid - Google Patents
Production of 2,6-naphthalenedicarboxylic acidInfo
- Publication number
- JPH10316615A JPH10316615A JP9131033A JP13103397A JPH10316615A JP H10316615 A JPH10316615 A JP H10316615A JP 9131033 A JP9131033 A JP 9131033A JP 13103397 A JP13103397 A JP 13103397A JP H10316615 A JPH10316615 A JP H10316615A
- Authority
- JP
- Japan
- Prior art keywords
- oxidation reaction
- manganese
- cobalt
- naphthalenedicarboxylic acid
- mother liquor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、2,6-ジメチルナフ
タレンの液相酸化による2,6-ナフタレンジカルボン酸を
製造する方法に関し、詳しくは酸化触媒を再利用するた
めに液相酸化により得られる2,6-ナフタレンジカルボン
酸の結晶を分離した母液 (以下、酸化反応母液と称す)
を効率良く反応系に戻す方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing 2,6-naphthalenedicarboxylic acid by liquid phase oxidation of 2,6-dimethylnaphthalene, and more particularly to a method for producing 2,6-naphthalenedicarboxylic acid by liquid phase oxidation in order to reuse an oxidation catalyst. Mother liquor from which 2,6-naphthalenedicarboxylic acid crystals separated (hereinafter referred to as oxidation reaction mother liquor)
To a reaction system efficiently.
【0002】[0002]
【従来の技術】2,6-ナフタレンジカルボン酸及びそのエ
ステルは、高機能性ポリエステルの原料として有用な物
質である。2,6-ナフタレンジカルボン酸は、2,6-ジアル
キルナフタレンを低級脂肪族カルボン酸を含む溶媒中で
コバルト、マンガン及び臭素を含む触媒を用いて酸化す
ることにより製造される(特公昭48-43893号、特開昭62
-212345 号、特開平3-220157号、特開平4-266846号
等)。2. Description of the Related Art 2,6-Naphthalenedicarboxylic acid and its esters are useful substances as raw materials for high-performance polyesters. 2,6-Naphthalenedicarboxylic acid is produced by oxidizing 2,6-dialkylnaphthalene in a solvent containing a lower aliphatic carboxylic acid using a catalyst containing cobalt, manganese and bromine (JP-B-48-43893). No., JP 62
-212345, JP-A-3-220157, JP-A-4-266846, etc.).
【0003】この酸化反応においてはナフタレン環自体
も酸化を受け易く、トリメリット酸が生成される。トリ
メリット酸は酸化用金属触媒と強固な錯体を形成し易
い。このような錯体化した金属は2,6-ナフタレンジカル
ボン酸から除去することが困難である。また2,6-ナフタ
レンジカルボン酸を結晶を分離した母液には有用な酸化
用金属触媒と共にトリメリット酸を含有するが、酸化反
応系に戻すと酸化用金属触媒と錯体を形成し、酸化用金
属触媒を失活させる。[0003] In this oxidation reaction, the naphthalene ring itself is also easily oxidized, and trimellitic acid is produced. Trimellitic acid tends to form a strong complex with the metal catalyst for oxidation. Such complexed metals are difficult to remove from 2,6-naphthalenedicarboxylic acid. The mother liquor from which crystals of 2,6-naphthalenedicarboxylic acid have been separated contains trimellitic acid together with a useful metal catalyst for oxidation, but when returned to the oxidation reaction system, forms a complex with the metal catalyst for oxidation to form a metal with oxidation. Deactivate the catalyst.
【0004】このようなトリメリット酸による酸化用金
属触媒の失活に対して、特表平6-509823号では酸化反応
母液を高温熱処理してトリメリット酸を減少させ、反応
系に戻すことが記載されている。また特表平6-503586号
では酸化反応母液を酸化反応に循環するに際し、酸化反
応生成物中におけるコバルトおよびマンガンの合計グラ
ム原子数に対するトリメリット酸のグラムモル数の比を
約1.0 未満とすることが記載している。To deal with such deactivation of the oxidation metal catalyst by trimellitic acid, Japanese Patent Application Laid-Open No. 6-509823 discloses that the oxidation reaction mother liquor is subjected to high-temperature heat treatment to reduce trimellitic acid and return to the reaction system. Have been described. According to Japanese Patent Publication No. 6-503586, the ratio of gram moles of trimellitic acid to the total gram atoms of cobalt and manganese in the oxidation reaction product should be less than about 1.0 when the oxidation reaction mother liquor is recycled to the oxidation reaction. Has been described.
【0005】また特開平4-266846号には2,6-ジアルキル
ナフタレンを低級脂肪族カルボン酸を含む溶媒中でコバ
ルト、マンガン及び臭素を含む触媒が溶解した溶液中で
分子状酸素含有ガスにより酸化して2,6-ナフタレンジカ
ルボン酸を製造する方法において、酸化反応母液を酸化
反応に再使用することが記載されている。特開平7-4831
4 号には2,6-ジメチルナフタレンを低級脂肪族カルボン
酸を含む溶媒中で重金属及び臭素を含む触媒が溶解した
溶液中で分子状酸素含有ガスにより酸化する方法におい
て、触媒を循環再使用するに際し、溶媒中に含まれる重
金属のオルソ−ベンゼンジカルボン酸錯体を除いた重金
属触媒濃度が 0.2重量% 以上になるように触媒を補充す
ることが記載されている。JP-A-4-266846 discloses that a 2,6-dialkylnaphthalene is oxidized by a molecular oxygen-containing gas in a solution containing a catalyst containing cobalt, manganese and bromine in a solvent containing a lower aliphatic carboxylic acid. In the process for producing 2,6-naphthalenedicarboxylic acid, it is described that the mother liquor of the oxidation reaction is reused in the oxidation reaction. JP 7-4831
No. 4 circulates and reuses 2,6-dimethylnaphthalene in a method in which a catalyst containing heavy metals and bromine is dissolved in a solvent containing a lower aliphatic carboxylic acid in a solvent containing a lower aliphatic carboxylic acid with a molecular oxygen-containing gas. In this case, it is described that the catalyst is replenished so that the concentration of the heavy metal catalyst excluding the heavy metal ortho-benzenedicarboxylic acid complex contained in the solvent becomes 0.2% by weight or more.
【0006】[0006]
【発明が解決しようとする課題】前記の特表平6-509823
号により酸化反応母液を高温熱処理するためには新たな
設備が必要であり、高温で臭素化合物の存在下での熱処
理であるから高級材質の装置となる。特表平6-503586号
における直接酸化反応器に循環される酸化反応母液の好
ましい割合は約10〜約30% であり、残部はシュウ酸処理
が必要である。特開平4-266846号では酸化反応母液を酸
化反応に再使用することで収率が向上するとされてお
り、原料に2,6-ジイソプロピルナフタレンおよびジエチ
ルナフタレンを用いた実施例が示されているが、本発明
者らがジメチルナフタレンで実験を行った結果では収率
の向上が得られなかった。また本発明者らが特開平7-48
314 号により、溶媒中に含まれる重金属のオルソ−ベン
ゼンジカルボン酸錯体を除いた重金属触媒濃度が 0.2重
量% 以上になるように触媒を補充しても収率の向上が得
られなかった。[Problems to be Solved by the Invention]
In order to heat-treat the oxidation reaction mother liquor at a high temperature, new equipment is required. Since the heat treatment is performed at a high temperature in the presence of a bromine compound, the apparatus is made of a high quality material. The preferred ratio of the mother liquor of the oxidation reaction which is circulated to the direct oxidation reactor in Japanese Patent Publication No. 6-503586 is about 10 to about 30%, and the rest requires oxalic acid treatment. Japanese Patent Application Laid-Open No. 4-266846 discloses that the yield is improved by reusing the mother liquor of the oxidation reaction for the oxidation reaction, and an example using 2,6-diisopropylnaphthalene and diethylnaphthalene as raw materials is disclosed. As a result of an experiment conducted by the present inventors using dimethylnaphthalene, no improvement in yield was obtained. In addition, the present inventors disclosed in JP-A-7-48
According to No. 314, improvement in the yield was not obtained even if the catalyst was replenished so that the concentration of the heavy metal catalyst excluding the ortho-benzenedicarboxylic acid complex of the heavy metal contained in the solvent was 0.2% by weight or more.
【0007】酸化反応母液を循環使用することにより酸
化反応母液中の触媒成分や溶媒成分が有効に利用され、
また該酸化反応母液中に含まれる原料成分や中間体およ
び2,6-ナフタレンジカルボン酸の微粒子などが回収され
ることになるから、循環率をできるだけ高めることが望
ましい。しかしながら、該酸化反応母液中に上記の如き
有用な成分と共に、低レベルの不純物と副生物を含み、
酸化反応を阻害する物質が蓄積することになるので収率
の低下をもたらすことになる。本発明の目的は、ジメチ
ルナフタレンの液相酸化反応において酸化反応母液を循
環使用するに際して、酸化反応を阻害する物質の蓄積を
防ぎ、高収率を維持することができる2,6-ナフタレンジ
カルボン酸の製造法を提供することにある。[0007] By circulating the oxidation reaction mother liquor, the catalyst component and the solvent component in the oxidation reaction mother liquor are effectively used,
Since the raw material components and intermediates contained in the mother liquor of the oxidation reaction and the fine particles of 2,6-naphthalenedicarboxylic acid are collected, it is desirable to increase the circulation rate as much as possible. However, the oxidation reaction mother liquor contains low levels of impurities and by-products together with the useful components as described above,
Substances that inhibit the oxidation reaction will accumulate, resulting in a decrease in yield. An object of the present invention is to provide a 2,6-naphthalenedicarboxylic acid capable of preventing the accumulation of substances that inhibit the oxidation reaction and maintaining a high yield when using the oxidation reaction mother liquor in the liquid phase oxidation reaction of dimethylnaphthalene. It is to provide a manufacturing method of.
【0008】[0008]
【課題を解決するための手段】本発明者らは上記の如き
課題を有する2,6-ナフタレンジカルボン酸の製造法につ
いて鋭意検討した結果、特定の触媒条件、特にマンガン
濃度を高め、これと酸化条件を組み合わせることによ
り、酸化反応を阻害する物質の蓄積が回避され、2,6-ナ
フタレンジカルボン酸の収率を低下させることなく、酸
化反応母液を高比率で酸化反応器にリサイクルできるこ
とを見出し、本発明に到達した。Means for Solving the Problems The present inventors have conducted intensive studies on a method for producing 2,6-naphthalenedicarboxylic acid having the above-mentioned problems, and as a result, increased the manganese concentration under specific catalyst conditions, By combining the conditions, accumulation of substances that inhibit the oxidation reaction is avoided, and it has been found that the oxidation reaction mother liquor can be recycled to the oxidation reactor at a high ratio without lowering the yield of 2,6-naphthalenedicarboxylic acid, The present invention has been reached.
【0009】即ち本発明は、2,6-ジメチルナフタレンを
低級脂肪族カルボン酸を含む溶媒中でコバルト、マンガ
ン及び臭素を含む触媒の存在下に酸素含有ガスにより酸
化して2,6-ナフタレンジカルボン酸を製造するに際し
て、触媒成分のコバルト及びマンガンの合計量が2,6-ジ
メチルナフタレンの1グラムモル当たり50〜300 ミリグ
ラム原子で、かつコバルトに対するマンガンの原子比が
1:20〜1:4 であって、酸化反応を 200〜250 ℃の温度で
行うことを特徴とする2,6-ナフタレンジカルボン酸の製
造法である。That is, according to the present invention, 2,6-dimethylnaphthalene is oxidized with an oxygen-containing gas in a solvent containing a lower aliphatic carboxylic acid in the presence of a catalyst containing cobalt, manganese and bromine to form 2,6-naphthalenedicarboxylic acid. In producing the acid, the total amount of cobalt and manganese in the catalyst component is 50-300 milligram atoms per gram mole of 2,6-dimethylnaphthalene and the atomic ratio of manganese to cobalt is
1:20 to 1: 4, wherein the oxidation reaction is carried out at a temperature of 200 to 250 ° C., which is a process for producing 2,6-naphthalenedicarboxylic acid.
【0010】[0010]
【発明の実施の形態】本発明で酸化反応の原料として用
いる2,6-ジメチルナフタレンの純度は、好ましくは98
重量%以上であり、より好ましくは99重量%以上であ
る。酸化反応母液を高比率で、収率を低下させることな
く酸化反応器にリサイクル使用するために、本発明で酸
化反応の原料として用いる2,6-ジメチルナフタレンの純
度を高くすることが好ましい。酸化反応の溶媒としては
蟻酸、酢酸、プロピオン酸、酪酸等の低級脂肪族カルボ
ン酸が用いられるが、酢酸が最も好ましい。溶媒には水
が含有されていても良いが、その含有量は酸化反応領域
に添加する低級脂肪族カルボン酸と水の合計量に対し
て、1〜20重量%、好ましくは1〜15重量%、更に
好ましくは1〜10重量%である。また酸化反応領域に
添加する低級脂肪族カルボン酸と2,6-ジメチルナフタレ
ンとの比は、2:1〜12:1の範囲であり、好ましく
は2:1〜6:1の範囲である。BEST MODE FOR CARRYING OUT THE INVENTION The purity of 2,6-dimethylnaphthalene used as a raw material for an oxidation reaction in the present invention is preferably 98%.
% By weight or more, more preferably 99% by weight or more. In order to recycle the oxidation reaction mother liquor at a high ratio without reducing the yield in the oxidation reactor, it is preferable to increase the purity of 2,6-dimethylnaphthalene used as a raw material for the oxidation reaction in the present invention. As the solvent for the oxidation reaction, lower aliphatic carboxylic acids such as formic acid, acetic acid, propionic acid and butyric acid are used, and acetic acid is most preferred. Water may be contained in the solvent, but the content is 1 to 20% by weight, preferably 1 to 15% by weight, based on the total amount of lower aliphatic carboxylic acid and water added to the oxidation reaction zone. And more preferably 1 to 10% by weight. The ratio of the lower aliphatic carboxylic acid to 2,6-dimethylnaphthalene added to the oxidation reaction zone is in the range of 2: 1 to 12: 1, preferably in the range of 2: 1 to 6: 1.
【0011】酸化触媒としては、コバルト化合物、マン
ガン化合物及び臭素化合物が用いられるが、必要に応じ
てこれに鉄、セリウム、ニッケル、パラジウム等の重金
属化合物を添加しても良い。これらのコバルト、マンガ
ン及びその他の重金属化合物として、有機酸塩、水酸化
物、ハロゲン化物、炭酸塩等が例示し得るが、特に酢酸
塩及び臭化物が好ましい。また臭素化合物は、反応系で
溶解し臭素イオンを発生するものであれば如何なるもの
でも良いが、特に臭化水素、臭化コバルト、臭化マンガ
ンが好ましい。As the oxidation catalyst, a cobalt compound, a manganese compound and a bromine compound are used. If necessary, heavy metal compounds such as iron, cerium, nickel and palladium may be added. As these cobalt, manganese and other heavy metal compounds, organic acid salts, hydroxides, halides, carbonates and the like can be exemplified, but acetates and bromides are particularly preferred. The bromine compound may be any compound as long as it dissolves in the reaction system to generate bromine ions, but hydrogen bromide, cobalt bromide and manganese bromide are particularly preferable.
【0012】本発明において酸化反応母液のリサイクル
によるトリメリット酸などの反応阻害物質の蓄積を避け
るために、触媒成分の適切な添加量が特に重要である。
金属触媒の使用量は、2,6-ジメチルナフタレンの1グラ
ムモル当たりのコバルトとマンガンの合計量として50〜
300 ミリグラム原子、好ましくは 100〜250 ミリグラム
原子である。この金属触媒の使用量は従来の酸化反応母
液のリサイクルを行わない場合と比較して20〜40% 程度
増加したものであり、このように金属触媒の使用量を増
加することが、酸化反応母液をリサイクルした時のトリ
メリット酸などの反応阻害物質の蓄積による悪影響を削
減する効果を有する。In the present invention, in order to avoid accumulation of a reaction inhibitor such as trimellitic acid due to recycling of the oxidation reaction mother liquor, an appropriate amount of the catalyst component is particularly important.
The amount of the metal catalyst used is 50 to 50 as the total amount of cobalt and manganese per gram mole of 2,6-dimethylnaphthalene.
300 milligram atoms, preferably 100-250 milligram atoms. The amount of the metal catalyst used was increased by about 20 to 40% as compared with the case where the conventional oxidation reaction mother liquor was not recycled. It has the effect of reducing the adverse effects caused by the accumulation of reaction inhibiting substances such as trimellitic acid when recycled.
【0013】酸化触媒中のマンガンとコバルトの原子比
は20:1〜4:1 、好ましくは12:1〜5:1 である。従来の2,
6-ジメチルナフタレンの液相酸化におけるマンガンとコ
バルトの原子比は3:1 程度であり、これに対して本発明
によりマンガンの比率を高めることによってトリメリッ
ト酸の生成量が低下する。またマンガンはコバルトより
もトリメリット酸との錯体を形成しやすく、このような
トリメリット酸との錯体は2,6-ナフタレンジカルボン酸
の結晶と共に酸化反応母液から分離されるので、マンガ
ンの比率を高めることによって酸化反応母液をリサイク
ルした時の酸化反応におけるトリメリット酸の蓄積が低
下することになる。The atomic ratio of manganese to cobalt in the oxidation catalyst is between 20: 1 and 4: 1, preferably between 12: 1 and 5: 1. Conventional 2,
The atomic ratio of manganese to cobalt in the liquid phase oxidation of 6-dimethylnaphthalene is about 3: 1. On the other hand, by increasing the ratio of manganese according to the present invention, the amount of trimellitic acid produced decreases. Manganese is also more likely to form a complex with trimellitic acid than cobalt, and such a complex with trimellitic acid is separated from the mother liquor of the oxidation reaction together with the crystals of 2,6-naphthalenedicarboxylic acid. By increasing the value, the accumulation of trimellitic acid in the oxidation reaction when the oxidation reaction mother liquor is recycled is reduced.
【0014】トリメリット酸の金属塩を含んだ2,6-ナフ
タレンジカルボン酸は、2,6-ナフタレンジカルボン酸を
アルコールでエステル化して有機溶媒に溶解し易い2,6-
ナフタレンジカルボン酸エステルとして不溶性の金属塩
と分離する等の方法により、金属塩の除去を容易に分離
することができる。従ってマンガンの比率を高めること
によって2,6-ナフタレンジカルボン酸の結晶に同伴する
金属塩が増加することになるが、該金属塩は容易に分離
できることから、2,6-ナフタレンジカルボン酸の精製工
程への影響は少なく、酸化反応母液のリサイクルを有利
に行うことができる。2,6-Naphthalenedicarboxylic acid containing a metal salt of trimellitic acid is easy to be dissolved in an organic solvent by esterifying 2,6-naphthalenedicarboxylic acid with an alcohol.
The removal of the metal salt can be easily separated by a method such as separation from the insoluble metal salt as a naphthalenedicarboxylic acid ester. Therefore, by increasing the ratio of manganese, the amount of metal salt accompanying the crystal of 2,6-naphthalenedicarboxylic acid increases, but since the metal salt can be easily separated, the purification step of 2,6-naphthalenedicarboxylic acid is performed. The effect on the oxidation reaction mother liquor can be advantageously reduced.
【0015】酸化触媒中の臭素成分は2,6-ジメチルナフ
タレンの1グラムモル当たり 1〜500 ミリグラム原子、
好ましくは10〜300 ミリグラム原子である。臭素成分が
少な過ぎると、酸化反応母液のリサイクル率を高めた時
の2,6-ナフタレンジカルボン酸の収率が低下する。また
臭素成分が多過ぎると、ブロモナフタレンジカルボン酸
などの臭素化合物の副生が多くなる。The bromine component in the oxidation catalyst is 1-500 milligram atoms per gram mole of 2,6-dimethylnaphthalene,
Preferably it is 10 to 300 milligram atoms. When the bromine component is too small, the yield of 2,6-naphthalenedicarboxylic acid when the recycling rate of the oxidation reaction mother liquor is increased is lowered. On the other hand, if the bromine component is too large, a by-product of a bromine compound such as bromonaphthalenedicarboxylic acid increases.
【0016】本発明で使用される酸素含有ガスとしては
酸素ガスまたは酸素を窒素、アルゴン等の不活性ガスと
混合したガスが挙げられるが、空気が最も一般的であ
る。酸化反応器としては攪拌槽や気泡塔などが用いられ
るが、反応器内の攪拌を充分に行うために攪拌槽が好適
に使用される。反応の形式としては半回分方式または連
続方式が好適に用いられる。半回分方式では酸化反応を
完結させるために、原料の供給を停止した後 5〜60分
間、酸素含有ガスの供給を継続することが望ましい。連
続方式では反応収率を高めるために複数の反応器を直列
に設けて逐次反応を行うようにすることが望ましい。The oxygen-containing gas used in the present invention includes oxygen gas or a gas obtained by mixing oxygen with an inert gas such as nitrogen or argon, and air is the most common. As the oxidation reactor, a stirring tank or a bubble column is used, but a stirring tank is preferably used to sufficiently stir the inside of the reactor. As a reaction system, a semi-batch system or a continuous system is suitably used. In the semi-batch mode, it is desirable to stop supplying the raw material and continue supplying the oxygen-containing gas for 5 to 60 minutes in order to complete the oxidation reaction. In the continuous system, it is desirable to provide a plurality of reactors in series to perform a sequential reaction in order to increase the reaction yield.
【0017】酸化反応の温度は 200〜250 ℃、好ましく
は 200〜240 ℃である。反応温度が低過ぎると、酸化反
応母液のリサイクルを繰り返す時に反応阻害物質の蓄積
が生じ、2,6-ナフタレンジカルボン酸の収率が低下す
る。反応温度が高過ぎると、溶媒の低級脂肪族カルボン
酸の燃焼損失が大きくなる。従って酸化反応の温度は、
反応阻害物質の燃焼を生じつつ、2,6-ナフタレンジカル
ボン酸の収率が低下せずに、且つ溶媒の低級脂肪族カル
ボン酸の燃焼損失が許容できる範囲とする必要があり、
本発明の方法で酸化反応母液のリサイクルを行う場合に
極めて重要で、適切な温度として上記の温度範囲が選定
される。The temperature of the oxidation reaction is from 200 to 250 ° C., preferably from 200 to 240 ° C. If the reaction temperature is too low, the accumulation of the reaction inhibitor occurs when the recycling of the mother liquor of the oxidation reaction is repeated, and the yield of 2,6-naphthalenedicarboxylic acid decreases. If the reaction temperature is too high, the combustion loss of the lower aliphatic carboxylic acid in the solvent will increase. Therefore, the temperature of the oxidation reaction is
While the combustion of the reaction inhibitor occurs, the yield of 2,6-naphthalenedicarboxylic acid must not be reduced, and the combustion loss of the lower aliphatic carboxylic acid in the solvent must be within an acceptable range,
The above temperature range is extremely important when the oxidation reaction mother liquor is recycled by the method of the present invention, and an appropriate temperature is selected.
【0018】酸化反応では酸素含有ガスを反応器に連続
的に供給し、反応後のガスは圧力が5〜40 kg/cm2 G 、
好ましくは10〜30 kg/cm2 G となるように連続的に反応
器から抜き出される。該反応器には還流冷却器を設け、
排ガスに同伴される多量の溶媒及び酸化反応で生成する
水を凝縮させる。凝縮した溶媒および水は通常反応器に
還流されるが、反応器内の水分濃度を調整するために、
その一部を反応系外に抜き出すことも行われる。反応器
からの排ガス中の酸素濃度は 0.1〜8 容量%(乾ガス基
準) 、好ましくは 1〜5 容量%(乾ガス基準) である。In the oxidation reaction, an oxygen-containing gas is continuously supplied to the reactor, and the gas after the reaction has a pressure of 5 to 40 kg / cm 2 G,
It is preferably continuously withdrawn from the reactor to a pressure of 10 to 30 kg / cm 2 G. The reactor is provided with a reflux condenser,
A large amount of solvent entrained in the exhaust gas and water generated by the oxidation reaction are condensed. The condensed solvent and water are usually refluxed to the reactor, but in order to adjust the water concentration in the reactor,
Part of the reaction is also taken out of the reaction system. The oxygen concentration in the exhaust gas from the reactor is 0.1 to 8% by volume (dry gas basis), preferably 1 to 5% by volume (dry gas basis).
【0019】酸化反応器における原料2,6-ジメチルナフ
タレンのスループット量 (単位時間当たり反応器内の単
位液量への添加量) は50〜500 kg/m3 hrである。このス
ループット量は反応器の生産性の尺度となる。酸化反応
で生成した2,6-ナフタレンジカルボン酸はスラリー状で
あり、通常減圧冷却して晶析槽を経て、遠心沈降、遠心
濾過、真空濾過等の固液分離機で2,6-ナフタレンジカル
ボン酸と酸化反応母液が分離される。The throughput of the starting material 2,6-dimethylnaphthalene in the oxidation reactor (the amount added to the unit liquid amount in the reactor per unit time) is 50 to 500 kg / m 3 hr. This throughput is a measure of the productivity of the reactor. The 2,6-naphthalenedicarboxylic acid produced by the oxidation reaction is in the form of a slurry, and is usually cooled under reduced pressure, passed through a crystallization tank, and subjected to 2,6-naphthalenedicarboxylic acid by a solid-liquid separator such as centrifugal sedimentation, centrifugal filtration, and vacuum filtration. The acid and the oxidation reaction mother liquor are separated.
【0020】該酸化反応母液は溶媒の低級脂肪族カルボ
ン酸と水に、酸化反応用金属触媒や臭素化合物と、未反
応2,6-ジメチルナフタレンや酸化反応中間体など有効成
分が多く含まれると共に、トリメリット酸のような反応
阻害物も含まれている。酸化反応母液中に含まれる水は
反応系に添加されたもの以外に、酸化反応により生成す
る水も含まれる。従って酸化反応母液を直接反応器に戻
す場合、酸化反応混合物から水を除去する必要がある。
本発明の方法により酸化反応母液を大量に反応器に戻す
場合、酸化反応の際に発熱して生成した低級脂肪族カル
ボン酸と水を含む蒸気混合物を抜き出し、蒸留により酸
化反応により生成した水を除去する操作をした後、酸化
反応器に戻すようにすることが望ましい。The mother liquor of the oxidation reaction contains a lower aliphatic carboxylic acid as a solvent and water, a metal catalyst and a bromine compound for the oxidation reaction, and many active ingredients such as unreacted 2,6-dimethylnaphthalene and an oxidation reaction intermediate. And a reaction inhibitor such as trimellitic acid. The water contained in the oxidation reaction mother liquor includes water generated by the oxidation reaction in addition to water added to the reaction system. Therefore, when returning the oxidation reaction mother liquor directly to the reactor, it is necessary to remove water from the oxidation reaction mixture.
When a large amount of the mother liquor of the oxidation reaction is returned to the reactor according to the method of the present invention, a vapor mixture containing lower aliphatic carboxylic acid and water generated by heat generation during the oxidation reaction is extracted, and water generated by the oxidation reaction by distillation is removed. After the removal operation, it is desirable to return to the oxidation reactor.
【0021】本発明により2,6-ジメチルナフタレンの液
相酸化において特定の触媒条件と酸化条件を組み合わせ
ることによって、2,6-ナフタレンジカルボン酸の結晶を
分離する際に生ずる酸化反応母液の40%以上、必要に
応じて酸化反応母液のほぼ100%を酸化反応器に直接
リサイクルすることができる。なお2,6-ナフタレンジカ
ルボン酸の結晶に同伴するトリメリット酸の金属錯塩
は、2,6-ナフタレンジカルボン酸をアルコールでエステ
ル化して有機溶媒に溶解し易い2,6-ナフタレンジカルボ
ン酸エステルとすることにより、該金属錯塩を不溶性物
質として容易に分離される。即ち2,6-ナフタレンジカル
ボン酸のエステル化反応の過程でトリメリット酸等の金
属塩は2,6-ナフタレンジカルボン酸の金属塩に変化し、
不溶性の金属塩をそのまま酸化反応に戻してもトリメリ
ット酸の蓄積はなく、マンガンやコバルトを有利に回収
することができる。According to the present invention, in the liquid phase oxidation of 2,6-dimethylnaphthalene, by combining specific catalyst conditions and oxidation conditions, 40% of the oxidation reaction mother liquor generated when separating the crystals of 2,6-naphthalenedicarboxylic acid is obtained. As described above, if necessary, almost 100% of the mother liquor of the oxidation reaction can be directly recycled to the oxidation reactor. The metal complex salt of trimellitic acid that accompanies the crystal of 2,6-naphthalenedicarboxylic acid is esterified with 2,6-naphthalenedicarboxylic acid with an alcohol to form 2,6-naphthalenedicarboxylic acid ester that is easily dissolved in an organic solvent. Thereby, the metal complex salt is easily separated as an insoluble substance. That is, during the esterification reaction of 2,6-naphthalenedicarboxylic acid, a metal salt such as trimellitic acid changes to a metal salt of 2,6-naphthalenedicarboxylic acid,
Even if the insoluble metal salt is returned to the oxidation reaction as it is, there is no accumulation of trimellitic acid, and manganese and cobalt can be advantageously recovered.
【0022】[0022]
【実施例】次に実施例によって本発明を具体的に説明す
る。なお本発明は、これらの実施例により制限されるも
のではない。なお、以下の実施例および比較例におい
て、リサイクル試験には得られた母液の全量を再使用し
て、結晶に付着した分の金属塩は酢酸コバルト 4水塩お
よび酢酸マンガン 4水塩を補充し、臭素は臭素イオンで
一定になるように臭化水素酸を補充した。また、次の略
号を用いた。 NDCA: 2,6-ナフタレンジカルボン酸 TMA : トリメリット酸 ALAC: ホルミルナフトエ酸Next, the present invention will be described in detail with reference to examples. Note that the present invention is not limited by these examples. In the following Examples and Comparative Examples, the entire amount of the mother liquor obtained in the recycling test was reused, and the metal salts attached to the crystals were supplemented with cobalt acetate tetrahydrate and manganese acetate tetrahydrate. The bromine was replenished with hydrobromic acid so as to be constant with bromine ions. The following abbreviations were used. NDCA: 2,6-Naphthalenedicarboxylic acid TMA: Trimellitic acid ALAC: Formylnaphthoic acid
【0023】実施例1 原料供給口、溶媒供給口、ガス供給口、ガス排出口、反
応生成物抜出口、還流冷却器、電磁撹拌機、加熱装置お
よび液面検出装置を有する2000mlのチタン製オートクレ
ーブに、酢酸、酢酸コバルト 4水塩、酢酸マンガン 4水
塩、47重量%臭化水素水溶液及び水を混合し溶解さ
せ、コバルト濃度0.1重量%、マンガン濃度0.6重
量%、臭素濃度0.5重量%、水分濃度3重量%の触媒
液を650g仕込み、ガス供給口から窒素ガスを圧入し
て20 kg/cm2 G に調整し、加熱装置で220℃に加熱
した。温度、圧力が安定した後、純度99.4重量%の
2,6-ジメチルナフタレンを120g/h、上記と同じ組
成の触媒液を720g/hで該オートクレーブに供給す
ると共に空気を導入し、排ガス中の酸素濃度が3%とな
るように調整した。供給開始15分後から反応混合物の
抜出しを開始し、液面を一定に調節しがら原料液と触媒
液の供給を8時間継続した。抜出した反応混合物は70
〜80℃で結晶濾過を行い、結晶と酸化反応母液に分離
した。得られた結晶は乾燥後、分析に供試した。酸化反
応母液の分析し、生成水を蒸発させて調整し、結晶に付
着したコバルト、マンガン、臭素の損失分を補充し、コ
バルト、マンガン、臭素および水分濃度を上記の触媒液
と同様として次のリサイクル試験を繰り返した。結果を
表1に示す。Example 1 A 2000 ml titanium autoclave having a raw material supply port, a solvent supply port, a gas supply port, a gas discharge port, a reaction product outlet, a reflux condenser, an electromagnetic stirrer, a heating device and a liquid level detection device. Acetic acid, cobalt acetate tetrahydrate, manganese acetate tetrahydrate, a 47% by weight aqueous solution of hydrogen bromide and water are mixed and dissolved to obtain a cobalt concentration of 0.1% by weight, a manganese concentration of 0.6% by weight, and a bromine concentration of 0%. 650 g of a catalyst liquid having a concentration of 0.5% by weight and a water concentration of 3% by weight were charged, nitrogen gas was injected into the gas supply port to adjust the pressure to 20 kg / cm 2 G, and the mixture was heated to 220 ° C. by a heating device. After the temperature and pressure are stabilized, the purity is 99.4% by weight.
The autoclave was supplied with 2,6-dimethylnaphthalene at 120 g / h and a catalyst solution having the same composition as above at 720 g / h, and air was introduced to adjust the oxygen concentration in the exhaust gas to 3%. Withdrawal of the reaction mixture was started 15 minutes after the start of the supply, and the supply of the raw material liquid and the catalyst liquid was continued for 8 hours while keeping the liquid level constant. The extracted reaction mixture is 70
Crystal filtration was performed at 80 ° C. to separate the crystal from the mother liquor of the oxidation reaction. The obtained crystals were dried and subjected to analysis. The oxidation reaction mother liquor is analyzed and adjusted by evaporating the generated water, replenishing the loss of cobalt, manganese, and bromine adhered to the crystals. The recycling test was repeated. Table 1 shows the results.
【0024】[0024]
【表1】 リサイクル数 0 1 2 3 4 NDCA(mol%) 93.9 93.1 93.5 92.8 92.8 TMA (mol%) 1.98 2.49 2.36 2.56 2.50 ALAC(mol%) 0.20 0.24 0.19 0.20 0.20 実施例1において2,6-ジメチルナフタレンの1グラムモ
ル当たりのコバルト及びマンガンの合計量は 118ミリグ
ラム原子であり、コバルトに対するマンガンの原子比は
1:6.43 である。表1より 4回の酸化反応母液の繰り返
し使用を行っても、NDCA収率は殆ど低下せず、また TMA
の副生もほぼ一定値を示している。[Table 1] Number of recycles 0 1 2 3 4 NDCA (mol%) 93.9 93.1 93.5 92.8 92.8 TMA (mol%) 1.98 2.49 2.36 2.56 2.50 ALAC (mol%) 0.20 0.24 0.19 0.20 0.20 2,6-dimethyl in Example 1 The total amount of cobalt and manganese per gram mole of naphthalene is 118 milligram atoms, and the atomic ratio of manganese to cobalt is
1: 6.43. According to Table 1, even if the oxidation reaction mother liquor is used repeatedly four times, the NDCA yield hardly decreases and the TMA
The by-product also shows a substantially constant value.
【0025】比較例1 触媒液をコバルト濃度0.24重量%、マンガン濃度
0.47重量%、臭素濃度0.5重量%、水分濃度3重
量%とした以外は実施例1と同様としてリサイクル試験
を繰り返した。結果を表2に示す。Comparative Example 1 A recycle test was conducted in the same manner as in Example 1 except that the catalyst solution was changed to a cobalt concentration of 0.24% by weight, a manganese concentration of 0.47% by weight, a bromine concentration of 0.5% by weight, and a water concentration of 3% by weight. Was repeated. Table 2 shows the results.
【表2】リサイクル数 0 1 2 3 NDCA(mol%) 93.21 92.19 91.50 90.31 TMA (mol%) 2.23 3.18 3.70 4.36 ALAC(mol%) 0.51 0.58 0.81 0.78 比較例1において2,6-ジメチルナフタレンの1グラムモ
ル当たりのコバルト及びマンガンの合計量は 118ミリグ
ラム原子であり、コバルトに対するマンガンの原子比は
1:2.12 である。表2より酸化反応母液の繰り返し使用
を行うことによりALACの割合が多くなり、 TMAの副生量
が増大し、NDCA収率が低下している。[Table 2] Recycled number 0 1 2 3 NDCA (mol%) 93.21 92.19 91.50 90.31 TMA (mol%) 2.23 3.18 3.70 4.36 ALAC (mol%) 0.51 0.58 0.81 0.78 1 gram mole of 2,6-dimethylnaphthalene in Comparative Example 1 The total amount of cobalt and manganese per unit is 118 milligram atoms, and the atomic ratio of manganese to cobalt is
1: 2.12. As shown in Table 2, by repeatedly using the mother liquor of the oxidation reaction, the proportion of ALAC was increased, the amount of TMA by-product was increased, and the NDCA yield was reduced.
【0026】実施例2 触媒液をコバルト濃度0.12重量%、マンガン濃度
0.9重量%、臭素濃度0.5重量%、水分濃度3重量
%とし、触媒液を480kg/hで供給した以外は実施
例1と同様としてリサイクル試験を繰り返した。結果を
表3に示す。Example 2 Except that the catalyst solution was made 0.12% by weight of cobalt, 0.9% by weight of manganese, 0.5% by weight of bromine and 3% by weight of water, and the catalyst solution was supplied at 480 kg / h. The recycle test was repeated as in Example 1. Table 3 shows the results.
【表3】 リサイクル数 0 1 2 3 4 NDCA(mol%) 93.7 93.3 93.0 92.5 92.5 TMA (mol%) 2.23 2.76 2.91 3.13 3.00 ALAC(mol%) 0.19 0.24 0.48 0.17 0.20 実施例2において2,6-ジメチルナフタレンの1グラムモ
ル当たりのコバルト及びマンガンの合計量は 115ミリグ
ラム原子であり、コバルトに対するマンガンの原子比は
1:8.04 である。表3より 4回の酸化反応母液の繰り返
し使用を行っても、NDCA収率は殆ど低下せず、また TMA
の副生もほぼ一定値を示している。[Table 3] Number of recycles 0 1 2 3 4 NDCA (mol%) 93.7 93.3 93.0 92.5 92.5 TMA (mol%) 2.23 2.76 2.91 3.13 3.00 ALAC (mol%) 0.19 0.24 0.48 0.17 0.20 2,6-dimethyl in Example 2 The total amount of cobalt and manganese per gram mole of naphthalene is 115 milligram atoms, and the atomic ratio of manganese to cobalt is
1: 8.04. According to Table 3, the NDCA yield was hardly reduced even if the oxidation reaction mother liquor was repeatedly used four times.
The by-product also shows a substantially constant value.
【0027】比較例2 実施例2において、反応温度195℃、圧力18 kg/cm
2 G とした。結果を表4に示す。Comparative Example 2 In Example 2, the reaction temperature was 195 ° C. and the pressure was 18 kg / cm.
2 G. Table 4 shows the results.
【表4】 リサイクル数 0 1 2 3 4 NDCA(mol%) 92.5 91.6 90.9 89.8 89.8 TMA (mol%) 3.22 3.67 4.23 4.76 5.03 ALAC(mol%) 0.66 0.24 0.48 0.17 0.40 比較例2において反応温度を195℃とした場合、酸化
反応母液の繰り返し使用を行うことにより TMAの副生量
が増大し、NDCA収率が低下している。[Table 4] Number of recycles 0 1 2 3 4 NDCA (mol%) 92.5 91.6 90.9 89.8 89.8 TMA (mol%) 3.22 3.67 4.23 4.76 5.03 ALAC (mol%) 0.66 0.24 0.48 0.17 0.40 In Comparative Example 2, the reaction temperature was 195 ° C. In this case, by repeatedly using the mother liquor of the oxidation reaction, the amount of TMA by-product increased and the yield of NDCA decreased.
【0028】[0028]
【発明の効果】実施例からも明らかなように、ジメチル
ナフタレンの液相酸化反応において、本発明の方法によ
り特定の触媒条件、特にマンガン濃度を高め、これと酸
化条件を組み合わせることにより、酸化反応を阻害する
物質の蓄積が回避され、反応収率の低下なしに、酸化反
応母液を極めて高比率で循環使用することが出来る。酸
化反応母液を循環使用することにより酸化反応母液中の
触媒成分や溶媒成分が有効に利用され、また該酸化反応
母液中に含まれる原料成分や中間体および2,6-ナフタレ
ンジカルボン酸の微粒子などが回収されることになる。
従って本発明により工業的に極めて有利に2,6-ナフタレ
ンジカルボン酸ジメチルを製造できるようになり、本発
明の工業的意義は大きい。As is clear from the examples, in the liquid phase oxidation reaction of dimethylnaphthalene, the specific catalytic conditions, especially the manganese concentration, are increased by the method of the present invention, and the oxidation reaction is carried out by combining this with the oxidation conditions. Accumulation of substances that inhibit the reaction can be avoided, and the mother liquor of the oxidation reaction can be recycled at an extremely high ratio without lowering the reaction yield. By circulating the oxidation reaction mother liquor, the catalyst component and the solvent component in the oxidation reaction mother liquor are effectively used, and the raw material components and intermediates and the 2,6-naphthalenedicarboxylic acid fine particles contained in the oxidation reaction mother liquor are used. Will be collected.
Therefore, according to the present invention, dimethyl 2,6-naphthalenedicarboxylate can be produced industrially very advantageously, and the present invention has great industrial significance.
Claims (2)
ボン酸を含む溶媒中でコバルト、マンガン及び臭素を含
む触媒の存在下に酸素含有ガスにより酸化して2,6-ナフ
タレンジカルボン酸を製造するに際して、触媒成分のコ
バルト及びマンガンの合計量が2,6-ジメチルナフタレン
の1グラムモル当たり50〜300 ミリグラム原子で、かつ
コバルトに対するマンガンの原子比が1:20〜1:4 であっ
て、酸化反応を 200〜250 ℃の温度で行うことを特徴と
する2,6-ナフタレンジカルボン酸の製造法。1. Production of 2,6-naphthalenedicarboxylic acid by oxidizing 2,6-dimethylnaphthalene with an oxygen-containing gas in a solvent containing a lower aliphatic carboxylic acid in the presence of a catalyst containing cobalt, manganese and bromine The total amount of cobalt and manganese of the catalyst component is 50 to 300 milligram atoms per gram mole of 2,6-dimethylnaphthalene, and the atomic ratio of manganese to cobalt is 1:20 to 1: 4, A process for producing 2,6-naphthalenedicarboxylic acid, wherein the reaction is carried out at a temperature of from 200 to 250 ° C.
ボン酸の結晶を分離した母液の 40%以上を酸化反応器に
循環する請求項1に記載の2,6-ナフタレンジカルボン酸
の製造法。2. The process for producing 2,6-naphthalenedicarboxylic acid according to claim 1, wherein at least 40% of the mother liquor obtained by separating the crystals of 2,6-naphthalenedicarboxylic acid from the oxidation reaction product is recycled to the oxidation reactor. .
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9131033A JPH10316615A (en) | 1997-05-21 | 1997-05-21 | Production of 2,6-naphthalenedicarboxylic acid |
US09/048,494 US6018077A (en) | 1997-04-17 | 1998-03-26 | Process for producing 2,6-naphthalenedicarboxylic acid |
EP98106030A EP0872470B1 (en) | 1997-04-17 | 1998-04-02 | Process for producing 2,6-naphthalenedicarboxylic acid |
DE69810531T DE69810531T2 (en) | 1997-04-17 | 1998-04-02 | Process for the preparation of naphthalene-2,6-dicarboxylic acid |
ES98106030T ES2190554T3 (en) | 1997-04-17 | 1998-04-02 | PROCEDURE TO PRODUCE ACID 2,6-NAFTALENODICARBOXILICO. |
TW087105804A TW446697B (en) | 1997-04-17 | 1998-04-16 | Process for producing 2,6-naphthalenedicarboxylic acid |
KR1019980013779A KR100530340B1 (en) | 1997-04-17 | 1998-04-17 | Method for preparing 2,6-naphthalenedicarboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9131033A JPH10316615A (en) | 1997-05-21 | 1997-05-21 | Production of 2,6-naphthalenedicarboxylic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10316615A true JPH10316615A (en) | 1998-12-02 |
Family
ID=15048458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9131033A Pending JPH10316615A (en) | 1997-04-17 | 1997-05-21 | Production of 2,6-naphthalenedicarboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10316615A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002105018A (en) * | 2000-09-22 | 2002-04-10 | Mitsubishi Gas Chem Co Inc | Method for producing aromatic carboxylic acid |
KR20030069370A (en) * | 2002-02-20 | 2003-08-27 | 주식회사 효성 | Preparation method of naphthalenedicarboxylic acid |
KR20030072789A (en) * | 2002-03-06 | 2003-09-19 | 주식회사 효성 | A process for preparing 2,6-naphthalene dicarboxylic acid |
JP2005239598A (en) * | 2004-02-25 | 2005-09-08 | Mitsubishi Gas Chem Co Inc | Method for producing 1,3-naphthalenedicarboxylic acid |
KR100623849B1 (en) * | 1998-12-24 | 2006-12-19 | 에스케이케미칼주식회사 | Method for producing 2,6-naphthalenedicarboxylic acid |
CN111068790A (en) * | 2018-10-18 | 2020-04-28 | 中国石油化工股份有限公司 | Catalyst for synthesizing 2,6-naphthalene dicarboxylic acid and application thereof |
-
1997
- 1997-05-21 JP JP9131033A patent/JPH10316615A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100623849B1 (en) * | 1998-12-24 | 2006-12-19 | 에스케이케미칼주식회사 | Method for producing 2,6-naphthalenedicarboxylic acid |
JP2002105018A (en) * | 2000-09-22 | 2002-04-10 | Mitsubishi Gas Chem Co Inc | Method for producing aromatic carboxylic acid |
KR20030069370A (en) * | 2002-02-20 | 2003-08-27 | 주식회사 효성 | Preparation method of naphthalenedicarboxylic acid |
KR20030072789A (en) * | 2002-03-06 | 2003-09-19 | 주식회사 효성 | A process for preparing 2,6-naphthalene dicarboxylic acid |
JP2005239598A (en) * | 2004-02-25 | 2005-09-08 | Mitsubishi Gas Chem Co Inc | Method for producing 1,3-naphthalenedicarboxylic acid |
CN111068790A (en) * | 2018-10-18 | 2020-04-28 | 中国石油化工股份有限公司 | Catalyst for synthesizing 2,6-naphthalene dicarboxylic acid and application thereof |
CN111068790B (en) * | 2018-10-18 | 2023-05-02 | 中国石油化工股份有限公司 | Catalyst for synthesizing 2,6-naphthalene dicarboxylic acid and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0021747B1 (en) | Process for the preparation of terephthalic acid | |
US5292934A (en) | Method for preparing aromatic carboxylic acids | |
EP0971872B1 (en) | Process for preparing 2,6-naphthalenedicarboxylic acid | |
EP0562105B1 (en) | Process for preparing 2,6-naphthalenedicarboxylic acid | |
US6153790A (en) | Method to produce aromatic dicarboxylic acids using cobalt and zirconium catalysts | |
EP2292581B1 (en) | Extraction process for removal of impurities from mother liquor in the synthesis of terephthalic acid | |
WO2006096311A1 (en) | Processes for producing terephthalic acid | |
CA2562246C (en) | Recycling 2,6-naphthalenedicarboxylic acid (2,6-nda) contained in polyethylene naphthalate in a process to produce diesters | |
AU2161099A (en) | Method to produce aromatic carboxylic acids | |
US4933491A (en) | Method for purifying a crude naphthalene dicarboxylic acid | |
EP0601177B1 (en) | Method for preparing aromatic carboxylic acids | |
KR100530340B1 (en) | Method for preparing 2,6-naphthalenedicarboxylic acid | |
JPH10316615A (en) | Production of 2,6-naphthalenedicarboxylic acid | |
JP4032186B2 (en) | Method for producing high purity dimethyl 2,6-naphthalenedicarboxylate | |
JP2000143583A (en) | Production of naphtahlenedicarboxylic acid | |
JP4352191B2 (en) | Production of pyromellitic acid | |
JP3187212B2 (en) | Continuous production method of naphthalenedicarboxylic acid | |
JPH08193049A (en) | Production of 2,6-naphthalenedicarboxylic acid and its ester | |
JPH10291958A (en) | Production process of 2,6-naphthalene dicarboxylic acid | |
JPS6229549A (en) | Production of p-toluic acid | |
JPH1129521A (en) | Production of naphthalenedicarboxylic acid | |
JP2005239598A (en) | Method for producing 1,3-naphthalenedicarboxylic acid | |
CZ20002189A3 (en) | Process for preparing aromatic carboxylic acids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040506 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061026 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070402 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070501 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070525 |