JPH10195589A - High torsional fatigue strength induction hardened steel - Google Patents
High torsional fatigue strength induction hardened steelInfo
- Publication number
- JPH10195589A JPH10195589A JP35648896A JP35648896A JPH10195589A JP H10195589 A JPH10195589 A JP H10195589A JP 35648896 A JP35648896 A JP 35648896A JP 35648896 A JP35648896 A JP 35648896A JP H10195589 A JPH10195589 A JP H10195589A
- Authority
- JP
- Japan
- Prior art keywords
- hardness
- core
- hardened layer
- less
- fatigue strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
(57)【要約】
【課題】 軸部品として優れた捩り疲労強度を有し、且
つその製造時には冷間加工性のような製造性に優れてい
る高周波焼入れ鋼材を提供する。
【解決手段】 重量比で、C:0.35〜0.6%、S
i:0.01〜0.15%、Mn:0.2%〜1.6
%、S:0.005〜0.15%、Al:0.01〜
0.06%、Ti:0.005〜0.05%、B:0.
0005〜0.005%、N:0.0015〜0.00
8%を含有し、さらに必要に応じて特定量のCr、M
o、Ni、Nb、Vの1種または2種以上を含有した組
成からなり、硬化層深さと部品半径の比が0.3〜0.
6で且つ投影芯部硬さがHV400以上であるか、或い
は硬化層深さと部品半径の比が0.4〜0.75で且つ
投影芯部硬さと硬化層硬さの比が0.56以上である
か、さらに又は断面内平均硬さがHV560以上である
ことを特徴とする高捩り疲労強度高周波焼入れ鋼材。PROBLEM TO BE SOLVED: To provide an induction hardened steel material having excellent torsional fatigue strength as a shaft part and having excellent manufacturability such as cold workability when manufactured. SOLUTION: By weight ratio, C: 0.35 to 0.6%, S
i: 0.01 to 0.15%, Mn: 0.2% to 1.6
%, S: 0.005 to 0.15%, Al: 0.01 to
0.06%, Ti: 0.005 to 0.05%, B: 0.
0005-0.005%, N: 0.0015-0.00
8%, and if necessary, specific amounts of Cr and M
o, Ni, Nb, V, and a composition containing one or more of them, and the ratio of the hardened layer depth to the component radius is 0.3 to 0.1.
6, and the projected core hardness is HV400 or more, or the ratio of the hardened layer depth to the part radius is 0.4 to 0.75 and the ratio of the projected core hardness to the hardened layer hardness is 0.56 or more Or a high torsional fatigue strength induction hardened steel material having an average hardness in the cross section of HV560 or more.
Description
【0001】[0001]
【発明の属する技術分野】本発明は高捩り疲労強度高周
波焼入れ鋼材の発明にかかわり、さらに詳しくは、図1
の(A)〜(C)に示したスプライン部を有するシャフ
ト、フランジ付シャフト、外筒付シャフト等の自動車の
動力伝達系を構成する軸部品として、優れた捩り疲労強
度を有し、且つその製造時には冷間加工性のような製造
性に優れた高周波焼入れ鋼材の発明に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the invention of a high torsional fatigue strength induction hardened steel material.
(A) to (C), having excellent torsional fatigue strength as a shaft component constituting a power transmission system of an automobile, such as a shaft having a spline portion, a shaft with a flange, a shaft with an outer cylinder, and the like. The present invention relates to an invention of an induction hardened steel material having excellent manufacturability such as cold workability during manufacturing.
【0002】[0002]
【従来の技術】自動車の動力伝達系を構成する軸部品
は、通常中炭素鋼を所定の部品に成形加工し、高周波焼
入れー焼戻しを施して製造されているが、近年の自動車
エンジンの高出力化及び環境規制対応にともない、捩り
疲労強度向上の指向が強い。一方、自動車部品製造に際
して、製造コスト削減を図るために、冷間加工性等の製
造性向上の指向も強い。2. Description of the Related Art Shaft components constituting a power transmission system of an automobile are usually manufactured by forming medium carbon steel into a predetermined component and performing induction quenching and tempering. The trend toward improving the torsional fatigue strength has been strong in response to environmental regulations and environmental regulations. On the other hand, in the production of automobile parts, there is a strong tendency to improve manufacturability such as cold workability in order to reduce manufacturing costs.
【0003】これに対して、特公昭63ー62571公
報にはC:0.30〜0.38%、Mn:0.6〜1.
5%、B:0.0005〜0.0030%、Ti:0.
01〜0.04%、Al:0.01〜0.04%からな
る鋼をドライブシャフトに成形し、高周波焼入れにより
高周波焼入れ深さと鋼部材半径の比を0.4以上とする
ドライブシャフトの製造方法が示されている。該発明材
では静的な捩り強度については言及されているものの、
捩り疲労強度については、全く言及されていない。On the other hand, Japanese Patent Publication No. 63-62571 discloses C: 0.30 to 0.38%, Mn: 0.6 to 1.0.
5%, B: 0.0005-0.0030%, Ti: 0.
Manufacture of a drive shaft in which steel consisting of 01 to 0.04% and Al: 0.01 to 0.04% is formed into a drive shaft and the ratio of the induction hardening depth to the steel member radius is 0.4 or more by induction hardening. The method is shown. Although the invention material refers to static torsional strength,
No mention is made of torsional fatigue strength.
【0004】静的な荷重に対する材料抵抗力である静的
捩り強度と、繰り返し荷重に対する材料抵抗力である捩
り疲労強度は支配因子が異なり、別の特性である。ま
た、この発明では、冷間加工性に関しては全く配慮され
ていない。そのため、その材料は冷間加工性と捩り疲労
特性を必要とする部品には必ずしも適用されていないの
が現状である。The controlling factor is different between static torsional strength, which is a material resistance to a static load, and torsional fatigue strength, which is a material resistance to a repeated load, and they are different characteristics. Further, in the present invention, no consideration is given to cold workability. Therefore, at present, the material is not necessarily applied to parts requiring cold workability and torsional fatigue properties.
【0005】また、特公平1ー38847号公報には
C:0.35超〜0.65%、Si:0.15%以下、
Mn:0.60%以下、B:0.0005〜0.005
0%、Ti:0.05%以下、Al:0.015〜0.
050%よりなる鋼を素材として、冷間鍛造を行ったの
ち高周波焼入れして機械構造用部品を製造することを特
徴とする機械構造用部品の製造方法が示されている。同
公報の第3〜4頁の第1表から、Ti、Nの添加量は最
大でTi:0.04%、N:0.014%である。この
鋼の冷間加工性は必ずしも十分ではない。また、該発明
では、同公報第4頁右欄第16行および第3表から明ら
かなように、直径25mmの材料で硬化層深さの最大値
は3mmであり、つまり硬化層深さtと半径の比t/r
は最大でも0.24であり、極めて浅い。また、同公報
では、捩り強度、捩り疲労強度に関する記述がなく、強
度の達成レべルは不明である。つまり、該発明では、捩
り疲労強度の優れた高周波焼入れ鋼材に関する技術につ
いて、全く何も開示されていない。In Japanese Patent Publication No. 38847/1989, C: more than 0.35 to 0.65%, Si: 0.15% or less,
Mn: 0.60% or less, B: 0.0005 to 0.005
0%, Ti: 0.05% or less, Al: 0.015-0.
There is disclosed a method for manufacturing a component for a machine structure, which comprises performing cold forging and then induction hardening to manufacture a component for a machine structure using 050% steel as a material. From Table 1 on pages 3 and 4 of the publication, the maximum amounts of Ti and N added are Ti: 0.04% and N: 0.014%. The cold workability of this steel is not always sufficient. In addition, in the invention, as is apparent from the same publication, page 4, right column, line 16, and table 3, the maximum value of the hardened layer depth is 3 mm for a material having a diameter of 25 mm, that is, the hardened layer depth t is Radius ratio t / r
Is at most 0.24, which is extremely shallow. Further, the publication does not describe the torsional strength and the torsional fatigue strength, and the level at which the strength is achieved is unknown. That is, the invention does not disclose any technique regarding induction hardened steel having excellent torsional fatigue strength.
【0006】[0006]
【発明が解決しようとする課題】本発明の課題は、軸部
品として優れた捩り疲労強度を有し、且つその製造時に
は冷間加工性のような製造性に優れた高周波焼入れ鋼材
を提供しようとするものである。SUMMARY OF THE INVENTION An object of the present invention is to provide an induction hardened steel material having excellent torsional fatigue strength as a shaft part and having excellent manufacturability such as cold workability at the time of its manufacture. Is what you do.
【0007】[0007]
【課題を解決するための手段】本発明者らは、その製造
時には冷間加工性に優れ、且つ部品として優れた捩り疲
労強度を有する高周波焼入れ鋼材を実現するために、鋭
意検討を行ない次の知見を得た。Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to realize an induction hardened steel material having excellent cold workability and excellent torsional fatigue strength as a part at the time of its manufacture. Obtained knowledge.
【0008】(1)冷間加工性を確保するには、次の方
法が有効である。 1)固溶体硬化元素であるSi、Pを低減する。 2)焼入れ性は主としてB添加により確保する。(1) The following method is effective for ensuring cold workability. 1) Reduce Si and P which are solid solution hardening elements. 2) Hardenability is ensured mainly by adding B.
【0009】(2)さらに、冷間加工性を確保するに
は、N量の適正化が必須である。上記のBの焼入れ性向
上効果を引き出すためには、固溶Nを低減する必要があ
る。特公平1−38847号公報の第3〜4頁の第1表
に開示されているような、Nの添加量が最大で0.01
4%であるような多量添加は、上記に加えて次のような
弊害を引き起こす。 1)冷間加工の前の棒鋼圧延の冷却過程、あるいは軟化
焼鈍の冷却過程においてTiNが析出し、Nの多量添加
鋼では、これによる析出硬化により、却って硬さの増加
を引き起こす。 2)TiNの多量析出は、被削性を著しく劣化させると
ともに、転造等の冷間加工時の割れの原因になるため、
高N鋼では、冷間加工性が著しく悪化する。(2) Further, in order to ensure cold workability, it is essential to adjust the amount of N. In order to bring out the above-described effect of improving the hardenability of B, it is necessary to reduce solid solution N. As disclosed in Table 1 on pages 3 and 4 of JP-B 1-38847, the amount of N added is 0.01 at the maximum.
Addition of a large amount such as 4% causes the following adverse effects in addition to the above. 1) TiN precipitates in the cooling process of the steel bar rolling before the cold working or in the cooling process of the softening annealing, and in the steel with a large amount of N added, the hardness hardens due to precipitation hardening. 2) Precipitation of a large amount of TiN significantly deteriorates machinability and causes cracking during cold working such as rolling.
In the case of high N steel, cold workability is significantly deteriorated.
【0010】特公平1ー38847号公報の技術の冷間
加工性が必ずしも十分ではないのは、このような冷間加
工性に対するNの多量添加の弊害によると考えられる。
冷間加工性に対するTiNの弊害を抑制して、なお且つ
Bの焼入れ性向上効果を引き出すためには、N:0.0
015〜0.008%の範囲で制御することが必要であ
る。The reason that the cold workability of the technique disclosed in Japanese Patent Publication No. 1-38474 is not necessarily sufficient is considered to be due to the adverse effect of such a large addition of N on the cold workability.
In order to suppress the adverse effects of TiN on the cold workability and to obtain the effect of improving the hardenability of B, N: 0.0
It is necessary to control in the range of 015 to 0.008%.
【0011】(3)次に、高周波焼入れ鋼材の捩り疲労
破壊は、次の過程で起きる。 A.表面または硬化層と芯部の境界でき裂が発生する。 B.軸方向に平行な面又は垂直な面でき裂が初期伝播す
る。これを以下モードIII破壊と呼ぶ。 C.モードIII破壊の後、軸方向に45度の面で粒界
割れを伴って脆性破壊を起こし、最終破壊を起こす。こ
れを以下モードI破壊と呼ぶ。(3) Next, torsional fatigue fracture of induction hardened steel occurs in the following process. A. Cracks occur at the boundary between the surface or the hardened layer and the core. B. The crack propagates initially in a plane parallel or perpendicular to the axial direction. This is hereinafter referred to as mode III destruction. C. After the mode III fracture, a brittle fracture occurs with a grain boundary crack at a plane of 45 degrees in the axial direction, and a final fracture occurs. This is hereinafter referred to as mode I destruction.
【0012】(4)上記捩り疲労破壊過程「B.」の欄
で述べたモードIII破壊はディンプルパターンをとも
なう延性破壊であり、TiNのような析出物が多数存在
すると、これが延性破壊の核となりモードIII破壊が
起きやすくなる。(4) The torsional fatigue fracture process The mode III fracture described in the column of "B." is a ductile fracture with a dimple pattern. When a large number of precipitates such as TiN are present, this becomes a core of the ductile fracture. Mode III destruction is likely to occur.
【0013】特公平1−38847公報に記載のような
Ti、Nの添加量が最大でTi:0.04%、N:0.
014%を含有するボロン鋼では、TiNを核とする延
性破壊を起こしやすい。特公平1ー38847公報の技
術が普及していない原因の一つは、これが原因と考えら
れる。そのため、モードIII破壊強度向上の視点から
も、N量を0.0015〜0.008%未満の範囲に規
制することが必要である。As disclosed in Japanese Patent Publication No. 38847/1989, the maximum amount of Ti and N added is 0.04% for Ti and 0.
Boron steel containing 014% is liable to cause ductile fracture with TiN as a nucleus. One of the reasons why the technique disclosed in Japanese Patent Publication No. 1-38474 is not widely used is considered to be the cause. Therefore, from the viewpoint of improving the mode III fracture strength, it is necessary to regulate the N amount to a range of 0.0015 to less than 0.008%.
【0014】(5)上記涙り疲労破壊過程「C.」の欄
で述べた、軸方向に45度の面で粒界割れを伴う脆性破
壊モードIを抑制するためには、次の方法による粒界強
化が有効である。 1)Bの添加。Bは粒界偏析Pを粒界から追い出す効果
による。 2)粒界偏析元素であるP、Cu、O量の低減。 3)Ti、N量の適正化によるTiNの粒界析出量の低
減。(5) Tear fatigue fracture process In order to suppress the brittle fracture mode I accompanied by grain boundary cracking at a plane of 45 degrees in the axial direction, as described in the column of "C.", the following method is used. Grain boundary strengthening is effective. 1) Addition of B. B is due to the effect of driving out grain boundary segregation P from the grain boundaries. 2) Reduction in the amount of P, Cu and O, which are grain boundary segregation elements. 3) Reducing the amount of TiN grain boundary precipitation by optimizing the amounts of Ti and N.
【0015】(6)上記の粒界割れを伴う脆性破壊モー
ドIを抑制するためには、上記に加えてさらに次の手法
を付加することによりさらに大きくなる。 1)Cr、Mo、Ni、Nb、Vの添加による粒界強
化。 2)旧オーステナイト粒径の細粒化。(6) In order to suppress the brittle fracture mode I accompanied by grain boundary cracking, the size is further increased by adding the following method in addition to the above. 1) Strengthening of grain boundaries by adding Cr, Mo, Ni, Nb, and V. 2) Fine graining of prior austenite grain size.
【0016】(7)冷間加工性を重視して素材硬さを小
さくすると、通常は素材硬さが芯部硬さになるため、芯
部硬さが低くなる。芯部硬さが低い場合、および硬化層
深さが浅い場合には、内部起点になる。内部起点の場
合、硬化層深さが深い程、また芯部硬さが高いほど捩り
疲労強度は向上する。(7) If the material hardness is reduced with emphasis on the cold workability, the hardness of the core usually becomes the hardness of the core, so that the hardness of the core decreases. When the core hardness is low and when the depth of the hardened layer is shallow, it becomes an internal starting point. In the case of the internal starting point, the torsional fatigue strength increases as the depth of the hardened layer increases and as the core hardness increases.
【0017】図2は涙り疲労強度に及ばす硬化層深さと
芯部硬さの関係を示した模式図である。図2において、
芯部硬さを(a)から(b)へ増加すると、起点はAか
らBへ移り強度は向上するが、この高強度化の効果は、
硬化層深さを(a)から(c)へ深くして起点がAから
Cへ移った場合と等価である。そこで、芯部硬さHco
reと硬化層深さt/r(有効硬化層深さt、部品半径
r)の両者の効果を同時に記述できる新しい指標とし
て、投影芯部硬さを次式で定義した。図3は、内部起点
材の1×105回の捩り疲労強度を投影芯部硬さHp−
coreで整理したものであるが、両者には良い相関が
ある。1×105回の捩り疲労強度を600MPa以上
とするには、投影芯部硬さHp−coreが400以上
で達成できる。FIG. 2 is a schematic diagram showing the relationship between the depth of the hardened layer and the hardness of the core which affect the tear fatigue strength. In FIG.
When the core hardness is increased from (a) to (b), the starting point shifts from A to B, and the strength is improved.
This is equivalent to the case where the depth of the hardened layer is increased from (a) to (c) and the starting point shifts from A to C. Therefore, the core hardness Hco
As a new index capable of simultaneously describing the effects of both re and the hardened layer depth t / r (effective hardened layer depth t, component radius r), the projected core hardness was defined by the following equation. FIG. 3 shows the 1 × 10 5 torsional fatigue strength of the internal starting material as measured by the projected core hardness Hp−.
Although they are arranged by core, there is a good correlation between the two. In order to make the 1 × 10 5 torsional fatigue strength 600 MPa or more, the projected core hardness Hp-core can be achieved at 400 or more.
【0018】投影芯部硬さの定義:有効硬化層深さt、
部品半径r、芯部硬さHcoreとした時、 投影芯部硬さ Hp−core=Hcore/(1−t
/r) (8)さらに優れた捩り疲労強度を実現するためには、
破壊起点を内部から表面へ移すことがポイントである。
図2からは、Hp‐core/Hcaseが1以上で表
面起点となると考えられるが、実際には異なる。図4は
破壊起点とHp−core/Hcase、繰り返し数N
の関係を示したものである。Hp−core/Hcas
eが概ね0.56以上で表面起点になる。Definition of projection core hardness: effective hardened layer depth t,
When the component radius is r and the core hardness is Hcore, the projected core hardness is Hp-core = Hcore / (1-t)
/ R) (8) In order to achieve even better torsional fatigue strength,
The point is to move the fracture origin from the inside to the surface.
From FIG. 2, it is considered that Hp-core / Hcase is 1 or more, which is the surface starting point, but it is actually different. FIG. 4 shows the fracture origin, Hp-core / Hcase, and the number of repetitions N.
This shows the relationship. Hp-core / Hcas
When e is approximately 0.56 or more, it becomes the surface starting point.
【0019】(9)表面起点の場合には、疲労過程で表
面では加工軟化し、―方もともと軟質な芯部は加工硬化
している。つまり、疲労過程でミクロな塑性変形が表面
から内部へ進行しており、表面起点材の涙り疲労強度は
断面内の硬さ分布の全体が影響する。断面内の硬さの平
均として、断面内平均硬さHavを下式で定義した。(9) In the case of the starting point of the surface, the surface is softened during the fatigue process, and the soft core portion is originally work-hardened. In other words, micro plastic deformation progresses from the surface to the inside during the fatigue process, and the tear fatigue strength of the surface starting material is affected by the entire hardness distribution in the cross section. The average hardness Hav in the cross section was defined by the following equation as the average of the hardness in the cross section.
【0020】図5は、表面起点材の1×105回の捩り
疲労強度を投影芯部硬さHavで整理したものである
が、両者には良い相関がある。1×105回の捩り疲労
強度を650MPa以上とするには、断面内平均硬さH
avが560以上で達成できる。FIG. 5 shows the 1 × 10 5 torsional fatigue strength of the surface starting material arranged in terms of the projected core hardness Hav. There is a good correlation between the two. In order to increase the torsional fatigue strength of 1 × 10 5 times to 650 MPa or more, the average hardness in the cross section H
av can be achieved with 560 or more.
【0021】断面内平均硬さの定義:半径aの断面を半
径方向に同心円状にN個のリングに分割し、n番目のリ
ング状部分の硬さをHn、半径をrn、間隔を△rnとし
た時、Definition of average hardness in cross section: The cross section of radius a is divided concentrically into N rings in the radial direction, the hardness of the n-th ring portion is H n , the radius is r n , and the interval is △ when the r n,
【0022】[0022]
【数1】 本発明は以上の新規なる知見にもとずいてなされたもの
であり、本発明の要旨は以下の通りである。(Equation 1) The present invention has been made based on the above novel findings, and the gist of the present invention is as follows.
【0023】(1)本発明の請求項1および請求項4の
発明は重量比として、C:0.35〜0.60%、S
i:0.01〜0.15%、Mn:0.2〜1.60
%、S:0.005〜0.15%、Al:0.010〜
0.06%、Ti:0.005〜0.050%B:0.
0005〜0.005%、N:0.0015〜0.00
8%、を含有しさらに必要に応じて、Cr:0.1超〜
1.2%、Mo:0.02〜0.8%、Ni:0.1〜
3.5%Nb:0.01〜0.3%V:0.03〜0.
6%の1種または2種以上を含有し、そして、P:0.
020%以下、Cu:0.05%以下、O:0.002
5%以下にそれぞれ制限し、残部が鉄および不可避的不
純物からなり、有効硬化層深さtと部品半径rの比t/
rが0.3〜0.6であり、かつ下記で定義される投影
芯部硬さHp−coreがHV400以上であることを
特徴とする高捩り疲労強度高周波焼入れ鋼材。(1) According to the first and fourth aspects of the present invention, C: 0.35 to 0.60%, S
i: 0.01 to 0.15%, Mn: 0.2 to 1.60
%, S: 0.005 to 0.15%, Al: 0.010 to
0.06%, Ti: 0.005 to 0.050% B: 0.
0005-0.005%, N: 0.0015-0.00
8%, and optionally Cr: more than 0.1
1.2%, Mo: 0.02 to 0.8%, Ni: 0.1 to
3.5% Nb: 0.01-0.3% V: 0.03-0.
It contains 6% of one or more and P: 0.
020% or less, Cu: 0.05% or less, O: 0.002
5% or less, the balance being iron and unavoidable impurities, and the ratio of the effective hardened layer depth t to the part radius r, t /
A high torsional fatigue strength induction hardened steel material, wherein r is 0.3 to 0.6 and a projected core hardness Hp-core defined below is HV400 or more.
【0024】投影芯部硬さの定義:有効硬化層深さt、
部品半径r、芯部硬さHcoreとした時、 投影芯部硬さ Hp−core=Hcore/(1−t
/r) (2)本発明の請求項2および請求項5の発明は重量比
として、C:0.35〜0.60%、Si:0.01〜
0.15%、Mn:0.2〜1.60%、S:0.00
5〜0.15%、Al:0.010〜0.06%、T
i:0.005〜0.050%B:0.0005〜0.
005%、N:0.0015〜0.008%、を含有
し、さらに必要に応じて、Cr:0.1超〜l.2%、
Mo:0.02〜0.8%、Ni:0.1〜3.5%N
b:0.01〜0.3%V:0.03〜0.6%の1種
または2種以上を含有し、P:0.020%以下、C
u:0.05%以下、O:0.0025%以下にそれぞ
れ制限し、残部が鉄および不可避的不純物からなり、有
効硬化層深さtと部品半径の比t/rが0.4〜0.7
5であり、かつ下記で定義される投影芯部硬さHp−c
oreと硬化層硬さHcaseの比Hp−core/H
caseが0.56以上であることを特徴とする高振り
疲労強度高周波焼入れ鋼材。Definition of projected core hardness: effective hardened layer depth t,
When the component radius is r and the core hardness is Hcore, the projected core hardness is Hp-core = Hcore / (1-t)
/ R) (2) In the invention of claims 2 and 5 of the present invention, C: 0.35 to 0.60%, Si: 0.01 to
0.15%, Mn: 0.2 to 1.60%, S: 0.00
5 to 0.15%, Al: 0.010 to 0.06%, T
i: 0.005 to 0.050% B: 0.0005 to 0.5%
005%, N: 0.0015 to 0.008%, and if necessary, Cr: more than 0.1 to l. 2%,
Mo: 0.02 to 0.8%, Ni: 0.1 to 3.5% N
b: 0.01 to 0.3% V: One or more of 0.03 to 0.6%, P: 0.020% or less, C
u: 0.05% or less, O: 0.0025% or less, the balance being iron and unavoidable impurities, the ratio t / r of the effective hardened layer depth t to the part radius being 0.4 to 0. .7
5, and a projection core hardness Hp-c defined below.
The ratio Hp-core / H between ore and the hardness of the hardened layer Hcase
A high-frequency fatigue strength induction hardened steel material having a case of 0.56 or more.
【0025】投影芯部硬さの定義:有効硬化層深さt、
部品半径r、芯部硬さHcoreとした時、 投影芯部硬さ Hp−core=Hcore/(1ーt
/r) (3)本発明の請求項3および請求項6の発明は、重量
比として、C:0.35〜0.60%、Si:0.01
〜0.15%、Mn:0.2〜1.60%、S:0.0
05〜0.15%、Al:0.010〜0.06%、T
i:0.005〜0.050%B:0.0005〜0.
005%、N:0.0015〜0.008%、を含有
し、さらに必要に応じて、Cr:0.1超〜l.2%、
Mo:0.02〜0.8%、Ni:0.1〜3.5%N
b:0.01〜0.3%V:0.03〜0.6%の1種
または2種以上を含有し、P:0.020%以下、C
u:0.05%以下、O:0.0025%以下にそれぞ
れ制限し、残部が鉄および不可避的不純物からなり、有
効硬化層深さtと部品半径の比t/rが0.4〜0.7
5であり、かつ下記で定義される投影芯部硬さHp−c
oreと硬化層硬さHcaseの比Hp−core/H
caseが0.56以上であり、さらに下記で定義され
る断面内平均硬さHavがHV560以上であることを
特徴とする高捩り疲労強度高周波焼入れ鋼材。Definition of projected core hardness: effective hardened layer depth t,
When the component radius is r and the core hardness is Hcore, the projected core hardness is Hp-core = Hcore / (1-t)
/ R) (3) According to the third and sixth aspects of the present invention, the weight ratio of C: 0.35 to 0.60%, Si: 0.01
0.15%, Mn: 0.2-1.60%, S: 0.0
05-0.15%, Al: 0.010-0.06%, T
i: 0.005 to 0.050% B: 0.0005 to 0.5%
005%, N: 0.0015 to 0.008%, and if necessary, Cr: more than 0.1 to l. 2%,
Mo: 0.02 to 0.8%, Ni: 0.1 to 3.5% N
b: 0.01 to 0.3% V: One or more of 0.03 to 0.6%, P: 0.020% or less, C
u: 0.05% or less, O: 0.0025% or less, the balance being iron and unavoidable impurities, the ratio t / r of the effective hardened layer depth t to the part radius being 0.4 to 0. .7
5, and a projection core hardness Hp-c defined below.
The ratio Hp-core / H between ore and the hardness of the hardened layer Hcase
A high torsional fatigue strength induction hardened steel material having a case of 0.56 or more and an average in-section hardness Hav defined below as HV 560 or more.
【0026】投影芯部硬さの定義:有効硬化層深さt、
部品半径r、芯部硬さHcoreとした時、 投影芯部硬さ Hp−core=Hcore/(1−t
/r) 断面内平均硬さの定義:半径aの断面を半径方向に同心
円状にN個のリングに分割し、n番目のリング状部分の
硬さをHn、半径をrn、間隔を△rnとした時、Definition of projection core hardness: effective hardened layer depth t,
When the component radius is r and the core hardness is Hcore, the projected core hardness is Hp-core = Hcore / (1-t)
/ R) Definition of average hardness in cross section: A cross section of radius a is divided concentrically into N rings in the radial direction, the hardness of the n-th ring-shaped portion is H n , the radius is r n , and the interval is △ when the r n,
【0027】[0027]
【数1】 (4)本発明の請求項7、請求項8の発明は、高周波焼
入れ層の旧オーステナイト結晶粒度が9番以上である請
求項1〜3のいずれかに記載の高捩り疲労強度高周波焼
入れ鋼材および請求項4〜6のいずれかに記載の高捩り
疲労強度高周波焼入れ鋼材である。(Equation 1) (4) The invention according to claims 7 and 8 of the present invention provides the high-torsional fatigue strength induction-hardened steel material according to any one of claims 1 to 3, wherein the prior-austenite grain size of the induction-hardened layer is 9 or more. A high torsional fatigue strength induction hardened steel material according to any one of claims 4 to 6.
【0028】[0028]
【発明の実施の形態】以下に、本発明の実施の形態を説
明する。Embodiments of the present invention will be described below.
【0029】まず、本発明の成分含有範囲を上記の如く
限定した理由について説明する。First, the reason why the content range of the component of the present invention is limited as described above will be described.
【0030】C:0.35〜0.60%、 Cは高周波焼入れ硬化層の硬さを増加させるのに有効な
元素であるが、0.35%未満では硬さが不十分であ
り、また0.60%を超えると高周波焼入れ前の硬さが
硬くなりすぎて冷間加工性が劣化するとともに、オース
テナイト粒界への炭化物析出が顕著になって粒界強度を
劣化させるため、含有量を0.35〜0.60%に定め
た。C: 0.35 to 0.60%, C is an element effective for increasing the hardness of the induction hardened layer, but if it is less than 0.35%, the hardness is insufficient. If it exceeds 0.60%, the hardness before induction hardening becomes too hard and the cold workability deteriorates, and carbide precipitation at the austenite grain boundaries becomes remarkable, deteriorating the grain boundary strength. It was set to 0.35 to 0.60%.
【0031】Si:0.01〜0.15%、 Siは脱酸元素として、および粒界強化を狙いとして添
加する。しかしながら、0.01%未満ではその効果は
不十分である。―方、Siは固溶体硬化により素材硬さ
を高くするため、0.15%を超える添加は、高周波焼
入れ前の段階で切削性等の冷間加工性を劣化させる。以
上の理由でその含有量を0.01〜0.15%とした。Si: 0.01 to 0.15%, Si is added as a deoxidizing element and for the purpose of strengthening grain boundaries. However, if the content is less than 0.01%, the effect is insufficient. On the other hand, since Si increases the material hardness by solid solution hardening, addition of more than 0.15% deteriorates cold workability such as machinability at a stage before induction hardening. For the above reasons, the content is set to 0.01 to 0.15%.
【0032】Mn:0.20〜1.60%、 Mnは(1)焼入れ性の向上、および鋼中でMnSを形
成することによる(2)高周波焼入れ加熱時のオーステ
ナイト粒の微細化と(3)被削性の向上を目的として添
加する。しかしながら、0.20%未満ではこの効果は
不十分である。一方、Mnを過剰添加すると、高周波焼
入れ前の素材のパーライト分率を増加させて素材強度を
増加させ、冷間加工性を劣化させる。特にこの傾向は
1.60%超の添加で顕著になる。以上の理由から、M
nの含有量を0.20〜1.60%とした。なお、冷間
加工性をより重視した鋼材では、望ましくはMn:0.
20〜1.00%の範囲に制限することが望ましい。Mn: 0.20 to 1.60%, Mn is (1) improved hardenability and (2) refinement of austenite grains during induction hardening heating by forming MnS in steel and (3) ) Added for the purpose of improving machinability. However, if less than 0.20%, this effect is insufficient. On the other hand, when Mn is excessively added, the pearlite fraction of the raw material before induction hardening is increased to increase the raw material strength and deteriorate the cold workability. In particular, this tendency becomes remarkable when the addition exceeds 1.60%. For the above reasons, M
The content of n was set to 0.20 to 1.60%. In the case of a steel material in which the cold workability is more important, Mn: 0.
It is desirable to limit to the range of 20 to 1.00%.
【0033】S:0.005〜0.15%、 Sは鋼中でMnSを形成、これによる高周波焼入れ加熱
時のオ―ステナイト粒の微細化および被削性の向上を目
的として添加するが、0.005%未満ではその効果は
不十分である。一方、0.15%を超えるとその効果は
飽和し、むしろ粒界偏析を起こし粒界脆化を招く。以上
の理由から、Sの含有量を0.005〜0.15%とし
た。S: 0.005 to 0.15% S forms MnS in steel, and is added for the purpose of miniaturizing austenite grains and improving machinability during induction hardening heating. If less than 0.005%, the effect is insufficient. On the other hand, if the content exceeds 0.15%, the effect is saturated, and rather, grain boundary segregation is caused to cause grain boundary embrittlement. For the above reasons, the content of S is set to 0.005 to 0.15%.
【0034】Al:0.010〜0.06%、 Alは脱酸元素および結晶粒微細化元素として添加する
が、0.010%未満ではその効果は不十分であり、一
方、0.06%を超えるとその効果は飽和し、むしろ最
終部品でのモードIII破壊強度を劣化させるので、そ
の含有量を0.010〜0.06%とした。Al: 0.010% to 0.06%, Al is added as a deoxidizing element and a crystal grain refining element. If less than 0.010%, the effect is insufficient. On the other hand, 0.06% Is exceeded, the effect is saturated, and rather the mode III breaking strength in the final part is deteriorated. Therefore, the content is set to 0.010 to 0.06%.
【0035】Ti:0.005〜0.050%、 Tiは鋼中でNと結合してTiNとなるが、これによる
固溶Nの完全固定によるBN析出防止、つまり固溶Bの
確保を目的として添加する。さらに、Ti添加は表面硬
化層の細粒化にも寄与する。しかしながら、0.005
%未満ではその効果は不十分であり、一方、0.05%
を超えると多量のTiN、TiCによる冷間加工時の割
れおよび最終部品でのモードIII破壊強度の劣化を引
き起こすので、その含有量を0.005〜0.050%
とした。なお、冷間加工性及び高捩り疲労強度特性をよ
り一層改善するためには、望ましくは、Ti:0.00
5〜0.030%の範囲に限定することが望ましい。Ti: 0.005 to 0.050%, Ti combines with N in steel to form TiN. The purpose is to prevent BN precipitation by completely fixing solid solution N, that is, to secure solid solution B. Add as Furthermore, the addition of Ti also contributes to the refinement of the surface hardened layer. However, 0.005
%, The effect is insufficient, while 0.05%
If the content exceeds 0.005%, cracking during cold working due to a large amount of TiN or TiC and deterioration of the mode III fracture strength in the final part are caused.
And In order to further improve the cold workability and the high torsional fatigue strength characteristics, desirably, Ti: 0.00
It is desirable to limit the range to 5 to 0.030%.
【0036】B:0.0005〜0.005%、 Bは固溶状態でオーステナイト粒界に粒界偏析し、焼入
れ性を増加させることを狙いとして添加する。同時に、
P、Cu等の粒界不純物を粒界から追い出すことにより
粒界強度を増加させる作用も存在する。粒界強化により
捩り強度、捩り疲労強度が増加する。しかしながら、
0.0005%未満ではその効果は不十分であり、一
方、0.005%を超える過剰添加は、むしろ粒界脆化
を招くので、その含有量を0.0005〜0.005%
とした。B: 0.0005 to 0.005% B is added for the purpose of increasing the hardenability by segregating at the austenite grain boundaries in the solid solution state and increasing the hardenability. at the same time,
There is also an effect of increasing grain boundary strength by driving out grain boundary impurities such as P and Cu from the grain boundaries. Grain boundary strengthening increases torsional strength and torsional fatigue strength. However,
If the content is less than 0.0005%, the effect is insufficient. On the other hand, excessive addition exceeding 0.005% rather causes grain boundary embrittlement, so that the content is 0.0005 to 0.005%.
And
【0037】N:0.0015〜0.008% NはAlN等の炭窒化物析出による高周波加熱時のオー
ステナイト粒の微細化を目的として添加するが、0.0
015%未満ではその効果は不十分である、ー方、0.
008%を超えると、BNを析出して固溶Bの低減を引
き起こすとともに、多量のTiN析出による冷間加工割
れおよび最終部品でのモードIII破壊強度の劣化を引
き起こすので、その含有量を0.0015〜0.008
%とした。なお、冷間加工性及び高捩り疲労強度特性を
より―層改善するためには、望ましくは、N:0.00
15〜0.005%の範囲に限定することが望ましい。N: 0.0015 to 0.008% N is added for the purpose of refining austenite grains during high frequency heating by precipitation of carbonitride such as AlN.
If it is less than 015%, the effect is insufficient.
If the content exceeds 008%, BN precipitates to cause a reduction in solid solution B, and also causes a large amount of TiN precipitation to cause cold work cracking and deterioration of the mode III fracture strength in the final part. 0015-0.008
%. In order to further improve the cold workability and high torsional fatigue strength characteristics, it is desirable that N: 0.00
It is desirable to limit to the range of 15 to 0.005%.
【0038】P:0.020%以下(0%を含む)、 Pは固溶体硬化により素材硬さを高くし、高周波焼入れ
前の段階で冷間鍛造性を劣化させる。さらにオーステナ
イト粒界に粒界偏析を起こし、粒界強度を低下させて捩
り応力下での脆性破壊を起こし安くし、そのため強度を
低下させる。特にPが0.020%を超えると強度低下
が顕著となるため、0.020%を上限とした。なお、
より粒界強化を図る場合には、0.015%以下が望ま
しい。P: 0.020% or less (including 0%), P increases the hardness of the material by solid solution hardening, and deteriorates cold forgeability at a stage before induction hardening. Further, segregation occurs at the austenite grain boundaries, which lowers the strength of the grain boundaries to cause brittle fracture under torsional stress, thereby lowering the strength. In particular, when P exceeds 0.020%, the strength is significantly reduced, so 0.020% was made the upper limit. In addition,
In order to further strengthen the grain boundary, the content is preferably 0.015% or less.
【0039】Cu:0.05%以下(0%を含む)、 CuもPと同様オーステナイト粒界に粒界偏析を起こ
し、強度低下の原因となる。特にCuが0.05%を超
えると強度低下が顕著となるため、0.05%を上限と
した。Cu: 0.05% or less (including 0%), Cu also causes grain boundary segregation at austenite grain boundaries like P, causing a decrease in strength. In particular, when Cu exceeds 0.05%, the strength is significantly reduced, so 0.05% was made the upper limit.
【0040】O:0.0025%以下(0%を含む)、 Oは粒界偏析を起こし粒界脆化を起こすとともに、鋼中
で硬い酸化物系介在物を形成し、捩り応力下での脆性破
壊を起こし安くし、強度低下の原因となる。特にOが
0.0025%を超えると強度低下が顕著となるため、
0.0025%を上限とした。O: 0.0025% or less (including 0%), O causes grain boundary segregation to cause grain boundary embrittlement, and forms hard oxide-based inclusions in the steel, and under torsional stress. It causes brittle fracture and lowers the cost, causing a reduction in strength. In particular, when O exceeds 0.0025%, the strength decreases remarkably,
The upper limit is 0.0025%.
【0041】次に、請求項4、5、6、8の発明鋼は、
Cr、Mo、Ni、Nb、V添加により、粒界強度の
増加、および焼入れ性の向上を図た鋼である。Cr:
0.1超〜1.2%、Mo:0.02〜0.80%、N
i:0.1〜3.50%、Nb:0.01〜0.3%、
V:0.03〜0.6%、これらの元素はいずれもオ
ーステナイト粒界に析出している粒界炭化物を微細化さ
せることによる粒界強度の増加および焼入れ性の向上
を狙いとして添加する。またNiには粒界近傍の靭性を
改善し、脆性破壊を抑制する効果も有する。また、N
b、Vは鋼中で炭窒化物を形成し、高周波加熱時のオー
ステナイト粒を微細化させる効果も有する。これらの効
果は、Cr:01%以下、Mo:0.02%未満、N
i:0.1%未満、Nb:0.01%未満、V:0.0
3%未満では不十分である。一方、Cr:1.2%超、
Mo:0.80%超、Ni:3.50%超、Nb:0.
3%超、V:0.6%超では、これらの効果は飽和し、
むしろこれらの元素の過剰添加は冷間加工性の劣化を招
く。以上の理由から、その含有量を上記の範囲にそれぞ
れ限定した。Next, the invention steel according to claims 4, 5, 6, and 8 is as follows:
It is a steel in which the addition of Cr, Mo, Ni, Nb, and V has increased grain boundary strength and improved hardenability. Cr:
More than 0.1 to 1.2%, Mo: 0.02 to 0.80%, N
i: 0.1 to 3.50%, Nb: 0.01 to 0.3%,
V: 0.03 to 0.6%, all of these elements are added for the purpose of increasing grain boundary strength and improving hardenability by refining grain boundary carbides precipitated at austenite grain boundaries. Ni also has the effect of improving the toughness near the grain boundaries and suppressing brittle fracture. Also, N
b and V form carbonitrides in steel and also have the effect of making austenite grains fine during high-frequency heating. These effects are as follows: Cr: 01% or less; Mo: less than 0.02%;
i: less than 0.1%, Nb: less than 0.01%, V: 0.0
Less than 3% is insufficient. On the other hand, Cr: more than 1.2%,
Mo: more than 0.80%, Ni: more than 3.50%, Nb: 0.
Above 3%, V: above 0.6%, these effects are saturated,
Rather, excessive addition of these elements causes deterioration of cold workability. For the above reasons, the content was limited to the above ranges.
【0042】次に、請求項1、4では、高周波焼入れ鋼
材が上記の成分からなり、有効硬化層深さtと部品半径
rの比t/rを0.3〜0.6とし、かつ上記で定義さ
れる投影芯部硬さHp‐coreがHV400以上とす
るが、こように限定した理由を以下に述べる。Next, in the first and fourth aspects, the induction hardened steel material is composed of the above components, the ratio t / r of the effective hardened layer depth t to the component radius r is set to 0.3 to 0.6, and The hardness Hp-core defined by the equation (1) is set to HV400 or more, and the reason for the limitation is described below.
【0043】本願発明で言う有効硬化層深さtは、JI
S G 0559で規定する高周波焼入れ硬化層深さ測
定方法に基づく有効硬化層深さである。請求項1、4
は、内部起点の場合の捩り強度の向上を図った発明であ
る。有効硬化層深さt/rが、0.6を越えると起点が
表面起点となり、涙り疲労強度支配要因が異なる。一
方、t/rが0.3未満では、捩り疲労強度向上効果が
小さい。以上の理由で、有効硬化層深さt/rを0.3
〜0.6の範囲に限定した。次に、内部起点材の涙り疲
労強度は、上記および図3に示したように投影芯部硬さ
Hp−coreに比例して向上する。1×105回での
時間強度を600以上とするためには、投影芯部硬さを
HV400以上とすることが必要であり、それ未満では
捩り疲労強度が不足する。以上の理由から、投影芯部硬
さHp‐coreがHV400以上とした。なお、内部
起点においてより高い強度レべルである1×105回で
の時間強度を650以上とするためには、投影芯部硬さ
をHV440以上とすることが望ましい。The effective hardened layer depth t referred to in the present invention is JI
This is the effective hardened layer depth based on the induction hardened hardened layer depth measurement method specified in SG0559. Claims 1 and 4
Is an invention which aims to improve the torsional strength in the case of an internal starting point. When the effective hardened layer depth t / r exceeds 0.6, the starting point becomes the surface starting point, and the factor controlling tear fatigue strength is different. On the other hand, when t / r is less than 0.3, the effect of improving torsional fatigue strength is small. For the above reasons, the effective hardened layer depth t / r is 0.3
Limited to the range of 0.6. Next, the tear fatigue strength of the internal starting material increases in proportion to the projection core hardness Hp-core as shown above and in FIG. In order to set the time strength at 1 × 10 5 times to 600 or more, it is necessary to set the projection core hardness to HV400 or more, and if it is less than that, the torsional fatigue strength is insufficient. For the above reasons, the projection core hardness Hp-core is set to HV400 or more. In order to make the time intensity at 1 × 10 5 times, which is a higher intensity level at the internal starting point, 650 or more, the hardness of the projection core is preferably HV440 or more.
【0044】次に、請求項2、5では、高周波焼入れ鋼
材が上記の成分からなり、有効硬化層深さtと部品半径
rの比t/rが0.4〜0.75であり、かつ上記で定
義される投影芯部硬さHp‐coreと硬化層硬さHc
aseの比Hp−core/Hcaseが0.56以上
とするが、こように限定した理由を以下に述べる。In the second and fifth aspects, the induction hardened steel material is composed of the above-mentioned components, the ratio t / r of the effective hardened layer depth t to the component radius r is 0.4 to 0.75, and Projection core hardness Hp-core and hardened layer hardness Hc defined above
The ratio Hp-core / Hcase of case is 0.56 or more, and the reason for such limitation is described below.
【0045】請求項2、5は、請求項1、4よりもさら
に高い捩り疲労強度レべルを狙いとした鋼材である。有
効硬化層深さtと部品半径rの比t/rを0.4〜0.
75としたのは、高周波焼入れ材の涙り疲労強度は、高
周波焼入れ深さを深くするほど向上するが、有効硬化層
深さがt/rで0.4未満では、捩り疲労強度向上効果
が小さく、また0.75を越えると表層の圧縮残留応力
が低下するため、軸部品製造工程で焼き割れ発生の危険
性が増すためである。次に、図2から明らかなように、
疲労破壊起点が内部よりも表面の方が捩り疲労強度は向
上する。表面起点になるか、内部起点になるかは、投影
芯部硬さHp−coreと硬化層硬さHcaseの比H
p−core/Hcaseに依存する。図4に示したよ
うに、Hp‐core/Hcaseが0.56以上で表
面起点になる。本願発明で投影芯部硬さHp−core
と硬化層硬さHcaseの比Hp‐core/Hcas
eを0.56以上の範囲に限定したのは以上の理由によ
る。Claims 2 and 5 are steel materials aiming at a higher torsional fatigue strength level than claims 1 and 4. The ratio t / r of the effective hardened layer depth t to the component radius r is 0.4 to 0.5.
The reason for 75 is that the tear fatigue strength of the induction hardened material is improved as the induction hardened depth is increased. However, when the effective hardened layer depth is less than 0.4 at t / r, the effect of improving the torsional fatigue strength is reduced. If it is small and exceeds 0.75, the compressive residual stress of the surface layer is decreased, and the risk of occurrence of burning cracks in the shaft part manufacturing process is increased. Next, as is apparent from FIG.
The torsional fatigue strength is improved when the fatigue fracture starting point is on the surface than inside. Whether it becomes the surface starting point or the internal starting point is determined by the ratio H between the projected core hardness Hp-core and the hardened layer hardness Hcase.
Depends on p-core / Hcase. As shown in FIG. 4, when Hp-core / Hcase is 0.56 or more, the surface becomes the starting point. In the present invention, the projection core hardness Hp-core
Of the hardness of the hardened layer Hcase and the ratio Hp-core / Hcas
The reason why e is limited to the range of 0.56 or more is as described above.
【0046】次に、請求項3、6では、高周波焼入れ鋼
材が上記の成分からなり、有効硬化層深さtと部品半径
rの比t/rが0.4〜0.75であり、かつ上記で定
義される投影芯部硬さHp−coreと硬化層硬さHc
aseの比Hp−core/Hcaseが0.56以上
であり、さらに上記で定義される断面内平均硬さHav
がHV560以上とするが、こように限定した理由を以
下に述べる。Next, in the third and sixth aspects, the induction hardened steel material is composed of the above components, the ratio t / r of the effective hardened layer depth t to the component radius r is 0.4 to 0.75, and Projection core hardness Hp-core and hardened layer hardness Hc defined above
ratio Hp-core / Hcase is 0.56 or more, and the average hardness Hav in the cross section as defined above.
Is HV560 or more, but the reason for such limitation is described below.
【0047】請求項3、6は、表面起点の場合の涙り強
度の向上を図った発明であり、請求項2、5よりもさら
に高い捩り疲労強度レべルを狙いとした鋼材である。有
効硬化層深さtと部品半径rの比t/rを0.4〜0.
75の範囲に、またHp‐core/Hcaseを0.
56以上の範囲に限定したのは、上記の請求項2、5と
同じ理由である。Claims 3 and 6 are inventions for improving tear strength in the case of a surface starting point, and are steel materials aiming at a higher torsional fatigue strength level than claims 2 and 5. The ratio t / r of the effective hardened layer depth t to the component radius r is 0.4 to 0.5.
75 and the Hp-core / Hcase is set to 0.
The reason for limiting to the range of 56 or more is the same as in claims 2 and 5 above.
【0048】次に、表面起点材の捩り疲労強度は、上記
および図5に示したように投影芯部硬さHp−core
に比例して向上する。1×105回での時間強度を65
0以上とするためには、断面内平均硬さHavをHV5
60以上とすることが必要であり、それ未満では捩り疲
労強度が不足する。Next, as shown in FIG. 5 and FIG. 5, the torsional fatigue strength of the surface starting material is calculated from the projected core hardness Hp-core.
It increases in proportion to Time intensity at 1 × 10 5 times is 65
In order to set the average hardness Hav in the cross section to HV5
It is necessary to be 60 or more, and if it is less than 60, the torsional fatigue strength is insufficient.
【0049】以上の理由から、断面内平均硬さHaVが
HV560以上とした。なお、表面起点においてより高
い強度レベルである1×105回での時間強度を700
以上とするためには、断面内平均硬さHavをHV56
0以上とすることが望ましい。For the above reasons, the average hardness HaV in the cross section was HV560 or more. Note that the time intensity at a higher intensity level of 1 × 10 5 times at the surface starting point was 700 times.
In order to achieve the above, the average hardness Hav in the cross section is set to HV56.
It is desirable to be 0 or more.
【0050】次に、請求項7、8は高周波加熱時のオー
ステナイト粒を−層微細化し、粒界破壊防止による高強
度化を図った高周波焼入れ鋼材である。本発明において
高周波焼入れ鋼材の高周波焼入れ層の旧オーステナイト
結晶粒度が9番以上としたのは、高周波焼入れ層の旧オ
ーステナイト粒界の細粒化により粒界破壊による脆性破
壊が抑制されるが、結晶粒度が9番未満ではこの効果は
小さいためである。Next, claims 7 and 8 are induction hardened steel materials in which austenite grains at the time of high frequency heating are refined in a single layer to increase the strength by preventing grain boundary destruction. In the present invention, the reason why the former austenite crystal grain size of the induction hardened layer of the induction hardened steel material is 9 or more is that brittle fracture due to grain boundary fracture is suppressed by refining the former austenite grain boundary of the induction hardened layer. If the particle size is less than 9, this effect is small.
【0051】次に、本発明鋼材の製造方法について述べ
る。Next, a method for producing the steel material of the present invention will be described.
【0052】本発明の高周波焼入れ鋼材では、製造のた
めの高周波焼入れ条件および焼戻し条件は特に限定せ
ず、本発明の要件を満足すればいずれの条件でも良い。
例えば、本発明の要件を満足すれば焼戻し処理を行わな
くても良い。また、本発明では、本発明の要件を満足す
れば、高周波焼入れの前に焼準、焼鈍、球状化焼鈍、焼
入れ−焼戻し等の熱処理を必要に応じて行うことができ
る。なお、高周波焼入れの前に焼準、焼鈍、球状化焼鈍
を行わない場合には、鋼材素材の熱間圧延による製造を
仕上げ温度:700〜900℃、仕上げ圧延後700〜
500℃の温度範囲の平均冷却速度:0.1〜1.7℃
/秒の条件で行うのが望ましい。但し、本発明では特に
限定するものではない。In the induction hardened steel material of the present invention, the induction hardening conditions and tempering conditions for production are not particularly limited, and any conditions may be used as long as the requirements of the present invention are satisfied.
For example, if the requirements of the present invention are satisfied, tempering may not be performed. In the present invention, if the requirements of the present invention are satisfied, heat treatments such as normalizing, annealing, spheroidizing annealing, and quenching-tempering can be performed as necessary before induction hardening. When normalizing, annealing, and spheroidizing annealing are not performed before induction hardening, the steel material is manufactured by hot rolling at a finishing temperature of 700 to 900 ° C.
Average cooling rate in the temperature range of 500 ° C: 0.1 to 1.7 ° C
/ Second is desirable. However, the present invention is not particularly limited.
【0053】本発明鋼材では、被削性向上を目的として
Ca、Pbの1種または2種を必要に応じて含有させる
ことが出来る。なお、Caは被削性向上だけでなく、鋼
中でPと結合して燐化物を生成し、Pの粒界偏析量を低
減し粒界強度を増加させる効果も有している。Ca、P
bの適正添加範囲は次の通りである。Ca:0.000
5〜0.010%、Pb:0.05〜0.5% 本発明においては、高周波焼入れ軸部品の表面に大きな
圧縮残留応力を付与し、これにより脆性破壊を抑制して
一層の高強度化を図ることもできる。高周波焼入れ鋼材
の哀面の残留応力を−80kgf/mm2以下とするこ
とにより、脆性破壊が抑制されて捩り疲労強度は顕著に
向上する。高周波焼入れ鋼材への圧縮残留応力の付与
は、高周波焼入れ−焼戻し後、アークハイトl.0mm
A以上の強さでのハードショットピーニング処理が有効
である。ここで、アークハイトとは例えば「自動車技
術、Vol.41、No.7、1987、726〜72
7頁」に記載されているようにショットピーニングの強
さの指標である。但し、本発明では、圧縮残留応力の付
与の条件は特に限定せず、本発明の要件を満足すればい
ずれの条件でも良い。In the steel material of the present invention, one or two of Ca and Pb can be contained as required for the purpose of improving machinability. In addition, Ca not only improves machinability, but also has the effect of forming phosphide by combining with P in steel, reducing the amount of segregation of P at the grain boundary and increasing the grain boundary strength. Ca, P
The appropriate addition range of b is as follows. Ca: 0.000
5 to 0.010%, Pb: 0.05 to 0.5% In the present invention, a large compressive residual stress is applied to the surface of the induction hardened shaft part, thereby suppressing brittle fracture and further increasing the strength. Can also be planned. By setting the residual stress on the poor surface of the induction hardened steel material to −80 kgf / mm 2 or less, brittle fracture is suppressed and torsional fatigue strength is significantly improved. The application of the compressive residual stress to the induction hardened steel material is performed after induction hardening and tempering, and after the arc height l. 0mm
Hard shot peening at an intensity of A or more is effective. Here, the arc height is, for example, “Automotive technology, Vol. 41, No. 7, 1987, 726-72.
Page 7 "is an index of shot peening strength. However, in the present invention, the conditions for applying the compressive residual stress are not particularly limited, and any conditions may be used as long as the requirements of the present invention are satisfied.
【0054】捩り疲労過程でのき裂の発生の原因の一つ
は、硬化層の硬さムラである。本願発明の対象部品は、
熱間圧延ままで冷間加工−高周波焼入れされる場合以外
に、熱間圧延後A3変態点以下の温度での簡易焼鈍等の
熱処理を経た後、冷間加工ー高周波焼入れされる場合が
ある。但し、熱間圧延後、簡易焼鈍等の熱処理を経た組
織は、圧延材の組織に大きく影響される。そのため、こ
のような熱間圧延後熱処理を受ける場合でも、高周波焼
入れ時の硬化層の硬さムラ抑制のためには圧延材組織の
適正化が重要である。圧延材の組織のフェライト分率が
35%を超え、フェライト結晶粒径が30μmを超える
と硬化層で顕著な硬さのムラを生じ、捩り疲労破壊を起
こしやすくなる。そのため、圧延材の組織のフェライト
の組織分率が35%以下で、フェライト結晶粒径が30
μm以下とするのが望ましい。但し、本発明では、本組
織因子を特に限定するものではない。One of the causes of the occurrence of cracks in the process of torsional fatigue is uneven hardness of the hardened layer. The target parts of the present invention are:
Cold working while hot rolling - besides When induction hardening, after a heat treatment of simple annealing or the like in the hot rolling after A 3 following transformation point temperature, it may be cold worked over induction hardening . However, the structure that has undergone heat treatment such as simple annealing after hot rolling is greatly affected by the structure of the rolled material. Therefore, even when such a heat treatment is performed after hot rolling, it is important to optimize the texture of the rolled material in order to suppress the unevenness in hardness of the hardened layer during induction hardening. If the structure of the rolled material has a ferrite fraction of more than 35% and a ferrite crystal grain size of more than 30 μm, the hardened layer will have remarkable unevenness in hardness, which will easily cause torsional fatigue failure. Therefore, the structure fraction of ferrite in the structure of the rolled material is 35% or less, and the ferrite crystal grain size is 30% or less.
It is desirable that the thickness be not more than μm. However, in the present invention, the present tissue factor is not particularly limited.
【0055】[0055]
【実施例】以下に、本発明の効果を実施例により、さら
に具体的に示す。 (実施例ー1)本願の第1発明および第7発明の実施例
を表1および表2に示す。EXAMPLES The effects of the present invention will be more specifically described below with reference to examples. (Example-1) Tables 1 and 2 show examples of the first invention and the seventh invention of the present application.
【0056】[0056]
【表1】 表1の組成を有する鋼材を40mmφの棒鋼に圧延し
た。この棒鋼から被削性評価用ドリル穴開け試験片、捩
り試験片および焼き割れ感受性評価試験片を採取した。[Table 1] A steel material having the composition shown in Table 1 was rolled into a bar of 40 mmφ. From this steel bar, a test piece for drilling for evaluation of machinability, a torsion test piece, and a test piece for evaluating susceptibility to quench cracking were collected.
【0057】ここで、本発明の特徴の―つとして、高周
波焼入れ前の段階での冷間加工性が優れている点が挙げ
られる。冷間加工性とは、被削性(切削性)、転造性、
冷間鍛造性等であるが、―般的にはこれらの間には相関
があり、被削性が優れていれば、転造性、冷間鍛造性も
優れている。そこで、本願では、ドリルによる被削性の
評価により、冷間加工性の評価を代表させた。ドリルに
よる被削性の評価は、送り速度0.33mm/sで、ド
リル(材質:SKH51ーφ10mm)の周速を種々変
化させ、各速度においてドリルが切削不能になる総穴深
さを求め、周速ードリル寿命曲線を作成し、ドリル寿命
がl000mmとなる最大速度をVL1000と規定し、被
削性の評価基準とした。表1にVL1000の評価結果を併
せて示す。本発明鋼材は、同じ炭素量の比較鋼材に比較
して被削性は相対的に優れている。Here, one of the features of the present invention is that the cold workability at the stage before induction hardening is excellent. Cold workability means machinability (cutability), rollability,
Although there are cold forgeability and the like, generally there is a correlation between them, and if the machinability is excellent, the rollability and the cold forgeability are also excellent. Therefore, in the present application, evaluation of cold workability is represented by evaluation of machinability by a drill. The evaluation of the machinability by the drill was performed by changing the peripheral speed of the drill (material: SKH51-φ10 mm) at a feed rate of 0.33 mm / s and calculating the total hole depth at which the drill could not be cut at each speed. create a circumferential speed Doriru life curve, the maximum speed at which the drill life is l000mm defined as V L1000, was criteria machinability. Table 1 also shows the evaluation results of VL1000 . The steel of the present invention has relatively excellent machinability as compared with the comparative steel having the same carbon content.
【0058】―方、比較鋼材11は、Sの含有量が本願
発明の範囲を下回った場合であり、比較鋼材7、8、1
0、13、15は、それぞれC、Si、Mn、Al、T
iの含有量が本願発明の範囲を上回っ場合であり、これ
らの鋼材はいずれも、同じ炭素量の他の鋼材に比較して
被削性は相対的に劣ている。On the other hand, the comparative steel material 11 is a case where the S content is lower than the range of the present invention, and the comparative steel materials 7, 8, 1
0, 13, and 15 represent C, Si, Mn, Al, and T, respectively.
This is the case where the content of i exceeds the range of the present invention, and all of these steel materials have relatively poor machinability as compared with other steel materials having the same carbon content.
【0059】次に、表1の鋼材から、平行部が20mm
φの捩り試験片を作成した。周波数10KHz固定焼入
れの条件で高周波焼入れを行い、その後170℃×1時
間の条件で焼戻しを行た。これらの試料について捩り試
験、捩り疲労試験を行た。捩り疲労は1×106回時間
強度で評価した。また、平行部中央部にて硬さ分布の測
定を行た。表2に各鋼材の捩り強度、捩り疲労強度評価
結果を、硬さ他の評価結果とあわせて示す。捩り疲労破
壊の起点はいずれも内部起点である。なお、有効硬化層
深さは、JIS G 0559で規定する高周波焼入れ
硬化層深さ測定方法に基づく有効硬化層深さである。Next, from the steel materials shown in Table 1, the parallel portion was 20 mm.
φ torsion test pieces were prepared. Induction hardening was performed under the condition of fixed hardening at a frequency of 10 KHz, and then tempering was performed at 170 ° C. × 1 hour. These samples were subjected to a torsional test and a torsional fatigue test. The torsional fatigue was evaluated by 1 × 10 6 times strength. The hardness distribution was measured at the center of the parallel portion. Table 2 shows the evaluation results of the torsional strength and torsional fatigue strength of each steel material, together with the evaluation results of hardness and the like. The starting point of torsional fatigue fracture is an internal starting point. The effective hardened layer depth is the effective hardened layer depth based on the induction hardened hardened layer depth measuring method specified in JIS G 0559.
【0060】[0060]
【表2】 表2から明らかなように、本発明例ではいずれも静的捩
り強度1580MPa以上、捩り疲労強度は600MP
a以上の優れた特性を有する。第7発明例である、γ粒
度が9番以上である発明例2は、特に、優れた強度特性
を示す。[Table 2] As is clear from Table 2, in each of the examples of the present invention, the static torsional strength is 1580 MPa or more, and the torsional fatigue strength is 600 MPa.
a. Inventive Example 2, which has a γ-grain size of No. 9 or more, which is the seventh inventive example, shows particularly excellent strength characteristics.
【0061】一方、比較例6、9、14、16は、それ
ぞれC、Mn、Ti、Bの含有量が本願発明の範囲を下
回った場合であり、いずれも、同じ炭素量の他の鋼材に
比較して静的捩り強度、捩り疲労強度は相対的に劣って
いる。比較例12、17は、それぞれS、Bの含有量が
本願発明の範囲を上回った場合であり、いずれも、同じ
炭素量の他の鋼材に比較して静的捩り強度、捩り疲労強
度は相対的に劣っている。比較例18は成分は本願発明
の範囲にあるが、硬化層深さが本願発明の範囲を下回た
場合であり、同じ炭素量の他の鋼材に比較して静的捩り
強度、捩り疲労強度は相対的に劣ている。また、比較例
19は成分は本願発明の範囲にあるが、投影芯部硬さが
本願発明の範囲を下回った場合であり、同じ炭素量の他
の鋼材に比較して静的捩り強度、捩り疲労強度は相対的
に劣っている。 (実施例ー2)本願の第2発明および第7発明の実施例
を表3および表4に示す。On the other hand, Comparative Examples 6, 9, 14, and 16 are cases in which the contents of C, Mn, Ti, and B are respectively below the range of the present invention, and all of them have the same carbon content as other steel materials. In comparison, static torsional strength and torsional fatigue strength are relatively inferior. Comparative Examples 12 and 17 are the cases where the contents of S and B exceeded the range of the present invention, respectively, and in both cases, the static torsional strength and the torsional fatigue strength were relative to other steel materials having the same carbon content. Inferior. In Comparative Example 18, the components were within the scope of the present invention, but the depth of the hardened layer was less than the range of the present invention, and the static torsional strength and torsional fatigue strength were higher than those of other steel materials having the same carbon content. Is relatively inferior. In Comparative Example 19, the components were within the range of the present invention, but the projected core hardness was lower than the range of the present invention, and the static torsional strength and torsion were lower than those of other steel materials having the same carbon content. Fatigue strength is relatively poor. (Example-2) Tables 3 and 4 show examples of the second invention and the seventh invention of the present application.
【0062】[0062]
【表3】 表3の組成を有する鋼材を実施例ー1と同一手順で準備
し、同―条件で静的涙り強度、捩り疲労強度を評価し
た。なお、冷間加工性の指標としてドリルによる被削性
を評価した。評価結果を表3に示したが、本発明鋼材
は、同じ炭素量の比較鋼材に比較して被削性は相対的に
優れている。[Table 3] A steel material having the composition shown in Table 3 was prepared in the same procedure as in Example 1, and the static tear strength and torsional fatigue strength were evaluated under the same conditions. In addition, the machinability by a drill was evaluated as an index of the cold workability. The evaluation results are shown in Table 3, and the steel material of the present invention has relatively excellent machinability as compared with the comparative steel material having the same carbon content.
【0063】次に、強度特性の評価結果を表4に示す。
捩り疲労破壊の起点は、比較例7で内部起点であり、そ
の他はいずれも表面起点である。Next, Table 4 shows the evaluation results of the strength characteristics.
The starting point of the torsional fatigue fracture is the internal starting point in Comparative Example 7, and the other starting points are the surface starting points.
【0064】[0064]
【表4】 表4から明らかなように、本発明例ではいずれも静的涙
り強度1650MPa以上、捩り疲労強度は680MP
a以上の優れた特性を有する。第7発明例である、γ粒
度が9番以上で高炭素鋼である発明例3は、特に優れた
強度特性を示す。[Table 4] As is clear from Table 4, in each of the examples of the present invention, the static tear strength was 1650 MPa or more, and the torsional fatigue strength was 680 MPa.
a. Inventive Example 3, which is a seventh invention example and has a γ grain size of No. 9 or more and is a high carbon steel, exhibits particularly excellent strength characteristics.
【0065】一方、比較例6は成分は本願発明の範囲に
あるが、硬化層深さが本願発明の範囲を下回った場合で
あり、同じ炭素量の他の鋼材に比較して静的捩り強度、
捩り疲労強度は相対的に劣っている。また比較例7は成
分は本願発明の範囲にあるが、投影芯部硬さと表面硬さ
の比が本願発明の範囲を下回った場合であり、捩り疲労
破壊の起点が内部であり、同じ炭素量の他の鋼材に比較
して、捩り疲労強度が相対的に劣っている。 (実施例3)本願の第3発明および第7発明の実施例を
表5および表6に示す。On the other hand, in Comparative Example 6, the components were within the range of the present invention, but the depth of the hardened layer was lower than the range of the present invention, and the static torsional strength was higher than other steel materials having the same carbon content. ,
The torsional fatigue strength is relatively poor. In Comparative Example 7, the components were within the range of the present invention, but the ratio of the projected core hardness to the surface hardness was lower than the range of the present invention, the starting point of torsional fatigue fracture was inside, and the same carbon content. As compared with other steel materials, the torsional fatigue strength is relatively inferior. (Example 3) Tables 5 and 6 show examples of the third invention and the seventh invention of the present application.
【0066】[0066]
【表5】 表5の組成を有する鋼材を実施例ー1と同一手順で準備
し、同一条件で静的捩り強度、捩り疲労強度を評価し
た。なお、冷間加工性の指標としてドリルによる被削性
を評価した。評価結果を表5に示したが、本発明鋼材
は、同じ炭素量の比較鋼材に比較して被削性は相対的に
優れている。[Table 5] A steel material having the composition shown in Table 5 was prepared in the same procedure as in Example 1, and the static torsional strength and the torsional fatigue strength were evaluated under the same conditions. In addition, the machinability by a drill was evaluated as an index of the cold workability. The evaluation results are shown in Table 5, and the steel material of the present invention is relatively excellent in machinability as compared with the comparative steel material having the same carbon content.
【0067】次に、強度特性の評価結果を表6に示す。
捩り疲労破壊の起点は、比較例7で内部起点であり、そ
の他はいずれも表面起点である。Next, Table 6 shows the evaluation results of the strength characteristics.
The starting point of the torsional fatigue fracture is the internal starting point in Comparative Example 7, and the other starting points are the surface starting points.
【0068】[0068]
【表6】 表6から明らかなように、本発明例ではいずれも静的捩
り強度1650MPa以上、捩り疲労強度は710MP
a以上の優れた特性を有する。第7発明例である、γ粒
度が9番以上で高炭素鋼である発明例3他は、特に優れ
た強度特性を示す。[Table 6] As is clear from Table 6, in each of the examples of the present invention, the static torsional strength was 1650 MPa or more, and the torsional fatigue strength was 710 MPa.
a. The seventh invention example, invention example 3 having a γ grain size of No. 9 or more and a high carbon steel, shows particularly excellent strength characteristics.
【0069】一方、比較例6は成分は本願発明の範囲に
あるが、硬化層深さが本願発明の範囲を下回った場合で
あり、同じ炭素量の他の鋼材に比較して静的捩り強度、
捩り疲労強度は相対的に劣っている。また、比較例7も
成分は本願発明の範囲にあるが、投影芯部硬さと表面硬
さの比が本願発明の範囲を下回った場合であり、捩り疲
労破壊の起点が内部であり、同じ炭素量の他の鋼材に比
較して、捩り疲労強度が相対的に劣っている。比較例8
も成分は本願発明の範囲にあるが、断面内平均硬さが本
願発明の範囲を下回った場合であり、同じ炭素量の他の
鋼材に比較して静的捩り強度、捩り疲労強度は相対的に
劣っている。 (実施例ー4)本願の第4発明および第8発明の実施例
を表7および表8に示す。On the other hand, in Comparative Example 6, the components were within the range of the present invention, but the hardened layer depth was lower than the range of the present invention, and the static torsional strength was higher than other steel materials having the same carbon content. ,
The torsional fatigue strength is relatively poor. In Comparative Example 7, the components are also in the range of the present invention, but the ratio of the projected core hardness to the surface hardness is lower than the range of the present invention, the starting point of torsional fatigue fracture is inside, and the same carbon The torsional fatigue strength is relatively inferior to that of other steel materials. Comparative Example 8
Although the components are also within the scope of the present invention, the average hardness in the cross section is lower than the range of the present invention, and the static torsional strength and the torsional fatigue strength are relative to other steel materials having the same carbon content. Is inferior to (Embodiment-4) Tables 7 and 8 show embodiments of the fourth and eighth inventions of the present application.
【0070】[0070]
【表7】 表7の組成を有する鋼材を実施例ー1と同一手順で準備
し、同一条件で静的捩り強度、捩り疲労強度を評価し
た。なお、冷間加工性の指標としてドリルによる被削性
を評価した。評価結果を表7に示したが、本発明鋼材
は、同じ炭素量の比較鋼材に比較して被削性は相対的に
優れている。[Table 7] A steel material having the composition shown in Table 7 was prepared in the same procedure as in Example 1, and the static torsional strength and the torsional fatigue strength were evaluated under the same conditions. In addition, the machinability by a drill was evaluated as an index of the cold workability. The evaluation results are shown in Table 7, and the steel material of the present invention is relatively superior in machinability as compared with the comparative steel material having the same carbon content.
【0071】次に、強度特性の評価結果を表8に示す。Next, Table 8 shows the evaluation results of the strength characteristics.
【0072】[0072]
【表8】 捩り疲労破壊の起点は、いずれも内部起点である。[Table 8] The starting point of torsional fatigue fracture is an internal starting point.
【0073】表8から明らかなように、本発明例ではい
ずれも静的捩り強度1600MPa以上、捩り疲労強度
は600MPa以上の優れた特性を有する。第8発明例
である、γ粒度が9番以上で高炭素鋼である発明例3他
は、特に優れた強度特性を示す。 (実施例ー5)本願の第5発明および第8発明の実施例
を表9および表10に示す。As is clear from Table 8, all of the examples of the present invention have excellent characteristics of static torsional strength of 1600 MPa or more and torsional fatigue strength of 600 MPa or more. The eighth invention example, invention example 3 and the like, in which the γ grain size is 9 or more and high carbon steel, shows particularly excellent strength properties. (Embodiment 5) Tables 9 and 10 show embodiments of the fifth and eighth inventions of the present application.
【0074】[0074]
【表9】 表9の組成を有する鋼材を実施例ー1と同一手順で準備
し、同一条件で静的捩り強度、捩り疲労強度を評価し
た。なお、冷間加工性の指標としてドリルによる被削性
を評価した。評価結果を表9に示したが、本発明鋼材
は、同じ炭素量の比較鋼材に比較して被削性は相対的に
優れている。[Table 9] A steel material having the composition shown in Table 9 was prepared in the same procedure as in Example 1, and the static torsional strength and the torsional fatigue strength were evaluated under the same conditions. In addition, the machinability by a drill was evaluated as an index of the cold workability. The evaluation results are shown in Table 9, and the steel material of the present invention is relatively superior in machinability as compared with the comparative steel material having the same carbon content.
【0075】次に、強度特性の評価結果を表10に示
す。Next, Table 10 shows the evaluation results of the strength characteristics.
【0076】[0076]
【表10】 捩り疲労破壊の起点は、いずれも表面起点である。[Table 10] The starting point of the torsional fatigue fracture is a surface starting point.
【0077】表10から明らかなように、本発明例では
いずれも静的捩り強度1600MPa以上、捩り疲労強
度は680MPa以上の優れた特性を有する。第8発明
例である、γ粒度が9番以上で高炭素鋼である発明例9
他は、特に優れた強度特性を示す。 (実施例ー6)本願の第6発明および第8発明の実施例
を表11および表12に示す。As is clear from Table 10, all of the examples of the present invention have excellent characteristics of static torsional strength of 1600 MPa or more and torsional fatigue strength of 680 MPa or more. Eighth invention example, invention example 9 in which the γ grain size is 9 or more and high carbon steel
Others show particularly good strength properties. (Embodiment-6) Tables 11 and 12 show embodiments of the sixth and eighth inventions of the present application.
【0078】[0078]
【表11】 表11の組成を有する鋼材を実施例ー1と同一手順で準
備し、同一条件で静的捩り強度、捩り疲労強度を評価し
た。なお、冷間加工性の指標としてドリルによる被削性
を評価した。評価結果を表11に示したが、本発明鋼材
は、同じ炭素量の比較鋼材に比較して被削性は相対的に
優れている。[Table 11] A steel material having the composition shown in Table 11 was prepared in the same procedure as in Example 1, and the static torsional strength and the torsional fatigue strength were evaluated under the same conditions. In addition, the machinability by a drill was evaluated as an index of the cold workability. The evaluation results are shown in Table 11, and the steel material of the present invention is relatively excellent in machinability as compared with the comparative steel material having the same carbon content.
【0079】次に、強度特性の評価結果を表12に示
す。Next, Table 12 shows the evaluation results of the strength characteristics.
【0080】[0080]
【表12】 捩り疲労破壊の起点は、いずれも表面起点である。[Table 12] The starting point of the torsional fatigue fracture is a surface starting point.
【0081】表12から明らかなように、本発明ではい
ずれも静的捩り強度1690MPa以上、捩り強度比は
690MPa以上の優れた特性を有する。As is clear from Table 12, the present invention has excellent characteristics in which the static torsional strength is 1690 MPa or more and the torsional strength ratio is 690 MPa or more.
【0082】第8発明例である、γ粒度が9番以上で高
炭素鋼である発明例10他は、特に優れた強度特性を示
す。The eighth invention example, invention example 10 which is a high-carbon steel having a γ grain size of No. 9 or more, shows particularly excellent strength characteristics.
【0083】[0083]
【発明の効果】以上述べたごとく本発明の高周波焼入れ
鋼材は軸部品として優れた捩り疲労強度を有し、且つそ
の製造時には冷間加工性、つまり製造性に優れており、
本発明による産業上の効果は極めて顕著なるものがあ
る。As described above, the induction hardened steel material of the present invention has excellent torsional fatigue strength as a shaft part, and has excellent cold workability, that is, excellent manufacturability when manufactured.
The industrial effects of the present invention are very remarkable.
【図1】 (A)はセレーシン部を有するシャフト、
(B)はフランジ付シャフト、(C)は外筒付シャフト
を示した図である。FIG. 1 (A) is a shaft having a seresin portion,
(B) is a diagram showing a shaft with a flange, and (C) is a diagram showing a shaft with an outer cylinder.
【図2】 捩り疲労強度に及ぼす硬化層深さと芯部硬さ
の関係を模式的に示した図である。FIG. 2 is a diagram schematically showing the relationship between the depth of a hardened layer and the hardness of a core on the torsional fatigue strength.
【図3】 内部起点材の1×105回の捩り疲労強度と
投影芯部硬さHp−coreとの関係を示す図である。FIG. 3 is a diagram showing a relationship between a 1 × 10 5 torsional fatigue strength of an internal starting material and a projected core hardness Hp-core.
【図4】 破壊起点とHp−core/Hcase、繰
り返し数Nの関係を示した図である。FIG. 4 is a diagram showing a relationship between a fracture starting point, Hp-core / Hcase, and the number of repetitions N.
【図5】 表面起点材の1×105回の捩り疲労強度と
投影芯部硬さHavとの関係を示す図である。FIG. 5 is a diagram showing a relationship between a 1 × 10 5 torsional fatigue strength of a surface starting material and a projected core hardness Hav.
10 シャフト、 11、12 セレーション、 20、21 シャフト、 22 フランジ 30、31、32 シャフト、 33 外筒部 10 shaft, 11, 12 serration, 20, 21 shaft, 22 flange 30, 31, 32 shaft, 33 outer cylinder
Claims (8)
%、Si:0.01〜0.15%、Mn:0.2〜1.
60%、S:0.005〜0.15%、Al:0.01
0〜0.06%、Ti:0.005〜0.050%B:
0.0005〜0.005%、N:0.0015〜0.
008%、を含有しP:0.020%以下、Cu:0.
05%以下、O:0.0025%以下にそれぞれ制限
し、残部が鉄および不可避的不純物からなり、有効硬化
層深さtと部品半径rの比t/rが0.3〜0.6であ
り、かつ下記で定義される投影芯部硬さHp−core
がHV400以上であることを特徴とする高捩り疲労強
度高周波焼入れ鋼材。 投影芯部硬さの定義:有効硬化層深さt、部品半径r、
芯部硬さHcoreとした時、 投影芯部硬さ Hp−core=Hcore/(1−t
/r)1. A weight ratio of C: 0.35 to 0.60
%, Si: 0.01-0.15%, Mn: 0.2-1.
60%, S: 0.005 to 0.15%, Al: 0.01
0 to 0.06%, Ti: 0.005 to 0.050% B:
0.0005-0.005%, N: 0.0015-0.
008%, P: 0.020% or less, Cu: 0.
O: 0.0025% or less, with the balance being iron and unavoidable impurities, the ratio t / r of the effective hardened layer depth t to the part radius r being 0.3 to 0.6. And projection core hardness Hp-core as defined below
Is high-torsion fatigue strength induction hardened steel material having a HV of 400 or more. Definition of projected core hardness: effective hardened layer depth t, component radius r,
When the core hardness is Hcore, the projected core hardness Hp-core = Hcore / (1-t
/ R)
%、Si:0.01〜0.15%、Mn:0.2〜1.
60%、S:0.005〜0.15%、Al:0.01
0〜0.06%、Ti:0.005〜0.050%B:
0.0005〜0.005%、N:0.0015〜0.
008%、を含有しP:0.020%以下、Cu:0.
05%以下、O:0.0025%以下にそれぞれ制限
し、残部が鉄および不可避的不純物からなり、有効硬化
層深さtと部品半径rの比t/rが0.4〜0.75で
あり、かつ下記で定義される投影芯部硬さHp−cor
eと硬化層硬さHcaseの比Hp−core/Hca
seが0.56以上であることを特徴とする高捩り疲労
強度高周波焼入れ鋼材。 投影芯部硬さの定義:有効硬化層深さt、部品半径r、
芯部硬さHcoreとした時、 投影芯部硬さ Hp−core=Hcore/(1−t
/r)2. A weight ratio of C: 0.35 to 0.60
%, Si: 0.01-0.15%, Mn: 0.2-1.
60%, S: 0.005 to 0.15%, Al: 0.01
0 to 0.06%, Ti: 0.005 to 0.050% B:
0.0005-0.005%, N: 0.0015-0.
008%, P: 0.020% or less, Cu: 0.
O: 0.0025% or less, with the balance being iron and unavoidable impurities, the ratio t / r of the effective hardened layer depth t to the part radius r being 0.4 to 0.75. And projection core hardness Hp-cor as defined below
e and the ratio Hp-core / Hca of the hardness of the hardened layer Hcase
The high torsional fatigue strength induction hardened steel material, wherein se is 0.56 or more. Definition of projected core hardness: effective hardened layer depth t, component radius r,
When the core hardness is Hcore, the projected core hardness Hp-core = Hcore / (1-t
/ R)
%、Si:0.01〜0.15%、Mn:0.2〜1.
60%、S:0.005〜0.15%、Al:0.01
0〜0.06%、Ti:0.005〜0.050%B:
0.0005〜0.005%、N:0.0015〜0.
008%、を含有しP:0.020%以下、Cu:0.
05%以下、O:0.0025%以下にそれぞれ制限
し、残部が鉄および不可避的不純物からなり、有効硬化
層深さtと部品半径rの比t/rが0.4〜0.75で
あり、かつ下記で定義される投影芯部硬さHp−cor
eと硬化層硬さHcaseの比Hp−core/Hca
seが0.56以上であり、さらに下記で定義される断
面内平均硬さHavがHV560以上であることを特徴
とする高捩り疲労強度高周波焼入れ鋼材。 投影芯部硬さの定義:有効硬化層深さt、部品半径r、
芯部硬さHcoreとした時、 投影芯部硬さ Hp−core=Hcore/(1−t
/r) 断面内平均硬さの定義:半径aの断面を半径方向に同心
円状にN個のリングに分割し、n番目のリング状部分の
硬さをHn、半径をrn、間隔をΔrnとした時、 【数1】 3. The weight ratio of C: 0.35 to 0.60
%, Si: 0.01-0.15%, Mn: 0.2-1.
60%, S: 0.005 to 0.15%, Al: 0.01
0 to 0.06%, Ti: 0.005 to 0.050% B:
0.0005-0.005%, N: 0.0015-0.
008%, P: 0.020% or less, Cu: 0.
O: 0.0025% or less, with the balance being iron and unavoidable impurities, the ratio t / r of the effective hardened layer depth t to the part radius r being 0.4 to 0.75. And projection core hardness Hp-cor as defined below
e and the ratio Hp-core / Hca of the hardness of the hardened layer Hcase
The high torsional fatigue strength induction hardened steel material, wherein se is 0.56 or more, and the average in-section hardness Hav defined below is HV560 or more. Definition of projected core hardness: effective hardened layer depth t, component radius r,
When the core hardness is Hcore, the projected core hardness Hp-core = Hcore / (1-t
/ R) Definition of average hardness in cross section: A cross section of radius a is divided concentrically into N rings in the radial direction, the hardness of the n-th ring-shaped portion is H n , the radius is r n , and the interval is when the Δr n, [number 1]
%、Si:0.01〜0.15%、Mn:0.2〜1.
60%、S:0.005〜0.15%、Al:0.01
0〜0.06%、Ti:0.005〜0.050%B:
0.0005〜0.005%、N:0.0015〜0.
008%、さらに、Cr:0.1超〜1.2%、Mo:
0.02〜0.8%、Ni:0.1〜3.5%Nb:
0.01〜0.3%V:0.03〜0.6%の1種また
は2種以上を含有し、P:0.020%以下、Cu:
0.05%以下、O:0.0025%以下にそれぞれ制
限し、残部が鉄および不可避的不純物からなり、有効硬
化層深さtと部品半径rの比t/rが0.3〜0.6で
あり、かつ下記で定義される投影芯部硬さHp−cor
eがHV400以上であることを特徴とする高捩り疲労
強度高周波焼入れ鋼材。 投影芯部硬さの定義:有効硬化層深さt、部品半径r、
芯部硬さHcoreとした時、 投影芯部硬さ Hp−core=Hcore/(1−t
/r)4. The weight ratio of C: 0.35 to 0.60
%, Si: 0.01-0.15%, Mn: 0.2-1.
60%, S: 0.005 to 0.15%, Al: 0.01
0 to 0.06%, Ti: 0.005 to 0.050% B:
0.0005-0.005%, N: 0.0015-0.
008%, Cr: more than 0.1 to 1.2%, Mo:
0.02 to 0.8%, Ni: 0.1 to 3.5% Nb:
0.01 to 0.3% V: Contains one or more of 0.03 to 0.6%, P: 0.020% or less, Cu:
The content is limited to 0.05% or less and O: 0.0025% or less, the balance being iron and unavoidable impurities, and the ratio t / r of the effective hardened layer depth t to the component radius r is 0.3 to 0.1%. 6, and a projection core hardness Hp-cor defined below.
The high torsional fatigue strength induction hardened steel, wherein e is HV400 or more. Definition of projected core hardness: effective hardened layer depth t, component radius r,
When the core hardness is Hcore, the projected core hardness is Hp-core = Hcore / (1-t
/ R)
%、Si:0.01〜0.15%、Mn:0.2〜1.
60%、S:0.005〜0.15%、Al:0.01
0〜0.06%、Ti:0.005〜0.050%B:
0.0005〜0.005%、N:0.0015〜0.
008%、を含有しさらに、Cr:0.1超〜l.2
%、Mo:0.02〜0.8%、Ni:0.1〜3.5
%Nb:0.01〜0.3%V:0.03〜0.6%の
1種または2種以上を含有し、P:0.020%以下、
Cu:0.05%以下、O:0.0025%以下にそれ
ぞれ制限し、残部が鉄および不可避的不純物からなり、
有効硬化層深さtと部品半径の比t/rが0.4〜0.
75であり、かつ下記で定義される投影芯部硬さHp−
coreと硬化層硬さHcaseの比Hp−core/
Hcaseが0.56以上であることを特徴とする高振
り疲労強度高周波焼入れ鋼材。 投影芯部硬さの定義:有効硬化層深さt、部品半径r、
芯部硬さHcoreとした時、 投影芯部硬さ Hp−core=Hcore/(1ーt
/r)5. A weight ratio of C: 0.35 to 0.60
%, Si: 0.01-0.15%, Mn: 0.2-1.
60%, S: 0.005 to 0.15%, Al: 0.01
0 to 0.06%, Ti: 0.005 to 0.050% B:
0.0005-0.005%, N: 0.0015-0.
008%, and Cr: more than 0.1 to l. 2
%, Mo: 0.02 to 0.8%, Ni: 0.1 to 3.5
% Nb: 0.01 to 0.3% V: One or more of 0.03 to 0.6%, P: 0.020% or less,
Cu: 0.05% or less, O: 0.0025% or less, the balance being iron and unavoidable impurities,
The ratio t / r of the effective hardened layer depth t to the component radius is 0.4 to 0.4.
75 and a projection core hardness Hp− defined below.
ratio of core and hardened layer hardness Hcase-Hp-core /
High swing fatigue strength induction hardened steel, characterized in that Hcase is 0.56 or more. Definition of projected core hardness: effective hardened layer depth t, component radius r,
When the core hardness is Hcore, the projected core hardness Hp-core = Hcore / (1−t
/ R)
%、Si:0.01〜0.15%、Mn:0.2〜1.
60%、S:0.005〜0.15%、Al:0.01
0〜0.06%、Ti:0.005〜0.050%B:
0.0005〜0.005%、N:0.0015〜0.
008%、を含有しさらに、Cr:0.1超〜l.2
%、Mo:0.02〜0.8%、Ni:0.1〜3.5
%Nb:0.01〜0.3%V:0.03〜0.6%の
1種または2種以上を含有し、P:0.020%以下、
Cu:0.05%以下、O:0.0025%以下にそれ
ぞれ制限し、残部が鉄および不可避的不純物からなり、
有効硬化層深さtと部品半径の比t/rが0.4〜0.
75であり、かつ下記で定義される投影芯部硬さHp−
coreと硬化層硬さHcaseの比Hp−core/
Hcaseが0.56以上であり、さらに下記で定義さ
れる断面内平均硬さHavがHV560以上であること
を特徴とする高捩り疲労強度高周波焼入れ鋼材。 投影芯部硬さの定義:有効硬化層深さt、部品半径r、
芯部硬さHcoreとした時、 投影芯部硬さ Hp−core=Hcore/(1−t
/r) 断面内平均硬さの定義:半径aの断面を半径方向に同心
円状にN個のリングに分割し、n番目のリング状部分の
硬さをHn、半径をrn、間隔を△rnとした時、 【数1】 6. A weight ratio of C: 0.35 to 0.60.
%, Si: 0.01-0.15%, Mn: 0.2-1.
60%, S: 0.005 to 0.15%, Al: 0.01
0 to 0.06%, Ti: 0.005 to 0.050% B:
0.0005-0.005%, N: 0.0015-0.
008%, and Cr: more than 0.1 to l. 2
%, Mo: 0.02 to 0.8%, Ni: 0.1 to 3.5
% Nb: 0.01 to 0.3% V: One or more of 0.03 to 0.6%, P: 0.020% or less,
Cu: 0.05% or less, O: 0.0025% or less, the balance being iron and unavoidable impurities,
The ratio t / r of the effective hardened layer depth t to the component radius is 0.4 to 0.4.
75 and a projection core hardness Hp− defined below.
ratio of core and hardened layer hardness Hcase-Hp-core /
A high torsional fatigue strength induction hardened steel material having an Hcase of 0.56 or more and an average in-section hardness Hav defined below of HV560 or more. Definition of projected core hardness: effective hardened layer depth t, component radius r,
When the core hardness is Hcore, the projected core hardness Hp-core = Hcore / (1-t
/ R) Definition of average hardness in cross section: A cross section of radius a is divided concentrically into N rings in the radial direction, the hardness of the n-th ring-shaped portion is H n , the radius is r n , and the interval is △ when the r n, [number 1]
粒度が9番以上である請求項1〜3のいずれかに記載の
高捩り疲労強度高周波焼入れ鋼材。7. The high torsional fatigue strength induction hardened steel according to claim 1, wherein the prior-austenite grain size of the induction hardened layer is 9 or more.
粒度が9番以上である請求項4〜6のいずれか記載の高
捩り疲労強度高周波焼入れ鋼材。8. The high torsional fatigue strength induction hardened steel material according to claim 4, wherein the prior austenite crystal grain size of the induction hardened layer is 9 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35648896A JPH10195589A (en) | 1996-12-26 | 1996-12-26 | High torsional fatigue strength induction hardened steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35648896A JPH10195589A (en) | 1996-12-26 | 1996-12-26 | High torsional fatigue strength induction hardened steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10195589A true JPH10195589A (en) | 1998-07-28 |
Family
ID=18449273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35648896A Pending JPH10195589A (en) | 1996-12-26 | 1996-12-26 | High torsional fatigue strength induction hardened steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10195589A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6270596B1 (en) | 1998-04-17 | 2001-08-07 | Sanyo Special Steel., Ltd. | Process for producing high strength shaft |
EP1069201A3 (en) * | 1999-07-13 | 2002-01-16 | Daido Tokushuko Kabushiki Kaisha | Steel for induction hardening |
US6383311B1 (en) * | 1998-11-19 | 2002-05-07 | Nippon Steel Corporation | High strength drive shaft and process for producing the same |
US6602358B1 (en) * | 1998-11-19 | 2003-08-05 | Nippon Steel Corporation | Outer race for constant velocity joint, having improved anti-flaking properties and shaft strength, and process for producing the same |
FR2850399A1 (en) * | 2003-01-23 | 2004-07-30 | Koyo Seiko Co | Steel for use in a high strength pinion shaft for a motor vehicle guidance system after high frequency hardening |
WO2004106574A1 (en) | 2003-05-27 | 2004-12-09 | Koyo Seiko Co., Ltd. | Steel bar for steering rack, method for producing the same, and steering rack using the same |
WO2006008960A1 (en) * | 2004-07-16 | 2006-01-26 | Jfe Steel Corporation | Component for machine structure, method for producing same, and material for high-frequency hardening |
WO2006110100A1 (en) * | 2005-04-12 | 2006-10-19 | Scania Cv Ab (Publ) | Boron steel grade for induction hardening and shaft |
JP2007046687A (en) * | 2005-08-09 | 2007-02-22 | Ntn Corp | Internal member of one-way clutch, its manufacturing method, and clutch-incorporating pulley comprising internal member |
WO2007043317A1 (en) * | 2005-10-11 | 2007-04-19 | Honda Motor Co., Ltd. | Steel material |
JP2007107029A (en) * | 2005-10-11 | 2007-04-26 | Honda Motor Co Ltd | Steel material and its production method |
EP1743950A4 (en) * | 2004-05-07 | 2007-09-26 | Sumitomo Metal Ind | STAINLESS STEEL PIPE AND METHOD OF PRODUCING THE SAME |
JP2007332439A (en) * | 2006-06-16 | 2007-12-27 | Nippon Steel Corp | Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics |
JP2007332440A (en) * | 2006-06-16 | 2007-12-27 | Nippon Steel Corp | Induction hardened steel and induction hardened parts with excellent low cycle fatigue properties |
WO2010035095A1 (en) * | 2008-09-26 | 2010-04-01 | Toyota Jidosha Kabushiki Kaisha | Steering tie rod end made of steel and method of manufacturing the same |
JP2011038185A (en) * | 2010-11-05 | 2011-02-24 | Nippon Steel Corp | Steel material for high frequency induction contour hardening having excellent low cycle fatigue property and induction contour hardened component |
EP2806040A1 (en) * | 2013-05-21 | 2014-11-26 | General Electric Company | A martensitic alloy component and process of forming a martensitic alloy component |
-
1996
- 1996-12-26 JP JP35648896A patent/JPH10195589A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6270596B1 (en) | 1998-04-17 | 2001-08-07 | Sanyo Special Steel., Ltd. | Process for producing high strength shaft |
US6383311B1 (en) * | 1998-11-19 | 2002-05-07 | Nippon Steel Corporation | High strength drive shaft and process for producing the same |
DE19955386C2 (en) * | 1998-11-19 | 2003-06-18 | Honda Motor Co Ltd | High strength drive shaft and method of manufacturing the same |
US6602358B1 (en) * | 1998-11-19 | 2003-08-05 | Nippon Steel Corporation | Outer race for constant velocity joint, having improved anti-flaking properties and shaft strength, and process for producing the same |
DE19955385B4 (en) * | 1998-11-19 | 2007-04-05 | Honda Motor Co., Ltd. | Outer shaft half for double joints with improved abrasion resistance and improved durability for the shaft and method of making the same |
EP1069201A3 (en) * | 1999-07-13 | 2002-01-16 | Daido Tokushuko Kabushiki Kaisha | Steel for induction hardening |
FR2850399A1 (en) * | 2003-01-23 | 2004-07-30 | Koyo Seiko Co | Steel for use in a high strength pinion shaft for a motor vehicle guidance system after high frequency hardening |
US7740722B2 (en) | 2003-01-23 | 2010-06-22 | Jtekt Corporation | Steel for use in high strength pinion shaft and manufacturing method thereof |
WO2004106574A1 (en) | 2003-05-27 | 2004-12-09 | Koyo Seiko Co., Ltd. | Steel bar for steering rack, method for producing the same, and steering rack using the same |
EP1640467A4 (en) * | 2003-05-27 | 2006-10-25 | Jtekt Corp | Steel bar for steering rack, method for producing the same, and steering rack using the same |
US7662245B2 (en) | 2003-05-27 | 2010-02-16 | Koyo Seiko Co., Ltd. | Steering rack comprising steel bar with rack teeth |
EP1743950A4 (en) * | 2004-05-07 | 2007-09-26 | Sumitomo Metal Ind | STAINLESS STEEL PIPE AND METHOD OF PRODUCING THE SAME |
WO2006008960A1 (en) * | 2004-07-16 | 2006-01-26 | Jfe Steel Corporation | Component for machine structure, method for producing same, and material for high-frequency hardening |
WO2006110100A1 (en) * | 2005-04-12 | 2006-10-19 | Scania Cv Ab (Publ) | Boron steel grade for induction hardening and shaft |
JP2007046687A (en) * | 2005-08-09 | 2007-02-22 | Ntn Corp | Internal member of one-way clutch, its manufacturing method, and clutch-incorporating pulley comprising internal member |
JP2007107029A (en) * | 2005-10-11 | 2007-04-26 | Honda Motor Co Ltd | Steel material and its production method |
WO2007043317A1 (en) * | 2005-10-11 | 2007-04-19 | Honda Motor Co., Ltd. | Steel material |
JP2007332439A (en) * | 2006-06-16 | 2007-12-27 | Nippon Steel Corp | Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics |
JP2007332440A (en) * | 2006-06-16 | 2007-12-27 | Nippon Steel Corp | Induction hardened steel and induction hardened parts with excellent low cycle fatigue properties |
WO2010035095A1 (en) * | 2008-09-26 | 2010-04-01 | Toyota Jidosha Kabushiki Kaisha | Steering tie rod end made of steel and method of manufacturing the same |
US8186696B2 (en) | 2008-09-26 | 2012-05-29 | Toyota Jidosha Kabushiki Kaisha | Steering tie rod end made of steel and method of manufacturing the same |
JP2011038185A (en) * | 2010-11-05 | 2011-02-24 | Nippon Steel Corp | Steel material for high frequency induction contour hardening having excellent low cycle fatigue property and induction contour hardened component |
EP2806040A1 (en) * | 2013-05-21 | 2014-11-26 | General Electric Company | A martensitic alloy component and process of forming a martensitic alloy component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3995904B2 (en) | Method for producing inner ring for constant velocity joint excellent in workability and strength | |
JPH10195589A (en) | High torsional fatigue strength induction hardened steel | |
JP2001240940A (en) | Bar wire for cold forging and method of manufacturing the same | |
JP2000154828A (en) | Outer ring for constant velocity joint having excellent flaking resistance and shaft strength and method of manufacturing the same | |
JP3809004B2 (en) | Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method | |
JP4219023B2 (en) | High-strength drive shaft and manufacturing method thereof | |
JP2002069566A (en) | Induction hardened steel and induction hardened parts with excellent torsional fatigue properties | |
JP2916069B2 (en) | High-strength induction hardened shaft parts | |
JP3432950B2 (en) | Steel material for induction hardened shaft parts that has both cold workability and torsional fatigue strength characteristics | |
JP2025500864A (en) | Cold forging wire rod with excellent drilling characteristics and screw parts and manufacturing method thereof | |
JP2004027334A (en) | Steel for induction tempering and method of producing the same | |
KR20050061476A (en) | Steel product for induction hardening, induction-hardened member using the same and methods for producing them | |
JP3842888B2 (en) | Method of manufacturing steel for induction hardening that combines cold workability and high strength properties | |
WO2018180342A1 (en) | Shaft member | |
JPS60230960A (en) | Steel for cold forging | |
JP4771745B2 (en) | Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft | |
JP5583352B2 (en) | Induction hardening steel and induction hardening parts with excellent static torsional fracture strength and torsional fatigue strength | |
JP2007332439A (en) | Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics | |
JPH11181542A (en) | Steel for induction hardening excellent in cold workability and induction hardening and its manufacturing method | |
JP4344126B2 (en) | Induction tempered steel with excellent torsional properties | |
WO2005031020A1 (en) | Steel product for induction hardening, induction-hardened member using the same, and methods for producing them | |
JPH04297552A (en) | Manufacture of steel for synchronous joint and synchronous joint part | |
JPH0978127A (en) | Production of high strength and high toughness axial parts for mechanical structure | |
JP2020100861A (en) | Machine component for automobiles made of steel material for induction hardening excellent in static torsional strength and torsional fatigue strength | |
JP3549978B2 (en) | Induction hardening steel with excellent cold workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20031028 |