JPH1017445A - Composition for oral cavity and its production - Google Patents
Composition for oral cavity and its productionInfo
- Publication number
- JPH1017445A JPH1017445A JP18678996A JP18678996A JPH1017445A JP H1017445 A JPH1017445 A JP H1017445A JP 18678996 A JP18678996 A JP 18678996A JP 18678996 A JP18678996 A JP 18678996A JP H1017445 A JPH1017445 A JP H1017445A
- Authority
- JP
- Japan
- Prior art keywords
- composition
- dispersibility
- oral cavity
- sodium
- brush
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cosmetics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、口中での分散性に
優れ、かつブラシへの乗せやすさ(ブラシ保形性)を向
上させた口腔用組成物及びその製造方法に関し、特に粘
度300ポイズ以下の口腔用組成物及びかかる口腔用組
成物を得る場合に有効な口腔用組成物の製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composition for oral cavity which is excellent in dispersibility in the mouth and has an improved ease of being placed on a brush (brush shape retention), and a method for producing the same. The present invention relates to the following oral composition and a method for producing an oral composition effective for obtaining such an oral composition.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】う蝕又
は歯周病の原因であるプラークを除去するため、従来よ
り歯磨によるブラッシング又は洗口剤による洗口が行わ
れてきた。2. Description of the Related Art In order to remove plaque which is a cause of dental caries or periodontal disease, brushing with a toothpaste or mouthwash with a mouthwash has been conventionally performed.
【0003】歯磨組成物、特に液状歯磨剤、透明歯磨剤
には、粘結剤としてカルボキシメチルセルロース、アル
ギン酸ナトリウム、キサンタンガム、カラギーナン、ポ
リアクリル酸ナトリウム等が使用されているが、これら
粘結剤の配合は研磨剤の分散安定化などの点でも有効で
ある。具体的に特公昭45−36599号公報記載の液
状歯磨組成物では、研磨剤の分散安定化にキサンタンガ
ムが用いられている。[0003] In dentifrice compositions, especially liquid dentifrices and transparent dentifrices, carboxymethylcellulose, sodium alginate, xanthan gum, carrageenan, sodium polyacrylate and the like are used as binders. Is also effective in terms of stabilizing the dispersion of the abrasive. Specifically, in the liquid dentifrice composition described in JP-B-45-36599, xanthan gum is used for stabilizing the dispersion of the abrasive.
【0004】一方、歯磨剤のねばつき、すすぎ易さ、口
中での分散性等の使用感を改良するため粘度を20〜1
80ポイズ/25℃に調製した歯磨剤が提案されてい
る。On the other hand, the viscosity of the dentifrice is adjusted to 20 to 1 to improve the feeling of use such as stickiness, ease of rinsing and dispersibility in the mouth.
A dentifrice prepared at 80 poise / 25 ° C. has been proposed.
【0005】しかしながら、これら歯磨剤は、口中での
分散性は著しく改良され、使用感が高まっているもの
の、ブラシへの染み込み速度が速く、使用量が不明確で
あり、ブラシから垂れてしまうという使用上の欠点があ
った。[0005] However, these dentifrices have a remarkably improved dispersibility in the mouth and an increased feeling of use. However, the dentifrice is soaked into the brush, the amount of use is unclear, and the dentifrice is dripped from the brush. There were drawbacks in use.
【0006】上記欠点を改善するため、架橋型ポリアク
リル酸塩を併用する提案が特開平4−210908号、
同4−217614号、同4−217615号公報に提
案されているが、更に上記欠点をより効果的にかつ確実
に改善する方法が要望されている。In order to improve the above-mentioned drawbacks, Japanese Patent Application Laid-Open No. Hei 4-210908 proposes using a cross-linked polyacrylate in combination.
Japanese Patent Application Laid-Open Nos. 4-217614 and 4-217615 propose a method for more effectively and surely remedying the above-mentioned drawbacks.
【0007】本発明は上記問題点を解決するためになさ
れたもので、口腔内の分散性に優れている上、ブラシ上
での保形性に優れる口腔用組成物及びその製造方法を提
供することを目的とする。The present invention has been made to solve the above problems, and provides an oral composition having excellent dispersibility in an oral cavity and excellent shape retention on a brush, and a method for producing the same. The purpose is to:
【0008】[0008]
【課題を解決するための手段及び発明の実施の形態】本
発明者は上記目的を達成するため鋭意検討を重ねた結
果、研磨剤を組成物全体の5〜60重量%配合し、粘結
剤としてキサンタンガムとポリアクリル酸塩を2:1〜
1:10の割合で併用添加してなる混合物を混練する
際、ずり速度を50〜700(1/秒)とした場合、2
5℃におけるテクスチャー記録曲線から得られる分散性
指数が0.1〜0.5である口腔用組成物が得られるこ
と、そしてかかる分散性指数を有する口腔用組成物が、
口腔内への分散性が優れている上、ブラシ上での保形性
に優れており、特にこれは、25℃の粘度が100〜3
00ポイズ、25℃の降伏値が20〜200Paである
歯磨組成物を得る場合に有利であり、得られた歯磨組成
物は上記従来の欠点がより効果的に解消されたもので、
本組成物はブラシに乗せやすく、ブラシに乗せた場合に
植毛部に染み込むことがなく、使用者が歯磨をハブラシ
に乗せ、口に入れて使用するまで歯磨がブラシの植毛部
上に良好に保持されると共に、口中分散性も優れている
ことを知見し、本発明をなすに至った。Means for Solving the Problems and Embodiments of the Invention As a result of intensive studies to achieve the above object, the present inventor has found that the abrasive is blended in an amount of 5 to 60% by weight of the whole composition, and a binder is prepared. Xanthan gum and polyacrylate as 2: 1
When kneading a mixture which is added together at a ratio of 1:10, when the shear rate is 50 to 700 (1 / second), 2
An oral composition having a dispersibility index obtained from a texture recording curve at 5 ° C. of 0.1 to 0.5 is obtained, and an oral composition having such a dispersibility index is
It has excellent dispersibility in the oral cavity and excellent shape retention on a brush.
00 poise, which is advantageous in obtaining a dentifrice composition having a yield value at 25 ° C. of 20 to 200 Pa. The obtained dentifrice composition is one in which the above-mentioned conventional disadvantages are more effectively eliminated.
This composition is easy to put on the brush, does not penetrate into the flocked part when placed on the brush, the toothpaste is put on the toothbrush by the user, the toothpaste is well held on the flocked part of the brush until used in the mouth It was also found that the dispersibility in the mouth was excellent, and the present invention was accomplished.
【0009】従って、本発明は、研磨剤を5〜60重量
%含有すると共に、粘結剤としてキサンタンガムとポリ
アクリル酸塩とを重量比2:1〜1:10の割合で併用
してなり、25℃におけるテクスチャー記録曲線から得
られる分散性指数が0.1〜0.5であることを特徴と
する口腔用組成物、及び、水系媒体中に研磨剤を組成物
全体の5〜60重量%配合し、かつ粘結剤としてキサン
タンガムとポリアクリル酸塩とを重量比として2:1〜
1:10の割合で併用した口腔用組成物を製造するに際
し、上記研磨剤及び粘結剤を水系媒体に添加してなる混
合物をずり速度50〜700(1/秒)で混練すること
を特徴とする口腔用組成物の製造方法を提供する。Accordingly, the present invention comprises 5 to 60% by weight of an abrasive, and uses xanthan gum and polyacrylate as binders in a weight ratio of 2: 1 to 1:10, A composition for oral cavity, wherein a dispersibility index obtained from a texture recording curve at 25 ° C. is 0.1 to 0.5; and an abrasive in an aqueous medium in an amount of 5 to 60% by weight of the whole composition. Xanthan gum and polyacrylate as a binder in a weight ratio of 2: 1 to 1
In producing an oral composition used in a ratio of 1:10, a mixture obtained by adding the above abrasive and binder to an aqueous medium is kneaded at a shear rate of 50 to 700 (1 / second). And a method for producing an oral composition.
【0010】以下、本発明につき更に詳しく説明する
と、本発明の口腔用組成物は歯磨剤等として用いられる
もので、研磨剤と粘結剤を含有する。Hereinafter, the present invention will be described in more detail. The oral composition of the present invention is used as a dentifrice or the like and contains an abrasive and a binder.
【0011】ここに使用する研磨剤としては、特に沈降
性シリカ、シリカゲル、アルミノシリケート、ジルコノ
シリケート等のシリカ系研磨剤が好ましいが、それ以外
に、第2リン酸カルシウム・2水和物及び無水物、ピロ
リン酸カルシウム、炭酸カルシウム、水酸化アルミニウ
ム、アルミナ、炭酸マグネシウム、第3リン酸マグネシ
ウム、不溶性メタリン酸ナトリウム、不溶性メタリン酸
カリウム、酸化チタン、ゼオライト、ケイ酸アルミニウ
ム、ケイ酸ジルコニウム、合成樹脂系研磨剤が挙げら
れ、これらの1種又は2種以上を組み合わせて使用する
ことができる。これらの中では、清掃力及び分散安定性
からシリカ系研磨剤が好ましく用いられる。The abrasive used herein is preferably a silica-based abrasive such as precipitated silica, silica gel, aluminosilicate, zirconosilicate, and the like. In addition, dibasic calcium phosphate dihydrate and anhydride , Calcium pyrophosphate, calcium carbonate, aluminum hydroxide, alumina, magnesium carbonate, tertiary magnesium phosphate, insoluble sodium metaphosphate, insoluble potassium metaphosphate, titanium oxide, zeolite, aluminum silicate, zirconium silicate, synthetic resin abrasive And these may be used alone or in combination of two or more. Among these, silica-based abrasives are preferably used from the viewpoint of cleaning power and dispersion stability.
【0012】上記研磨剤の配合量は、上述したように組
成物全体の5〜60%(重量%、以下同じ)、特に10
〜40%である。5%より少ない場合には汚染除去力が
充分発揮されず、60%より多い場合は流動性が低下す
る。The amount of the above-mentioned abrasive is 5 to 60% (% by weight, hereinafter the same) of the whole composition, particularly 10% as described above.
4040%. If the amount is less than 5%, the decontamination power will not be sufficiently exhibited, and if it is more than 60%, the fluidity will decrease.
【0013】また、本発明において、粘結剤としてはキ
サンタンガムとポリアクリル酸塩とを併用配合する。こ
の場合、ポリアクリル酸塩とキサンタンガムとの配合割
合は本発明の効果を有効に発揮させる点で重量比として
2:1〜1:10であり、好ましくは1:1〜1:8で
ある。また、その合計配合量は、好ましくは0.5〜
1.5%、より好ましくは0.5〜1.2%の範囲であ
る。In the present invention, xanthan gum and polyacrylate are combined as a binder. In this case, the blending ratio of the polyacrylate and the xanthan gum is 2: 1 to 1:10, preferably 1: 1 to 1: 8, in terms of weight ratio in order to effectively exert the effects of the present invention. The total amount is preferably 0.5 to
It is in the range of 1.5%, more preferably 0.5-1.2%.
【0014】なお、本発明においては、キサンタンガム
及びポリアクリル酸塩に加え、必要により本発明の効果
を損なわない限り、他の粘結剤を配合することができ
る。このような粘結剤の例として、カラゲナン、カルボ
キシメチルセルロースナトリウム、メチルセルロース、
ヒドロキシエチルセルロースなどのセルロース誘導体、
トラガントガム、カラヤガム、アラビアガムなどのガム
類、ポリビニルアルコール、カルボキシビニルポリマ
ー、ポリビニルピロリドンなどの合成粘結剤、シリカゲ
ル、アルミニウムシリカゲル、ビーガム、ラポナイトな
どの無機粘結剤等が挙げられ、これらの1種又は2種以
上を配合し得る。これら他の粘結剤の配合量は特に制限
されないが、2.5%以下、特に2%以下が好ましい。In the present invention, in addition to the xanthan gum and the polyacrylate, other binders can be added, if necessary, as long as the effects of the present invention are not impaired. Examples of such binders include carrageenan, sodium carboxymethylcellulose, methylcellulose,
Cellulose derivatives such as hydroxyethyl cellulose,
Gums such as tragacanth gum, karaya gum, and gum arabic; synthetic binders such as polyvinyl alcohol, carboxyvinyl polymer, and polyvinylpyrrolidone; and inorganic binders such as silica gel, aluminum silica gel, veegum, and laponite. Alternatively, two or more kinds may be blended. The amount of these other binders is not particularly limited, but is preferably 2.5% or less, particularly preferably 2% or less.
【0015】本発明の口腔用組成物には、上述した成分
に加えて更にその目的、組成物の種類等に応じて適宜な
成分を配合することができる。The oral composition of the present invention may further contain, in addition to the above-mentioned components, appropriate components according to the purpose, the type of the composition, and the like.
【0016】例えば、粘稠剤としてソルビット、グリセ
リン、エチレングリコール、プロピレングリコール、
1,3−ブチレングリコール、ポリエチレングリコー
ル、ポリプロピレングリコール、キシリトール、マルチ
トール、ラクチトール等の1種又は2種以上を配合し得
る。その配合量は通常組成物全体の10〜80%、特に
20〜60%とすることができる。For example, sorbitol, glycerin, ethylene glycol, propylene glycol,
One or more of 1,3-butylene glycol, polyethylene glycol, polypropylene glycol, xylitol, maltitol, lactitol and the like can be blended. The compounding amount can be usually 10 to 80%, particularly 20 to 60% of the whole composition.
【0017】また、メントール、アネトール、カルボ
ン、オイゲノール、リモネン、n−デシルアルコール、
シトロネロール、α−テルピネオール、シトロネリルア
セテート、シネオール、リナロール、エチルリナロー
ル、ワニリン、チモール、スペアミント油、ペパーミン
ト油、レモン油、オレンジ油、セージ油、ローズマリー
油、桂皮油、ピメント油、桂葉油、シソ油、冬緑油、丁
字油、ユーカリ油等の香料を単独で又は組み合わせて配
合し得る他、サッカリンナトリウム、ステビオサイド、
ネオヘスペリジルジヒドロカルコン、グリチルリチン、
ペリラルチン、ソーマチン、アスパラチルフェニルアラ
ニンメチルエステル、p−メトキシシンナミックアルデ
ヒドなどの甘味剤等を配合し得る。Menthol, anethole, carvone, eugenol, limonene, n-decyl alcohol,
Citronellol, α-terpineol, citronellyl acetate, cineol, linalool, ethyl linalool, crocodile, thymol, spearmint oil, peppermint oil, lemon oil, orange oil, sage oil, rosemary oil, cinnamon oil, pimento oil, cinnamon oil, perilla Oil, winter green oil, T-shaped oil, fragrances such as eucalyptus oil can be blended alone or in combination, saccharin sodium, stevioside,
Neohesperidyl dihydrochalcone, glycyrrhizin,
Sweeteners such as perillartin, thaumatin, asparatylphenylalanine methyl ester, p-methoxycinamic aldehyde, and the like can be added.
【0018】更に、本発明においては、有効成分とし
て、デキストラナーゼ、ムタナーゼ、リゾチーム、アミ
ラーゼ、プロテアーゼ、溶菌酵素、スーパーオキサイド
ディスムターゼなどの酵素、モノフルオロリン酸ナトリ
ウム、モノフルオロリン酸カリウムなどのアルカリ金属
モノフルオロフォスフェートやフッ化ナトリウム、フッ
化第一錫などのフッ化物、トラネキサム酸、イプシロン
アミノカプロン酸、アルミニウムクロルヒドロキシアラ
ントイン、ジヒドロコレスタノール、グリチルリチン酸
類、グリチルレチン酸、ビサボロール、イソプロピルメ
チルフェノール、グリセロフォスフェート、クロロフィ
ル、グルコン酸銅、塩化ナトリウム、水溶性無機リン酸
化合物、トリクロサン、セチルピリジニウムクロライ
ド、塩化ベンザルコニウム、塩化ベンゼトニウム等の有
効成分の1種又は2種以上を配合し得る。Further, in the present invention, as active ingredients, enzymes such as dextranase, mutanase, lysozyme, amylase, protease, lytic enzyme, superoxide dismutase, and alkali such as sodium monofluorophosphate and potassium monofluorophosphate are used. Metal monofluorophosphates, fluorides such as sodium fluoride and stannous fluoride, tranexamic acid, epsilon aminocaproic acid, aluminum chlorohydroxyallantoin, dihydrocholestanol, glycyrrhizic acids, glycyrrhetinic acid, bisabolol, isopropylmethylphenol, glycerofos Fate, chlorophyll, copper gluconate, sodium chloride, water-soluble inorganic phosphate compound, triclosan, cetylpyridinium chloride, benzalkoni chloride Beam, may be incorporated one or more kinds of active ingredients, such as benzethonium chloride.
【0019】また、界面活性剤としては、アニオン界面
活性剤、ノニオン界面活性剤及び両性イオン界面活性剤
が用いられる。As the surfactant, an anionic surfactant, a nonionic surfactant and an amphoteric surfactant are used.
【0020】アニオン界面活性剤としては、ラウリル硫
酸ナトリウム、ミリスチン酸硫酸ナトリウムなどのアル
キル硫酸ナトリウム、N−ラウロイルザルコシン酸ナト
リウム、N−ミリストイルザルコシン酸ナトリウムなど
のN−アシルザルコシン酸ナトリウム、ドデシルベンゼ
ンスルホン酸ナトリウム、水素添加ココナッツ脂肪酸モ
ノグリセリドモノ硫酸ナトリウム、ラウリルスルホ酢酸
ナトリウム、N−パルミトイルグルタミン酸ナトリウム
などのN−アシルグルタミン酸塩、N−メチル−N−ア
シルタウリンナトリウム、N−メチル−N−アシルアラ
ニンナトリウム、α−オレフィンスルホン酸ナトリウム
等が用いられる。Examples of the anionic surfactant include sodium alkyl sulfate such as sodium lauryl sulfate and sodium myristate; sodium N-acyl sarcosinate such as sodium N-lauroyl sarcosinate; sodium N-myristoyl sarcosinate; and dodecylbenzene sulfone. Sodium acid, hydrogenated coconut fatty acid sodium monoglyceride monosulfate, sodium lauryl sulfoacetate, N-acylglutamate such as sodium N-palmitoylglutamate, sodium N-methyl-N-acyltaurine, sodium N-methyl-N-acylalanine, Sodium α-olefin sulfonate and the like are used.
【0021】ノニオン界面活性剤としては、ショ糖脂肪
酸エステル、マルトース脂肪酸エステル、ラクトース脂
肪酸エステルなどの糖脂肪酸エステル、マルチトール脂
肪酸エステル、ラクチトール脂肪酸エステルなどの糖ア
ルコール脂肪酸エステル、ポリオキシエチレンソルビタ
ンモノラウレート、ポリオキシエチレンソルビタンモノ
ステアレートなどのポリオキシエチレンソルビタン脂肪
酸エステル、ポリオキシエチレン硬化ヒマシ油などのポ
リオキシエチレン脂肪酸エステル、ラウリン酸モノ又は
ジエタノールアミド、ミリスチン酸モノ又はジエタノー
ルアミドなどの脂肪酸ジエタノールアミド、ソルビタン
脂肪酸エステル、ポリオキシエチレン高級アルコールエ
ーテル、ポリオキシエチレンポリオキシプロピレン共重
合体、ポリオキシエチレンポリオキシプロピレン脂肪酸
エステル等が用いられる。Examples of the nonionic surfactant include sugar fatty acid esters such as sucrose fatty acid ester, maltose fatty acid ester and lactose fatty acid ester, sugar alcohol fatty acid esters such as maltitol fatty acid ester and lactitol fatty acid ester, and polyoxyethylene sorbitan monolaurate. Polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene sorbitan monostearate, polyoxyethylene fatty acid esters such as polyoxyethylene hydrogenated castor oil, lauric acid mono- or diethanolamide, fatty acid diethanolamide such as myristic acid mono- or diethanolamide, Sorbitan fatty acid ester, polyoxyethylene higher alcohol ether, polyoxyethylene polyoxypropylene copolymer, polyoxy Etc. Ji Ren polyoxypropylene fatty acid ester is used.
【0022】両性イオン界面活性剤としては、N−ラウ
リルジアミノエチルグリシン、N−ミリスチルジアミノ
エチルグリシンなどのN−アルキルジアミノエチルグリ
シン、N−アルキル−N−カルボキシメチルアンモニウ
ムベタイン、2−アルキル−1−ヒドロキシエチルイミ
ダゾリンベタインナトリウムなどが用いられる。Examples of the amphoteric surfactant include N-alkyldiaminoethylglycine such as N-lauryldiaminoethylglycine and N-myristyldiaminoethylglycine, N-alkyl-N-carboxymethylammonium betaine, 2-alkyl-1-alkyl-1-aminoglycine. Hydroxyethylimidazoline betaine sodium is used.
【0023】この場合、界面活性剤としてはアニオン界
面活性剤が好適に使用され、更に望ましくは、ラウリル
硫酸ナトリウム等のアルキル硫酸ナトリウムが用いられ
る。In this case, anionic surfactants are preferably used as the surfactant, and more preferably, sodium alkyl sulfate such as sodium lauryl sulfate is used.
【0024】なお、これらの界面活性剤はその1種を単
独で用いても2種以上を併用しても差し支えない。ま
た、界面活性剤の配合量は通常組成物全体の0.01〜
5%、より好ましくは0.05〜3%である。These surfactants may be used alone or in combination of two or more. The amount of the surfactant is usually from 0.01 to 0.01 of the whole composition.
5%, more preferably 0.05 to 3%.
【0025】本発明における口腔用組成物は、色素、着
色剤を配合して染色することができる。The oral composition of the present invention can be dyed by blending a pigment and a coloring agent.
【0026】この場合、色素、着色剤としては種々のも
のが用いられるが、例えば赤色2号、赤色3号、赤色2
26号、黄色4号、黄色5号、青色1号、青色2号、緑
色3号、青色201号、青色204号、雲母チタン、酸
化チタン等が好適に用いられる。In this case, various dyes and coloring agents are used. For example, Red No. 2, Red No. 3, Red No. 2
No. 26, Yellow No. 4, Yellow No. 5, Blue No. 1, Blue No. 2, Green No. 3, Blue No. 201, Blue No. 204, titanium mica, titanium oxide and the like are preferably used.
【0027】而して、本発明の口腔用組成物は、テクス
チャー記録曲線から得られる分散性指数が0.1〜0.
5、好ましくは0.15〜0.4のものである。この分
散性指数が0.1より小さいと口中での製剤の付着性が
低く、使用実感が低い。一方、0.5より大きいと口腔
粘膜への粘着性があり、べたべた感が生じ、分散性が低
下して使用感が悪くなる。なお、上記分散性指数は、後
述する方法により得られる値である。Thus, the oral composition of the present invention has a dispersibility index obtained from a texture recording curve of 0.1 to 0.5.
5, preferably 0.15 to 0.4. When the dispersibility index is smaller than 0.1, the adhesiveness of the preparation in the mouth is low, and the feeling of use is low. On the other hand, if it is larger than 0.5, it has adhesiveness to the oral mucosa, causing a sticky feeling, dispersibility is reduced, and a feeling of use is deteriorated. The dispersibility index is a value obtained by a method described later.
【0028】このような分散性指数を有する本発明の口
腔用組成物は、上記研磨剤及びキサンタンガムとポリア
クリル酸塩を含む上述した所用成分を水等の水系媒体に
添加し、これらを混練する際、ずり速度が50〜700
(1/秒)、より好ましくは100〜500(1/秒)
となるように混練するものである。ずり速度が50(1
/秒)より低いと組成物中の研磨剤、粘稠剤等の混合性
が十分でなく均一性が確保できない。一方、ずり速度が
700(1/秒)より高いと粘結剤の低分子化、研磨剤
の微粒子化が過大に進行し、充分な粘度、降伏値が確保
されない。なお、混練時間は通常5〜50分である。In the oral composition of the present invention having such a dispersibility index, the above-mentioned necessary components including the abrasive and the xanthan gum and the polyacrylate are added to an aqueous medium such as water, and these are kneaded. When the shear rate is 50 to 700
(1 / sec), more preferably 100 to 500 (1 / sec)
It is kneaded so that Shear speed is 50 (1
/ Sec), the mixing properties of the abrasive, the thickener and the like in the composition are not sufficient and uniformity cannot be ensured. On the other hand, if the shear rate is higher than 700 (1 / sec), the molecular weight of the binder is reduced and the abrasive is finely divided, whereby sufficient viscosity and yield value cannot be secured. The kneading time is usually 5 to 50 minutes.
【0029】ここで、口腔用組成物におけるずり速度と
は、 ずり速度=周速(m/秒)/クリアランス(m) を意味し、練歯磨等の口腔用組成物の撹拌装置の練等の
内容物の撹拌に用いる回転羽根の最外周速と、羽根と装
置内壁とのクリアランスを計測することによって測定結
果を得ることができる。Here, the shear rate in the oral composition means shear rate = peripheral speed (m / sec) / clearance (m), such as kneading of a stirrer for an oral composition such as toothpaste. A measurement result can be obtained by measuring the outermost peripheral speed of the rotary blade used for stirring the contents and the clearance between the blade and the inner wall of the device.
【0030】なお、本発明にかかる口腔用組成物は、2
5℃の粘度が300ポイズ以下、より好ましくは100
〜300ポイズ、更に好ましくは130〜250ポイ
ズ、特には180ポイズを超えたものであることが本発
明の目的を達成する点から好適である。低粘度すぎると
ハブラシへの乗せやすさが低下し、300ポイズより高
いと流動性が低下する場合がある。The oral composition according to the present invention comprises 2
The viscosity at 5 ° C. is 300 poise or less, more preferably 100 poise.
It is preferable that the viscosity exceeds 300 poise, more preferably 130 to 250 poise, and particularly 180 poise from the viewpoint of achieving the object of the present invention. If the viscosity is too low, the ease of putting on the toothbrush is reduced, and if it is higher than 300 poise, the fluidity may be reduced.
【0031】更に、本発明にかかる口腔用組成物は、2
5℃の降伏値が200Pa以下、より好ましくは20〜
200Pa、更に好ましくは40〜150Pa、特には
60Paを超えたものであることが好ましい。降伏値が
低すぎるとブラシ植毛部からの染み込みが早く、保形性
が充分でなく、200Pa以上ではチューブからの押し
出し性が悪化する場合がある。Further, the oral composition according to the present invention comprises 2
The yield value at 5 ° C. is 200 Pa or less, more preferably 20 to
It is preferably 200 Pa, more preferably 40 to 150 Pa, particularly preferably more than 60 Pa. If the yield value is too low, the penetration from the brush flocked portion is early and the shape retention is not sufficient, and if it is 200 Pa or more, the extrudability from the tube may be deteriorated.
【0032】従って、本発明の口腔用組成物を製造する
場合は、上記粘度、降伏値の範囲を有するように配合成
分の種類、量、特に粘結剤の種類、量を選定することが
推奨される。Therefore, when producing the oral composition of the present invention, it is recommended to select the type and amount of the components, particularly the type and amount of the binder, so as to have the above-mentioned ranges of viscosity and yield value. Is done.
【0033】なお、本発明の製造方法において、混練時
のずり速度を上述した範囲とする以外は、常法を採用し
得る。In the production method of the present invention, a conventional method can be employed except that the shear rate during kneading is set within the above-mentioned range.
【0034】[0034]
【発明の効果】本発明の口腔用組成物はブラシの植毛部
に乗せたときは従来の高粘度練歯磨と同様な保形性を保
ち、ひとたび口腔内に入れ、歯磨を開始すると良好な口
どけと分散性を有するという使用性に優れたものであ
る。EFFECTS OF THE INVENTION The oral composition of the present invention retains the same shape retention properties as a conventional high-viscosity toothpaste when placed on a flocked portion of a brush, and is placed in the oral cavity once, and a good mouthwash is obtained. It is excellent in usability that it has dispersibility and dispersibility.
【0035】[0035]
【実施例】以下、実施例と比較例を示し、本発明を具体
的に示すが、本発明は実施例に制限されるものではな
い。EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the examples.
【0036】なお、下記の例において、粘度、降伏値、
分散性指数、ブラシへの保形性、口腔内分散性、ずり速
度、外観は下記方法で実施した。 (1)粘度 粘度計 :BH型粘度計(東京計器製作所) ロータ :No.4〜7 回転数 :20rpm 測定温度:25℃ (2)降伏値 測定器:HAAKE粘度計 コントロールユニット RV12 センサーシステム MV1又はSV1 温度 :25℃ 回転数:0〜64/分 (3)分散性指数 測定器 :テクスチャー・アナライザーTA・XT2
(英弘精機株式会社) プランジャー:P/20(直径20mm) 圧縮速度:1mm/s 進入距離:30mm 測定温度:25℃ 分散性指数:プランジャーの圧縮により試料が破断し、
破断によりストレインゲージにかかる力の変化が下記の
テクスチャー曲線として示される。図1に示す曲線より 分散性指数=面積A2/面積A1 を求める。 (4)ブラシへの保形性 サンプルを充填したプラスチックボトル(口部内径2m
m)からサンプルを押し出してブラシ上にサンプル1g
を乗せ、5秒後のブラシ上での保形性を官能評価する。
この場合、ハブラシとしては下記のものを使用した。 植毛部 :8.8mm×26.8mm(横幅×縦幅) 植毛穴数:3穴×1列+4穴×9列=39穴 植毛本数:20本/穴 毛の長さ:10.5cm (5)口中分散性 サンプル1gをハブラシにとりブラッシングするとき、
口中分散性を以下の基準により官能評価した。 評価基準 3点:ブラッシング後直ちに口中に分散し、良好である 2点:やや粘りがあるが、しばらくすると分散する 1点:粘りがあり、口中で分散しにくい (6)ずり速度 煉製造装置の撹拌羽根の周速と撹拌羽根とクリアランス
から以下の式により求めた。 ずり速度=周速(m/秒)/クリアランス(m) (7)外観 調製したサンプルの外観を下記評価基準で官能評価し
た。 In the following examples, viscosity, yield value,
The dispersibility index, the shape retention on the brush, the dispersibility in the mouth, the shear rate, and the appearance were determined by the following methods. (1) Viscosity Viscometer: BH type viscometer (Tokyo Keiki Seisakusho) Rotor: No. 4-7 rpm: 20 rpm Measurement temperature: 25 ° C. (2) Yield value measuring device: HAAKE viscometer control unit RV12 sensor system MV1 or SV1 Temperature: 25 ° C. rpm: 0-64 / min (3) Dispersibility index measurement Container: Texture analyzer TA ・ XT2
(Eikou Seiki Co., Ltd.) Plunger: P / 20 (diameter 20 mm) Compression speed: 1 mm / s Entry distance: 30 mm Measurement temperature: 25 ° C. Dispersibility index: The sample is broken by compression of the plunger,
The change in the force applied to the strain gauge due to the fracture is shown as the following texture curve. From the curve shown in FIG. 1, dispersibility index = area A2 / area A1 is determined. (4) Shape retention on brush Plastic bottle filled with sample (2 m inside diameter)
Extrude the sample from m) and put 1g of sample on the brush
And the sensory evaluation of the shape retention on the brush after 5 seconds.
In this case, the following was used as the toothbrush. Flocked part: 8.8 mm x 26.8 mm (width x height) Number of flocked holes: 3 holes x 1 row + 4 holes x 9 rows = 39 holes Number of flocked hairs: 20 / hole Hair length: 10.5 cm (5) Dispersibility in the mouth When brushing 1 g of a sample with a toothbrush,
The in-mouth dispersibility was organoleptically evaluated according to the following criteria. Evaluation criteria 3 points: Dispersed in the mouth immediately after brushing and good 2 points: Slightly sticky, but dispersed after a while 1 point: Sticky and difficult to disperse in the mouth (6) Shear speed Brick manufacturing equipment It was calculated from the peripheral speed of the stirring blade, the stirring blade and the clearance by the following equation. Shear speed = peripheral speed (m / sec) / clearance (m) (7) Appearance The appearance of the prepared sample was organoleptically evaluated according to the following evaluation criteria.
【0037】〔実施例、比較例〕表1に示す成分を混合
し、この混合物を表1に示すずり速度で20分間混練
し、歯磨剤を得た。その結果を表1に併記する。Examples and Comparative Examples The components shown in Table 1 were mixed, and this mixture was kneaded at a shear rate shown in Table 1 for 20 minutes to obtain a dentifrice. The results are also shown in Table 1.
【0038】[0038]
【表1】 [Table 1]
【図1】テクスチャー・アナライザーによるテクスチャ
ー曲線の一例を示すグラフである。FIG. 1 is a graph showing an example of a texture curve obtained by a texture analyzer.
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成9年6月23日[Submission date] June 23, 1997
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0036[Correction target item name] 0036
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0036】なお、下記の例において、粘度、降伏値、
分散性指数、ブラシへの保形性、口腔内分散性、ずり速
度、外観は下記方法で実施した。 (1)粘度 粘度計 :BH型粘度計(東京計器製作所) ロータ :No.4〜7 回転数 :20rpm 測定温度:25℃ (2)降伏値 測定器:HAAKE粘度計 コントロールユニット RV12 センサーシステム MV1又はSV1 温度 :25℃ 回転数:0〜64/分 (3)分散性指数 測定器 :テクスチャー・アナライザーTA・XT2
(英弘精機株式会社) プランジャー:P/20(直径20mm) 圧縮速度:1mm/s 進入距離:30mm 測定温度:25℃ 分散性指数:プランジャーの圧縮により試料が破断し、
破断によりストレインゲージにかかる力の変化が下記の
テクスチャー曲線として示される。図1に示す曲線より 分散性指数=面積A2/面積A1 を求める。 (4)ブラシへの保形性 サンプルを充填したプラスチックボトル(口部内径2m
m)からサンプルを押し出してブラシ上にサンプル1g
を乗せ、5秒後のブラシ上での保形性を官能評価する。
この場合、ハブラシとしては下記のものを使用した。 植毛部 :8.8mm×26.8mm(横幅×縦幅) 植毛穴数:3穴×1列+4穴×9列=39穴 植毛本数:20本/穴 毛の長さ:10.5mm (5)口中分散性 サンプル1gをハブラシにとりブラッシングするとき、
口中分散性を以下の基準により官能評価した。 評価基準 3点:ブラッシング後直ちに口中に分散し、良好である 2点:やや粘りがあるが、しばらくすると分散する 1点:粘りがあり、口中で分散しにくい (6)ずり速度 煉製造装置の撹拌羽根の周速と撹拌羽根とクリアランス
から以下の式により求めた。 ずり速度=周速(m/秒)/クリアランス(m) (7)外観 調製したサンプルの外観を下記評価基準で官能評価し
た。 In the following examples, viscosity, yield value,
The dispersibility index, the shape retention on the brush, the dispersibility in the mouth, the shear rate, and the appearance were determined by the following methods. (1) Viscosity Viscometer: BH type viscometer (Tokyo Keiki Seisakusho) Rotor: No. 4-7 rpm: 20 rpm Measurement temperature: 25 ° C. (2) Yield value measuring device: HAAKE viscometer control unit RV12 sensor system MV1 or SV1 Temperature: 25 ° C. rpm: 0-64 / min (3) Dispersibility index measurement Container: Texture analyzer TA ・ XT2
(Eikou Seiki Co., Ltd.) Plunger: P / 20 (diameter 20 mm) Compression speed: 1 mm / s Entry distance: 30 mm Measurement temperature: 25 ° C. Dispersibility index: The sample is broken by compression of the plunger,
The change in the force applied to the strain gauge due to the fracture is shown as the following texture curve. From the curve shown in FIG. 1, dispersibility index = area A2 / area A1 is determined. (4) Shape retention on brush Plastic bottle filled with sample (2 m inside diameter)
Extrude the sample from m) and put 1g of sample on the brush
And the sensory evaluation of the shape retention on the brush after 5 seconds.
In this case, the following was used as the toothbrush. Flocked part: 8.8 mm x 26.8 mm (width x length) Number of flocked holes: 3 holes x 1 row + 4 holes x 9 rows = 39 holes Number of flocked hair: 20 / hole Hair length: 10.5 mm (5) Dispersibility in the mouth When brushing 1 g of a sample with a toothbrush,
The in-mouth dispersibility was organoleptically evaluated according to the following criteria. Evaluation criteria 3 points: Dispersed in the mouth immediately after brushing and good 2 points: Slightly sticky, but dispersed after a while 1 point: Sticky and difficult to disperse in the mouth (6) Shear speed Brick manufacturing equipment It was calculated from the peripheral speed of the stirring blade, the stirring blade and the clearance by the following equation. Shear speed = peripheral speed (m / sec) / clearance (m) (7) Appearance The appearance of the prepared sample was organoleptically evaluated according to the following evaluation criteria.
Claims (2)
に、粘結剤としてキサンタンガムとポリアクリル酸塩と
を重量比2:1〜1:10の割合で併用してなり、25
℃におけるテクスチャー記録曲線から得られる分散性指
数が0.1〜0.5であることを特徴とする口腔用組成
物。1. An abrasive containing 5 to 60% by weight, xanthan gum and polyacrylate as a binder in a weight ratio of 2: 1 to 1:10, and 25% by weight.
A composition for oral cavity, wherein a dispersibility index obtained from a texture recording curve at 0 ° C is 0.1 to 0.5.
60重量%配合し、かつ粘結剤としてキサンタンガムと
ポリアクリル酸塩とを重量比として2:1〜1:10の
割合で併用した口腔用組成物を製造するに際し、上記研
磨剤及び粘結剤を水系媒体に添加してなる混合物をずり
速度50〜700(1/秒)で混練することを特徴とす
る口腔用組成物の製造方法。2. A polishing agent is added to an aqueous medium in an amount of 5 to 5 parts of the total composition.
The above-mentioned abrasive and binder were used in producing an oral composition containing 60% by weight of xanthan gum and polyacrylate as binders in a weight ratio of 2: 1 to 1:10. Is kneaded at a shear rate of 50 to 700 (1 / second) at a shear rate of 50 to 700 (1 / sec).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18678996A JPH1017445A (en) | 1996-06-27 | 1996-06-27 | Composition for oral cavity and its production |
IDP972214A ID17307A (en) | 1996-06-27 | 1997-06-26 | ORAL COMPOSITION AND THE PROCESS OF MAKING. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18678996A JPH1017445A (en) | 1996-06-27 | 1996-06-27 | Composition for oral cavity and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1017445A true JPH1017445A (en) | 1998-01-20 |
Family
ID=16194623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18678996A Pending JPH1017445A (en) | 1996-06-27 | 1996-06-27 | Composition for oral cavity and its production |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH1017445A (en) |
ID (1) | ID17307A (en) |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US12136890B2 (en) | 2023-11-14 | 2024-11-05 | Solaredge Technologies Ltd. | Multi-level inverter |
-
1996
- 1996-06-27 JP JP18678996A patent/JPH1017445A/en active Pending
-
1997
- 1997-06-26 ID IDP972214A patent/ID17307A/en unknown
Cited By (134)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11043820B2 (en) | 2006-12-06 | 2021-06-22 | Solaredge Technologies Ltd. | Battery power delivery module |
US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module |
US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12107417B2 (en) | 2006-12-06 | 2024-10-01 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US12046940B2 (en) | 2006-12-06 | 2024-07-23 | Solaredge Technologies Ltd. | Battery power control |
US12032080B2 (en) | 2006-12-06 | 2024-07-09 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11961922B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11063440B2 (en) | 2006-12-06 | 2021-07-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9853490B2 (en) | 2006-12-06 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11658482B2 (en) | 2006-12-06 | 2023-05-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US11594881B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11594882B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11594880B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US9948233B2 (en) | 2006-12-06 | 2018-04-17 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9960731B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
US11575261B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11073543B2 (en) | 2006-12-06 | 2021-07-27 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11575260B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10230245B2 (en) | 2006-12-06 | 2019-03-12 | Solaredge Technologies Ltd | Battery power delivery module |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US10447150B2 (en) | 2006-12-06 | 2019-10-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11183922B2 (en) | 2006-12-06 | 2021-11-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US10637393B2 (en) | 2006-12-06 | 2020-04-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11002774B2 (en) | 2006-12-06 | 2021-05-11 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US10673253B2 (en) | 2006-12-06 | 2020-06-02 | Solaredge Technologies Ltd. | Battery power delivery module |
US10516336B2 (en) | 2007-08-06 | 2019-12-24 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US10116217B2 (en) | 2007-08-06 | 2018-10-30 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9979280B2 (en) | 2007-12-05 | 2018-05-22 | Solaredge Technologies Ltd. | Parallel connected inverters |
US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
US11183923B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
US11693080B2 (en) | 2007-12-05 | 2023-07-04 | Solaredge Technologies Ltd. | Parallel connected inverters |
US12055647B2 (en) | 2007-12-05 | 2024-08-06 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11894806B2 (en) | 2007-12-05 | 2024-02-06 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US10644589B2 (en) | 2007-12-05 | 2020-05-05 | Solaredge Technologies Ltd. | Parallel connected inverters |
US11183969B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner |
US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
US10461687B2 (en) | 2008-12-04 | 2019-10-29 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US12003215B2 (en) | 2010-11-09 | 2024-06-04 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11070051B2 (en) | 2010-11-09 | 2021-07-20 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11349432B2 (en) | 2010-11-09 | 2022-05-31 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11271394B2 (en) | 2010-12-09 | 2022-03-08 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9935458B2 (en) | 2010-12-09 | 2018-04-03 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US11996488B2 (en) | 2010-12-09 | 2024-05-28 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US11205946B2 (en) | 2011-01-12 | 2021-12-21 | Solaredge Technologies Ltd. | Serially connected inverters |
US10666125B2 (en) | 2011-01-12 | 2020-05-26 | Solaredge Technologies Ltd. | Serially connected inverters |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module |
US12094306B2 (en) | 2012-01-30 | 2024-09-17 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US10381977B2 (en) | 2012-01-30 | 2019-08-13 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US10608553B2 (en) | 2012-01-30 | 2020-03-31 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US11183968B2 (en) | 2012-01-30 | 2021-11-23 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
US9639106B2 (en) | 2012-03-05 | 2017-05-02 | Solaredge Technologies Ltd. | Direct current link circuit |
US10007288B2 (en) | 2012-03-05 | 2018-06-26 | Solaredge Technologies Ltd. | Direct current link circuit |
US11177768B2 (en) | 2012-06-04 | 2021-11-16 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US11545912B2 (en) | 2013-03-14 | 2023-01-03 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US12119758B2 (en) | 2013-03-14 | 2024-10-15 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US11742777B2 (en) | 2013-03-14 | 2023-08-29 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US12132125B2 (en) | 2013-03-15 | 2024-10-29 | Solaredge Technologies Ltd. | Bypass mechanism |
US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
US10651647B2 (en) | 2013-03-15 | 2020-05-12 | Solaredge Technologies Ltd. | Bypass mechanism |
US11424617B2 (en) | 2013-03-15 | 2022-08-23 | Solaredge Technologies Ltd. | Bypass mechanism |
US11855552B2 (en) | 2014-03-26 | 2023-12-26 | Solaredge Technologies Ltd. | Multi-level inverter |
US11296590B2 (en) | 2014-03-26 | 2022-04-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US11632058B2 (en) | 2014-03-26 | 2023-04-18 | Solaredge Technologies Ltd. | Multi-level inverter |
US10886831B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US10886832B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US11201476B2 (en) | 2016-04-05 | 2021-12-14 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US12136890B2 (en) | 2023-11-14 | 2024-11-05 | Solaredge Technologies Ltd. | Multi-level inverter |
Also Published As
Publication number | Publication date |
---|---|
ID17307A (en) | 1997-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1017445A (en) | Composition for oral cavity and its production | |
CN104822360A (en) | Surfactant systems for zinc containing compositions | |
JPS6234013B2 (en) | ||
JPH0543439A (en) | Sordes resisting composition for oral application | |
JP5527219B2 (en) | Toothpaste composition | |
JP3646765B2 (en) | Oral composition | |
JP5084075B2 (en) | Oral cleaning composition | |
JP2011126840A (en) | Composition for oral cavity | |
JPH1121219A (en) | Composition for oral cavity | |
JPH07145027A (en) | Anhydrous dentifrice composition | |
JP2004300119A (en) | Oral cavity composition | |
JPH11130648A (en) | Composition for oral cavity | |
JP2004083543A (en) | Composition for oral cavity compounded with ascorbic acid derivative | |
JP3951085B2 (en) | Dentifrice composition | |
JP2797716B2 (en) | Liquid dentifrice composition | |
JP5627190B2 (en) | Dentifrice composition | |
JP3810262B2 (en) | Oral composition and chewing composition | |
JPS58225007A (en) | Composition for oral cavity | |
JPH10236934A (en) | Oral composition | |
RU2801309C2 (en) | Oral care composition | |
JPH08310928A (en) | Dentifrice composition | |
JP2003113058A (en) | Tooth-attaching type dentifrice | |
JPH085775B2 (en) | Granule containing bactericide and dentifrice containing the same | |
JP2002047159A (en) | Dentifrice composition | |
JP2002193776A (en) | Cleaning agent for oral cavity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040721 |