Nothing Special   »   [go: up one dir, main page]

JPH10255837A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH10255837A
JPH10255837A JP9076503A JP7650397A JPH10255837A JP H10255837 A JPH10255837 A JP H10255837A JP 9076503 A JP9076503 A JP 9076503A JP 7650397 A JP7650397 A JP 7650397A JP H10255837 A JPH10255837 A JP H10255837A
Authority
JP
Japan
Prior art keywords
aluminum compound
secondary battery
lithium secondary
battery
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9076503A
Other languages
Japanese (ja)
Other versions
JP3316412B2 (en
Inventor
Yoshinori Kida
佳典 喜田
Yoshihiro Shoji
良浩 小路
Masahisa Fujimoto
正久 藤本
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP07650397A priority Critical patent/JP3316412B2/en
Publication of JPH10255837A publication Critical patent/JPH10255837A/en
Application granted granted Critical
Publication of JP3316412B2 publication Critical patent/JP3316412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery which is excellent in both a charging-discharging cycle characteristic and a high rate discharging characteristic by adding an aluminum compound to nonaqueous electrolyte, or covering the surface of a carbon material particle of a negative electrode with it. SOLUTION: A lithium secondary battery is constituted by using a positive electrode using LiCoO2 or the like as an active material, a negative electrode using a carbon material as a lithium ion storage material and nonaqueous electrolyte by dissolving lithium salt in an ethylene carbonate or the like. In that case, an aluminum compound is preferably added by 0.001 to 0.1 mole/l to the nonaqueous electrolyte. Or a particle surface of the carbon material is covered with a coating film having a thickness of about 1 to 500Å of an aluminum compound. AlI3 , Al(OH)3 , AlF3 , Al(PE6 )3 , Al(ClO4 )3 , Al(BF4 )3 , Al(N(CF3 SO2 )2 )3 or the like are preferable as both aluminum compounds. Therefore, the carbon material is protected by a coating film formed at charging time or the coating film, and the degradation is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明はリチウム二次電池に
関する。
TECHNICAL FIELD The present invention relates to a lithium secondary battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
非水電解液を使用するリチウム二次電池が、エネルギー
密度が高く、しかも、アルカリ二次電池と異なり、水の
分解電圧を考慮する必要がないために、正極活物質を適
宜選定することにより高電圧設計が可能であるなどの理
由から、注目されている。
2. Description of the Related Art In recent years,
A lithium secondary battery using a non-aqueous electrolyte has a high energy density and, unlike an alkaline secondary battery, does not require consideration of the decomposition voltage of water. Attention is paid to the reason that voltage design is possible.

【0003】ところで、リチウム二次電池の負極材料と
しては、コークス、黒鉛等の炭素材料が、金属リチウム
と異なり、樹枝状の電析リチウムの成長に因る内部短絡
の虞れがないことから、汎用されている。
As a negative electrode material for a lithium secondary battery, carbon materials such as coke and graphite are different from metallic lithium in that there is no risk of internal short-circuit due to the growth of dendritic lithium. It is widely used.

【0004】しかしながら、炭素材料は非水電解液と反
応して劣化するため、炭素材料を負極に使用したリチウ
ム二次電池は、充放電サイクル特性がそれほど良くな
い。
However, since the carbon material reacts with the non-aqueous electrolyte and deteriorates, the charge / discharge cycle characteristics of the lithium secondary battery using the carbon material for the negative electrode are not so good.

【0005】炭素材料を負極に使用したリチウム二次電
池の充放電サイクル特性を改善すべく、負極をフッ化リ
チウムからなる皮膜で被覆することが提案されている
(特開平7−302617号公報参照)。
In order to improve the charge / discharge cycle characteristics of a lithium secondary battery using a carbon material for the negative electrode, it has been proposed to coat the negative electrode with a film made of lithium fluoride (see Japanese Patent Application Laid-Open No. 7-302617). ).

【0006】しかしながら、本発明者らが検討した結
果、この従来電池には、フッ化リチウムのリチウムイオ
ン伝導性があまり良くないために、高率放電特性(負荷
特性)に問題があることが分かった。
[0006] However, as a result of investigations by the present inventors, it has been found that this conventional battery has a problem in high-rate discharge characteristics (load characteristics) because lithium ion conductivity of lithium fluoride is not so good. Was.

【0007】したがって、本発明は、充放電サイクル特
性及び高率放電特性がともに良いリチウム二次電池を提
供することを目的とする。
Accordingly, it is an object of the present invention to provide a lithium secondary battery having good charge / discharge cycle characteristics and high-rate discharge characteristics.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明に係
るリチウム二次電池(以下、「電池A」と称する)は、
正極と、炭素材料をリチウムイオン吸蔵材とする負極
と、非水電解液とを備えるリチウム二次電池において、
前記非水電解液にアルミニウム化合物が添加されている
ことを特徴とする。
The lithium secondary battery (hereinafter referred to as "battery A") according to the first aspect of the present invention comprises:
In a lithium secondary battery including a positive electrode, a negative electrode using a carbon material as a lithium ion storage material, and a nonaqueous electrolyte,
An aluminum compound is added to the non-aqueous electrolyte.

【0009】また、請求項4記載の発明に係るリチウム
二次電池(以下、「電池B」と称する)は、正極と、炭
素材料をリチウムイオン吸蔵材とする負極と、非水電解
液とを備えるリチウム二次電池において、前記炭素材料
の粒子表面がアルミニウム化合物からなる皮膜で被覆さ
れていることを特徴する。なお、この明細書では、電池
A及び電池Bを、本発明電池と総称することがある。
Further, a lithium secondary battery (hereinafter referred to as "battery B") according to the present invention comprises a positive electrode, a negative electrode using a carbon material as a lithium ion storage material, and a non-aqueous electrolyte. In the lithium secondary battery provided, the surface of the particles of the carbon material is coated with a film made of an aluminum compound. In this specification, the battery A and the battery B may be collectively referred to as a battery of the present invention.

【0010】非水電解液にアルミニウム化合物を添加し
てある電池Aにおいては、充電時に、負極の表面にアル
ミニウムを含有する皮膜(Li−Al合金皮膜など)が
形成される。一方、電池Bでは、炭素材料の粒子表面に
アルミニウム化合物からなる皮膜が形成されている。こ
れらの皮膜により、非水電解液との反応による炭素材料
の劣化が抑制される。したがって、本発明電池は充放電
サイクル特性に優れる。また、これらの皮膜はいずれ
も、フッ化リチウム皮膜や炭酸リチウム皮膜に比べて、
リチウムイオン伝導性が良い。これは、フッ化リチウム
皮膜や炭酸リチウム皮膜は緻密であるためリチウムイオ
ンの放出が円滑に行われにくいのに対して、電池Aにお
けるアルミニウムを含有する皮膜及び電池Bにおけるア
ルミニウム化合物からなる皮膜は空隙が大きいため、リ
チウムイオンの放出が円滑に行われるためと考えられ
る。したがって、本発明電池は、高率放電特性にも優れ
る。
In battery A in which an aluminum compound is added to a nonaqueous electrolyte, a film containing aluminum (such as a Li-Al alloy film) is formed on the surface of the negative electrode during charging. On the other hand, in the battery B, a film made of an aluminum compound is formed on the surface of the particles of the carbon material. These films suppress the deterioration of the carbon material due to the reaction with the non-aqueous electrolyte. Therefore, the battery of the present invention is excellent in charge / discharge cycle characteristics. In addition, all of these coatings are compared with lithium fluoride coating and lithium carbonate coating.
Good lithium ion conductivity. This is because the lithium fluoride film and the lithium carbonate film are so dense that lithium ions are not easily released smoothly, whereas the film containing aluminum in the battery A and the film made of the aluminum compound in the battery B are voids. This is considered to be due to the fact that the release of lithium ions is performed smoothly. Therefore, the battery of the present invention is also excellent in high-rate discharge characteristics.

【0011】非水電解液への添加剤又は負極の被覆材と
して使用するアルミニウム化合物の具体例としては、A
lI3 、Al(OH)3 、AlF3 、Al(P
6 3 、Al(ClO4 3 、Al(BF4 3 及び
Al(N(CF3 SO2 2 3 が挙げられる。これら
のアルミニウム化合物は、一種単独を用いてもよく、必
要に応じて二種以上を併用してもよい。
Specific examples of the aluminum compound used as an additive to the non-aqueous electrolyte or as a coating material for the negative electrode include A
11 3 , Al (OH) 3 , AlF 3 , Al (P
F 6) 3, Al (ClO 4) 3, Al (BF 4) 3 and Al (N (CF 3 SO 2 ) 2) 3 and the like. These aluminum compounds may be used alone or in combination of two or more as necessary.

【0012】電池Aにおける非水電解液へのアルミニウ
ム化合物の好適な添加量は0.001〜0.1モル/リ
ットルである。また、電池Bにおけるアルミニウム化合
物からなる皮膜の好適な厚みは、1〜500Åである。
アルミニウム化合物の添加量又は被覆量が過少な場合は
放電時に皮膜が剥離するおそれがある。一方、アルミニ
ウム化合物の添加量又は被覆量が過多な場合は粘度上昇
に因り非水電解液のイオン導電性が低下して放電容量が
減少したり、皮膜の厚みが厚くなりすぎてリチウムイオ
ン伝導性が低下したりする。
The preferable addition amount of the aluminum compound to the non-aqueous electrolyte in the battery A is 0.001 to 0.1 mol / liter. The preferable thickness of the film made of the aluminum compound in the battery B is 1 to 500 °.
When the addition amount or the coating amount of the aluminum compound is too small, the film may be peeled off at the time of discharge. On the other hand, if the addition amount or coating amount of the aluminum compound is excessive, the ionic conductivity of the non-aqueous electrolyte decreases due to the increase in viscosity and the discharge capacity decreases, or the lithium ion conductivity increases due to the film being too thick. Or decrease.

【0013】本発明電池における炭素材料としては、黒
鉛、コークス及び有機物焼成体が例示される。また、非
水電解液としては、エチレンカーボネート、プロピレン
カーボネート、ブチレンカーボネート、ビニレンカーボ
ネート、スルホラン、γ−ブチロラクトン、ジメチルカ
ーボネート、ジエチルカーボネート、1,2−ジメトキ
シエタン、テトラヒドロフラン、1,3−ジオキソラン
及びこれらの混合溶媒に、LiPF6 、LiCF3 SO
3 、LiBF4 、LiClO4 、LiAsF6等のリチ
ウム塩を0.5〜1.5モル/リットル溶かしたものが
例示される。
Examples of the carbon material in the battery of the present invention include graphite, coke, and a fired organic material. Examples of the non-aqueous electrolyte include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, sulfolane, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, and these. LiPF 6 , LiCF 3 SO
3 , LiBF 4 , LiClO 4 , LiAsF 6 and the like, in which 0.5 to 1.5 mol / liter of a lithium salt is dissolved.

【0014】本発明は、非水電解液にアルミニウム化合
物を添加することにより、或いは、炭素材料をアルミニ
ウム化合物で被覆することにより、炭素材料をリチウム
イオン吸蔵材とするリチウム二次電池の負極の充放電サ
イクル特性及び高率放電特性を、改善したものである。
よって、正極活物質、セパレータなどの電池を構成する
他の部材については、従来公知の材料を特に制限なく使
用することができる。正極活物質としては、LiCoO
2 、LiNiO2 、LiMn2 4 、LiFeO2 が、
またセパレータとしては、ポリプロピレン、ポリエチレ
ンなどからなる微多孔性のシート及び不織布が、それぞ
れ例示される。
The present invention provides a method for charging a negative electrode of a lithium secondary battery using a carbon material as a lithium ion storage material by adding an aluminum compound to a non-aqueous electrolyte or coating a carbon material with an aluminum compound. Discharge cycle characteristics and high-rate discharge characteristics are improved.
Therefore, as other members constituting the battery such as the positive electrode active material and the separator, conventionally known materials can be used without any particular limitation. As the positive electrode active material, LiCoO
2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2
Examples of the separator include a microporous sheet made of polypropylene, polyethylene, and the like, and a nonwoven fabric.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0016】(実施例1〜35) 〔正極の作製〕正極活物質としてのLiCoO2 80重
量部と、導電剤としての人造黒鉛10重量部と、結着剤
としてのポリフッ化ビニリデン10重量部とを混合し、
これにN−メチル−2−ピロリドンを加えて混練してス
ラリーを調製し、このスラリーを正極集電体としてのア
ルミニウム箔の両面に、ドクターブレード法により塗布
し、150°Cで2時間真空乾燥して、正極を作製し
た。
(Examples 1 to 35) [Preparation of Positive Electrode] 80 parts by weight of LiCoO 2 as a positive electrode active material, 10 parts by weight of artificial graphite as a conductive agent, and 10 parts by weight of polyvinylidene fluoride as a binder Mix
N-Methyl-2-pyrrolidone is added to the mixture, and the mixture is kneaded to prepare a slurry. The slurry is applied to both sides of an aluminum foil as a positive electrode current collector by a doctor blade method, and vacuum dried at 150 ° C. for 2 hours. Thus, a positive electrode was manufactured.

【0017】〔負極の作製〕天然黒鉛(格子面(00
2)面の面間隔3.35Å;c軸方向の結晶子の大きさ
1000Åより大)90重量部と、結着剤としてのポリ
フッ化ビニリデン10重量部とを混合し、これにN−メ
チル−2−ピロリドンを加えて混練してスラリーを調製
し、このスラリーを負極集電体としての銅箔の両面に、
ドクターブレード法により塗布し、150°Cで2時間
真空乾燥して、負極を作製した。
[Preparation of negative electrode] Natural graphite (lattice plane (00
2) plane spacing of 3.35 °; crystallite size in the c-axis direction larger than 1000 °) 90 parts by weight, and 10 parts by weight of polyvinylidene fluoride as a binder were mixed, and N-methyl- A slurry was prepared by adding and kneading 2-pyrrolidone, and this slurry was applied to both sides of a copper foil as a negative electrode current collector.
It was applied by a doctor blade method and vacuum dried at 150 ° C. for 2 hours to prepare a negative electrode.

【0018】〔非水電解液の調製〕エチレンカーボネー
トとジエチルカーボネートとの体積比1:1の混合溶媒
に、LiPF6 を1モル/リットル、AlI3 、Al
(OH)3 、AlF3 、Al(PF6 3 、Al(Cl
4 3 、Al(BF4 3 又はAl(N(CF3 SO
2 2 3 を、0.0008モル/リットル、0.00
1モル/リットル、0.01モル/リットル、0.1モ
ル/リットル又は0.15モル/リットル溶かして35
種の非水電解液を調製した。
[Preparation of Non-Aqueous Electrolyte] In a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1, 1 mol / l of LiPF 6 , AlI 3 , Al
(OH) 3 , AlF 3 , Al (PF 6 ) 3 , Al (Cl
O 4 ) 3 , Al (BF 4 ) 3 or Al (N (CF 3 SO
2 ) 2 ) 3 is 0.0008 mol / liter, 0.00
1 mol / L, 0.01 mol / L, 0.1 mol / L or 0.15 mol / L
Various non-aqueous electrolytes were prepared.

【0019】〔電池の作製〕上記の正極、負極及び各非
水電解液を用いて、AAサイズのリチウム二次電池(電
池A)A1〜A35を作製した。なお、セパレータとし
て、ポリプロピレン製の微多孔性シートを使用した。
[Preparation of Batteries] AA-sized lithium secondary batteries (Battery A) A1 to A35 were prepared using the above positive electrode, negative electrode and each nonaqueous electrolyte. In addition, a polypropylene microporous sheet was used as a separator.

【0020】(比較例1)非水電解液の調製においてア
ルミニウム化合物を添加しなかったこと以外は実施例1
〜35と同様にして、リチウム二次電池(比較電池)C
1を作製した。
Comparative Example 1 Example 1 was repeated except that no aluminum compound was added in the preparation of the non-aqueous electrolyte.
To 35, a lithium secondary battery (comparative battery) C
1 was produced.

【0021】(比較例2)非水電解液の調製においてア
ルミニウム化合物を添加せずに、水を400ppm添加
したこと以外は実施例1〜35と同様にして、リチウム
二次電池(比較電池)C2を作製した。この電池は、特
開平7−302617号公報に開示されている従来電池
に相当する。
Comparative Example 2 A lithium secondary battery (comparative battery) C2 was prepared in the same manner as in Examples 1 to 35 except that 400 ppm of water was added without adding an aluminum compound in the preparation of the nonaqueous electrolyte. Was prepared. This battery corresponds to a conventional battery disclosed in Japanese Patent Application Laid-Open No. 7-302617.

【0022】〈各電池の高率放電での放電容量〉実施例
1〜35及び比較例1,2で作製した各電池を200m
Aで4.1Vまで充電した後、1000mA(2C相
当)で2.75Vまで放電して、各電池の高率放電での
放電容量(高率放電容量)を求めた。結果を表1、表
2、図1及び図2に示す。図1及び図2はいずれも、縦
軸に各電池の高率放電容量(mAh)を、横軸に非水電
解液へのアルミニウム化合物の添加量(モル/リット
ル)をとったグラフである。
<Discharge Capacity of Each Battery at High Rate Discharge> Each of the batteries produced in Examples 1 to 35 and Comparative Examples 1 and 2 was
After charging to 4.1 V with A, the battery was discharged to 2.75 V at 1000 mA (corresponding to 2 C), and the discharge capacity (high-rate discharge capacity) at high rate discharge of each battery was determined. The results are shown in Table 1, Table 2, FIG. 1 and FIG. 1 and 2 are graphs in which the vertical axis represents the high-rate discharge capacity (mAh) of each battery, and the horizontal axis represents the addition amount (mol / liter) of the aluminum compound to the non-aqueous electrolyte.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表1、表2、図1及び図2に示すように、
電池A1〜A35は、比較電池C1,C2に比べて、高
率放電容量が大きい。この事実から、非水電解液にアル
ミニウム化合物を添加することにより、高率放電特性が
向上することが分かる。また、電池A1〜A35の中で
もアルミニウム化合物の添加量が0.001〜0.1モ
ル/リットルの電池の高率放電容量が特に大きいことか
ら、電池Aにおける非水電解液へのアルミニウム化合物
の添加量は0.001〜0.1モル/リットルが好まし
いことが分かる。
As shown in Tables 1 and 2, FIGS. 1 and 2,
The batteries A1 to A35 have a higher high-rate discharge capacity than the comparative batteries C1 and C2. From this fact, it is understood that the high-rate discharge characteristics are improved by adding the aluminum compound to the non-aqueous electrolyte. Further, among the batteries A1 to A35, since the high-rate discharge capacity of the battery in which the addition amount of the aluminum compound is 0.001 to 0.1 mol / liter is particularly large, the addition of the aluminum compound to the non-aqueous electrolyte in the battery A It is understood that the amount is preferably 0.001 to 0.1 mol / liter.

【0026】(実施例36,37)天然黒鉛(実施例1
〜35で用いたものと同じもの)98重量部とAlI3
2重量部とを乳鉢中にてらいかい混合して、天然黒鉛の
粒子表面をAlI3 で被覆した(実施例36)。また、
天然黒鉛(実施例1〜35で用いたものと同じもの)9
9.5重量部とAl(OH)3 0.5重量部とを乳鉢中
にてらいかい混合して、天然黒鉛の粒子表面をAl(O
H)3 で被覆した(実施例37)。非水電解液にアルミ
ニウム化合物を添加せず、且つ負極にアルミニウム化合
物で粒子表面を被覆した上記の天然黒鉛を用いたこと以
外は実施例1〜35と同様にして、リチウム二次電池
(電池B)B1,B2を作製した。これらの各電池につ
いて先と同じ充放電試験を行い、各電池の高率放電容量
を求めたところ、電池B1の高率放電容量は600mA
hであり、電池B2の高率放電容量は615mAhであ
った。これらは比較電池C1,C2のそれらに比べて遙
に大きい。この事実から、炭素材料の粒子表面をアルミ
ニウム化合物で被覆することにより、高率放電特性が向
上することが分かる。
(Examples 36 and 37) Natural graphite (Example 1)
98 parts by weight and AlI 3
2 parts by weight were mixed in a mortar, and the surface of the natural graphite particles was coated with AlI 3 (Example 36). Also,
Natural graphite (same as used in Examples 1 to 35) 9
9.5 parts by weight and 0.5 parts by weight of Al (OH) 3 are mixed in a mortar and mixed to form a natural graphite particle surface with Al (O).
H) 3 (Example 37). A lithium secondary battery (battery B) was prepared in the same manner as in Examples 1 to 35, except that the above-mentioned natural graphite whose particle surface was coated with the aluminum compound was used for the negative electrode without adding the aluminum compound to the nonaqueous electrolyte. ) B1 and B2 were prepared. The same charge / discharge test was performed on each of these batteries to determine the high-rate discharge capacity of each battery. The high-rate discharge capacity of the battery B1 was 600 mA.
h, and the high-rate discharge capacity of Battery B2 was 615 mAh. These are much larger than those of the comparative batteries C1 and C2. From this fact, it is understood that the high-rate discharge characteristics are improved by coating the particle surface of the carbon material with the aluminum compound.

【0027】〈充放電サイクル特性〉電池A1,A2,
A3,A4,A5,B1,B2及び比較電池C1,C2
について、200mAで4.1Vまで充電した後、10
00mAで2.75Vまで放電する工程を1サイクルと
する充放電を200サイクル行い、各電池の充放電サイ
クル特性を調べた。結果を図3及び図4に示す。図3及
び図4はいずれも、縦軸に各電池の高率放電容量(mA
h)を、横軸に充放電サイクルをとったグラフである。
<Charge / Discharge Cycle Characteristics> Batteries A1, A2,
A3, A4, A5, B1, B2 and comparative batteries C1, C2
After charging to 4.1 V at 200 mA, 10
The charge / discharge cycle characteristics of each battery were examined by performing 200 charge / discharge cycles, each including a step of discharging to 2.75 V at 00 mA. The results are shown in FIGS. 3 and 4, the vertical axis indicates the high rate discharge capacity (mA) of each battery.
h) is a graph in which the horizontal axis represents a charge / discharge cycle.

【0028】図3及び図4より、本発明電池は、比較電
池に比べて、充放電サイクル特性が良いことが分かる。
FIGS. 3 and 4 show that the battery of the present invention has better charge / discharge cycle characteristics than the comparative battery.

【0029】(実施例38〜41)表3に示す重量比の
天然黒鉛(実施例1〜35で用いたものと同じもの)と
AlF3 とを乳鉢中にてらいかい混合して、天然黒鉛の
粒子表面をAlF3 で被覆した。非水電解液にアルミニ
ウム化合物を添加せず、且つ負極にAlF3 で粒子表面
が被覆された上記の天然黒鉛を用いたこと以外は実施例
1〜35と同様にして、リチウム二次電池(電池B)B
3,B4,B5,B6を作製した。これらの各電池につ
いて先と同じ充放電試験を行い、各電池の高率放電容量
を求めた。結果を表3に示す。
(Examples 38 to 41) Natural graphite having the weight ratio shown in Table 3 (same as that used in Examples 1 to 35) and AlF 3 were mixed in a mortar and mixed to obtain natural graphite. Was coated with AlF 3 . A lithium secondary battery (battery) was prepared in the same manner as in Examples 1 to 35, except that the above-described natural graphite whose particle surface was coated with AlF 3 was used for the negative electrode without adding an aluminum compound to the nonaqueous electrolyte. B) B
3, B4, B5, and B6 were produced. The same charge / discharge test was performed for each of these batteries, and the high rate discharge capacity of each battery was determined. Table 3 shows the results.

【0030】[0030]

【表3】 [Table 3]

【0031】表3より、電池Bにおける天然黒鉛の粒子
表面を被覆するAlF3 皮膜の厚みは、1〜500Åが
好ましいことが分かる。他のアルミニウム化合物からな
る皮膜で被覆する場合も、この範囲の厚みが好ましいこ
とを別途確認した。
From Table 3, it can be seen that the thickness of the AlF 3 coating covering the surface of the natural graphite particles in Battery B is preferably 1 to 500 °. It was separately confirmed that a thickness in this range is preferable also when coating with a film made of another aluminum compound.

【0032】[0032]

【発明の効果】本発明により充放電サイクル特性及び高
率放電特性の良いリチウム二次電池が提供される。
According to the present invention, a lithium secondary battery having good charge / discharge cycle characteristics and high-rate discharge characteristics is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】非水電解液へのアルミニウム化合物〔Al
3 、Al(OH)3 又はAlF3〕の添加量と高率放
電容量の関係を示すグラフである。
FIG. 1 shows an aluminum compound [Al
3 is a graph showing the relationship between the added amount of I 3 , Al (OH) 3 or AlF 3 ] and the high rate discharge capacity.

【図2】非水電解液へのアルミニウム化合物〔Al(P
6 3 、Al(ClO4 3、Al(BF4 3 又は
Al(N(CF3 SO2 2 3 〕の添加量と高率放電
容量の関係を示すグラフである。
FIG. 2 shows an aluminum compound [Al (P
5 is a graph showing the relationship between the added amount of F 6 ) 3 , Al (ClO 4 ) 3 , Al (BF 4 ) 3 or Al (N (CF 3 SO 2 ) 2 ) 3 ] and the high-rate discharge capacity.

【図3】本発明電池の充放電サイクル特性を示すグラフ
である。
FIG. 3 is a graph showing charge / discharge cycle characteristics of the battery of the present invention.

【図4】本発明電池及び比較電池の充放電サイクル特性
を示すグラフである。
FIG. 4 is a graph showing charge / discharge cycle characteristics of the battery of the present invention and a comparative battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 in Sanyo Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】正極と、炭素材料をリチウムイオン吸蔵材
とする負極と、非水電解液とを備えるリチウム二次電池
において、前記非水電解液にアルミニウム化合物が添加
されていることを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising a positive electrode, a negative electrode using a carbon material as a lithium ion storage material, and a non-aqueous electrolyte, wherein an aluminum compound is added to the non-aqueous electrolyte. Rechargeable lithium battery.
【請求項2】前記アルミニウム化合物が、AlI3 、A
l(OH)3 、AlF3 、Al(PF6 3 、Al(C
lO4 3 、Al(BF4 3 及びAl(N(CF3
22 3 よりなる群から選ばれた少なくとも一種で
ある請求項1記載のリチウム二次電池。
2. The method according to claim 1, wherein said aluminum compound is AlI 3 , A
l (OH) 3 , AlF 3 , Al (PF 6 ) 3 , Al (C
10 O 4 ) 3 , Al (BF 4 ) 3 and Al (N (CF 3 S
2. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is at least one selected from the group consisting of O2) 2 ) 3 .
【請求項3】前記非水電解液に、前記アルミニウム化合
物が0.001〜0.1モル/リットル添加されている
請求項1又は2記載のリチウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the non-aqueous electrolyte contains 0.001 to 0.1 mol / L of the aluminum compound.
【請求項4】正極と、炭素材料をリチウムイオン吸蔵材
とする負極と、非水電解液とを備えるリチウム二次電池
において、前記炭素材料の粒子表面がアルミニウム化合
物からなる皮膜で被覆されていることを特徴するリチウ
ム二次電池。
4. A lithium secondary battery comprising a positive electrode, a negative electrode using a carbon material as a lithium ion storage material, and a non-aqueous electrolyte, wherein the particle surfaces of the carbon material are coated with a film made of an aluminum compound. A lithium secondary battery, characterized in that:
【請求項5】前記アルミニウム化合物が、AlI3 、A
l(OH)3 、AlF3 、Al(PF6 3 、Al(C
lO4 3 、Al(BF4 3 及びAl(N(CF3
22 3 よりなる群から選ばれた少なくとも一種で
ある請求項4記載のリチウム二次電池。
5. The method according to claim 1, wherein the aluminum compound is AlI 3 , A
l (OH) 3 , AlF 3 , Al (PF 6 ) 3 , Al (C
10 O 4 ) 3 , Al (BF 4 ) 3 and Al (N (CF 3 S
O 2) 2) The lithium secondary battery according to claim 4, wherein at least one selected from the group consisting of 3.
【請求項6】前記アルミニウム化合物からなる皮膜の厚
みが、1〜500Åである請求項4又は5記載のリチウ
ム二次電池。
6. The lithium secondary battery according to claim 4, wherein the thickness of the film made of the aluminum compound is 1 to 500 °.
JP07650397A 1997-03-11 1997-03-11 Lithium secondary battery Expired - Fee Related JP3316412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07650397A JP3316412B2 (en) 1997-03-11 1997-03-11 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07650397A JP3316412B2 (en) 1997-03-11 1997-03-11 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH10255837A true JPH10255837A (en) 1998-09-25
JP3316412B2 JP3316412B2 (en) 2002-08-19

Family

ID=13607049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07650397A Expired - Fee Related JP3316412B2 (en) 1997-03-11 1997-03-11 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3316412B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250933A (en) * 1998-03-02 1999-09-17 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
KR100370389B1 (en) * 2000-11-30 2003-01-30 제일모직주식회사 Non-aqueous electrolyte solution for lithium battery
KR100440489B1 (en) * 2001-10-12 2004-07-14 주식회사 엘지화학 Electrode materials and method for preparing thereof
KR100797099B1 (en) 2006-06-09 2008-01-22 한양대학교 산학협력단 Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
WO2009078159A1 (en) * 2007-12-14 2009-06-25 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2010519682A (en) * 2007-02-16 2010-06-03 エルエス エムトロン リミテッド Anode active material for lithium battery, method for producing the same, and lithium secondary battery using the same
US8007941B2 (en) 2000-10-09 2011-08-30 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
US8187752B2 (en) 2008-04-16 2012-05-29 Envia Systems, Inc. High energy lithium ion secondary batteries
JP2012104281A (en) * 2010-11-08 2012-05-31 Fukuda Metal Foil & Powder Co Ltd Anode material for lithium secondary battery and method for producing the same
US8394534B2 (en) 2009-08-27 2013-03-12 Envia Systems, Inc. Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
JP2013515349A (en) * 2009-12-21 2013-05-02 エー123 システムズ, インコーポレイテッド Anode material
US8535832B2 (en) 2009-08-27 2013-09-17 Envia Systems, Inc. Metal oxide coated positive electrode materials for lithium-based batteries
US8663849B2 (en) 2010-09-22 2014-03-04 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
US8916294B2 (en) 2008-09-30 2014-12-23 Envia Systems, Inc. Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
US8928286B2 (en) 2010-09-03 2015-01-06 Envia Systems, Inc. Very long cycling of lithium ion batteries with lithium rich cathode materials
US8993177B2 (en) 2009-12-04 2015-03-31 Envia Systems, Inc. Lithium ion battery with high voltage electrolytes and additives
US9070489B2 (en) 2012-02-07 2015-06-30 Envia Systems, Inc. Mixed phase lithium metal oxide compositions with desirable battery performance
US9083062B2 (en) 2010-08-02 2015-07-14 Envia Systems, Inc. Battery packs for vehicles and high capacity pouch secondary batteries for incorporation into compact battery packs
US9159990B2 (en) 2011-08-19 2015-10-13 Envia Systems, Inc. High capacity lithium ion battery formation protocol and corresponding batteries
US9166222B2 (en) 2010-11-02 2015-10-20 Envia Systems, Inc. Lithium ion batteries with supplemental lithium
US9552901B2 (en) 2012-08-17 2017-01-24 Envia Systems, Inc. Lithium ion batteries with high energy density, excellent cycling capability and low internal impedance
US9780358B2 (en) 2012-05-04 2017-10-03 Zenlabs Energy, Inc. Battery designs with high capacity anode materials and cathode materials
US20170317388A1 (en) * 2011-01-03 2017-11-02 Nanotek Instruments, Inc. Partially and fully surface-enabled metal ion-exchanging energy storage devices
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
US9960424B2 (en) 2008-12-11 2018-05-01 Zenlabs Energy, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
US10056644B2 (en) 2009-07-24 2018-08-21 Zenlabs Energy, Inc. Lithium ion batteries with long cycling performance
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
US10170762B2 (en) 2011-12-12 2019-01-01 Zenlabs Energy, Inc. Lithium metal oxides with multiple phases and stable high energy electrochemical cycling
US10290871B2 (en) 2012-05-04 2019-05-14 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
US11094925B2 (en) 2017-12-22 2021-08-17 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
US11476494B2 (en) 2013-08-16 2022-10-18 Zenlabs Energy, Inc. Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
US11973178B2 (en) 2019-06-26 2024-04-30 Ionblox, Inc. Lithium ion cells with high performance electrolyte and silicon oxide active materials achieving very long cycle life performance

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250933A (en) * 1998-03-02 1999-09-17 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US8007941B2 (en) 2000-10-09 2011-08-30 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
US8034486B2 (en) 2000-10-09 2011-10-11 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
KR100370389B1 (en) * 2000-11-30 2003-01-30 제일모직주식회사 Non-aqueous electrolyte solution for lithium battery
KR100440489B1 (en) * 2001-10-12 2004-07-14 주식회사 엘지화학 Electrode materials and method for preparing thereof
KR100797099B1 (en) 2006-06-09 2008-01-22 한양대학교 산학협력단 Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP2010519682A (en) * 2007-02-16 2010-06-03 エルエス エムトロン リミテッド Anode active material for lithium battery, method for producing the same, and lithium secondary battery using the same
WO2009078159A1 (en) * 2007-12-14 2009-06-25 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for manufacturing the same
US8563157B2 (en) 2007-12-14 2013-10-22 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP5271275B2 (en) * 2007-12-14 2013-08-21 パナソニック株式会社 Method for producing non-aqueous electrolyte secondary battery
US8187752B2 (en) 2008-04-16 2012-05-29 Envia Systems, Inc. High energy lithium ion secondary batteries
US8916294B2 (en) 2008-09-30 2014-12-23 Envia Systems, Inc. Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
US9960424B2 (en) 2008-12-11 2018-05-01 Zenlabs Energy, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
US10056644B2 (en) 2009-07-24 2018-08-21 Zenlabs Energy, Inc. Lithium ion batteries with long cycling performance
US8535832B2 (en) 2009-08-27 2013-09-17 Envia Systems, Inc. Metal oxide coated positive electrode materials for lithium-based batteries
US8475959B2 (en) 2009-08-27 2013-07-02 Envia Systems, Inc. Lithium doped cathode material
US8394534B2 (en) 2009-08-27 2013-03-12 Envia Systems, Inc. Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
US8993177B2 (en) 2009-12-04 2015-03-31 Envia Systems, Inc. Lithium ion battery with high voltage electrolytes and additives
JP2013515349A (en) * 2009-12-21 2013-05-02 エー123 システムズ, インコーポレイテッド Anode material
US9083062B2 (en) 2010-08-02 2015-07-14 Envia Systems, Inc. Battery packs for vehicles and high capacity pouch secondary batteries for incorporation into compact battery packs
US8928286B2 (en) 2010-09-03 2015-01-06 Envia Systems, Inc. Very long cycling of lithium ion batteries with lithium rich cathode materials
US8663849B2 (en) 2010-09-22 2014-03-04 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
US11380883B2 (en) 2010-11-02 2022-07-05 Zenlabs Energy, Inc. Method of forming negative electrode active material, with lithium preloading
US9166222B2 (en) 2010-11-02 2015-10-20 Envia Systems, Inc. Lithium ion batteries with supplemental lithium
US9923195B2 (en) 2010-11-02 2018-03-20 Zenlabs Energy, Inc. Lithium ion batteries with supplemental lithium
JP2012104281A (en) * 2010-11-08 2012-05-31 Fukuda Metal Foil & Powder Co Ltd Anode material for lithium secondary battery and method for producing the same
US11038205B2 (en) * 2011-01-03 2021-06-15 Global Graphene Group, Inc. Partially and fully surface-enabled metal ion-exchanging energy storage devices
US20170317388A1 (en) * 2011-01-03 2017-11-02 Nanotek Instruments, Inc. Partially and fully surface-enabled metal ion-exchanging energy storage devices
US9159990B2 (en) 2011-08-19 2015-10-13 Envia Systems, Inc. High capacity lithium ion battery formation protocol and corresponding batteries
US9553301B2 (en) 2011-08-19 2017-01-24 Envia Systems, Inc. High capacity lithium ion battery formation protocol and corresponding batteries
US10170762B2 (en) 2011-12-12 2019-01-01 Zenlabs Energy, Inc. Lithium metal oxides with multiple phases and stable high energy electrochemical cycling
US9070489B2 (en) 2012-02-07 2015-06-30 Envia Systems, Inc. Mixed phase lithium metal oxide compositions with desirable battery performance
US10290871B2 (en) 2012-05-04 2019-05-14 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
US10553871B2 (en) 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
US10686183B2 (en) 2012-05-04 2020-06-16 Zenlabs Energy, Inc. Battery designs with high capacity anode materials to achieve desirable cycling properties
US9780358B2 (en) 2012-05-04 2017-10-03 Zenlabs Energy, Inc. Battery designs with high capacity anode materials and cathode materials
US11387440B2 (en) 2012-05-04 2022-07-12 Zenlabs Energy, Inc. Lithium ions cell designs with high capacity anode materials and high cell capacities
US11502299B2 (en) 2012-05-04 2022-11-15 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
US9552901B2 (en) 2012-08-17 2017-01-24 Envia Systems, Inc. Lithium ion batteries with high energy density, excellent cycling capability and low internal impedance
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
US11476494B2 (en) 2013-08-16 2022-10-18 Zenlabs Energy, Inc. Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
US11094925B2 (en) 2017-12-22 2021-08-17 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
US11742474B2 (en) 2017-12-22 2023-08-29 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
US11973178B2 (en) 2019-06-26 2024-04-30 Ionblox, Inc. Lithium ion cells with high performance electrolyte and silicon oxide active materials achieving very long cycle life performance

Also Published As

Publication number Publication date
JP3316412B2 (en) 2002-08-19

Similar Documents

Publication Publication Date Title
JP3316412B2 (en) Lithium secondary battery
JP5430920B2 (en) Nonaqueous electrolyte secondary battery
JP3685500B2 (en) Nonaqueous electrolyte secondary battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP4798964B2 (en) Nonaqueous electrolyte secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JPH10247519A (en) Lithium secondary battery
JP2002025611A (en) Nonaqueous electrolyte secondary battery
JP2001176547A (en) Lithium secondary battery
JP2015185491A (en) Nonaqueous electrolyte secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JPH10289731A (en) Nonaqueous electrolytic battery
JP2000235866A (en) Nonaqueous electrolyte secondary battery
JPH11312518A (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP3349399B2 (en) Lithium secondary battery
JPH08115742A (en) Lithium secondary battery
JPH07114940A (en) Non-aqueous electrolyte secondary battery
JP4082853B2 (en) Lithium secondary battery
JP2003031259A (en) Nonaqueous electrolyte secondary battery
JP4056278B2 (en) Non-aqueous electrolyte battery
US20230207877A1 (en) Solution for lithium secondary batery and lithium secondary battery including same
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP5410441B2 (en) Lithium secondary battery containing additives for improving high temperature characteristics
EP3121883A1 (en) Electrode for non-aqueous electrolyte secondary battery
JP3525921B2 (en) Cathode active material for non-aqueous secondary batteries

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees