Nothing Special   »   [go: up one dir, main page]

JPH0395208A - Preparation of olefin polymer - Google Patents

Preparation of olefin polymer

Info

Publication number
JPH0395208A
JPH0395208A JP23258389A JP23258389A JPH0395208A JP H0395208 A JPH0395208 A JP H0395208A JP 23258389 A JP23258389 A JP 23258389A JP 23258389 A JP23258389 A JP 23258389A JP H0395208 A JPH0395208 A JP H0395208A
Authority
JP
Japan
Prior art keywords
titanium
catalyst component
compound
olefin
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23258389A
Other languages
Japanese (ja)
Inventor
Jun Saito
純 齋藤
Akihiko Sanpei
昭彦 三瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP23258389A priority Critical patent/JPH0395208A/en
Publication of JPH0395208A publication Critical patent/JPH0395208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To stably prepare an olefin polymer excellent in the transparency and crystallizability by polymerizing an olefin in the presence of a catalyst contg. a specific solid catalyst component contg. titanium. CONSTITUTION:A process for producing an olefin polymer by polymerizing an olefin in the presence of a catalyst comprising a titanium-contg. solid catalyst component, an organoaluminum compd., and, if required, an electron donor, wherein the titanium-contg. catalyst component is one which, in the course of its production, has undergone a polymn. treatment with a linear olefin and styrene in the presence of a reaction product of the organoaluminum compd. with water and has passed through subsequent process. For example, a solid product obtd. by reacting TiCl4 with the organoaluminum compd. or with a reaction product of the organoaluminum with the electron donor is subjected to the polymn. treatment with the linear olefin and styrene in multisteps, each at least once, in the presence of the reaction product of the organoaluminum compd. with water, and the treated product is reacted with the electron donor and an electron acceptor to give a TiCl3 compsn. which is used as the titanium- contg. catalyst component.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、オレフイン重合体の製造方法に関し、更に詳
しくは、特定のチタン含有固体触媒成分を用いた、結晶
性と透明性に優れたオレフイン重合体の製造方法に関す
る. (従来の技術とその課題) 結晶性ポリプロピレン等の結晶性オレ′フイン重合体は
、周期律表の■〜■族の遷移金属化合物と1−III族
の金属の有機金属化合物とからなる、いわゆるチーグラ
ー・ナツタ触媒によってオレフインを重合することによ
って得られることはよく知られており、なかでも、遷移
金属化合物触媒成分として、種々の三塩化チタン組成物
や、チタン、マグネシウム、ハロゲン、および電子供与
体を含むチタン含有担持型触媒成分等のチタン含有固体
触媒成分が広く使用されている. 上記の方法で得られるポリブロビレンをはじめとするオ
レフィン重合体は他のプラスチックと比較して、軽量性
、威形性、機械的強度、化学的安・定性等に優れ、また
経済性においても優位なことから、フィルム、シートを
はじめとする各filIi形品の製造に広く用いられて
いる. しかしながら、オレフィン重合体は通常の方法で戒形す
ると、得られた成形品は結晶化度が低いことにより期待
されるほど剛性が高くないといったn題や成形品が半透
明であるといった課題を有していた. この為、オレフィン重合体の結晶化度を上げ、かつ透明
性を改良する試みがなされており、たとえば、造核作用
を有するシンジオタクチックボリスチレンをポリブロビ
レンに混合させた組成物(特開平1−131.2H号公
報、以後先行発明ということがある.)が字是案されて
いる. 該提案の組成物は、一定程度の結晶化度の改良効果が得
られているが、別途重合して得たシンジオタクチックポ
リスチレンをポリプロピレンに混合する方法を用いてい
るので、別途シンジオタクチックポリスチレンを製造す
る工程が必要であるという工業上の不利を伴うばかりで
なく、シンジオタクチックポリスチレンのポリプロピレ
ンへの分散性が不良なため、造核作用も不十分な他、フ
ィルムにした場合にはボイドが発生するといったyA!
Il1を有していた. 本発明者等は、先行発明が抱えている諸課題を解決する
、高結晶性のオレフィン重合体を製造する方法について
鋭意研究した.その結果、特定の方法によってシンジオ
タクチックスチレン重合体ブロックを含有せしめたチタ
ン含有固体触媒成分を見い出し、このチタン含有固体触
媒成分と少なくとも有機アルくニクム化合物からなる触
媒を使用して、オレフィンを重合してオレフィ・ン重合
体を製造する場合には、既述した先行発明の課題を解決
することを見いだし、本発明に至った.以上の説明から
明らかなように本発明の目的は、結晶性と透明性に優れ
たオレフィン重合体を工業上の不利を伴うことなく製造
する方法を提供するにある.他の目的は結晶性と透明性
に優れたオレフィン重合体を提供するにある. (Ll題を解決するための手段〕 本発明は以下の構戒を有する. (1)■チタン含有固体触媒威分と、■有機アルミニウ
ム化合物(A3)、および必要に応じて、■電子供与体
(at)からなる触媒を用いてオレフインを重合させて
オレフィン重合体を製造する方法において、 ■チタン含有固体触媒成分として該チタン含有固体触媒
成分の製造途中で有機アルミニウム化合物(A3)と水
との反応生成物(A3)の存在下、直鎮オレフィンおよ
びスチレンで重合処理し、更に後続の工程を経て得られ
kチタン含有固体触媒成分を用いることを特徴とするオ
レフイン重合体の製造方法. (2)チタン含有固体触媒成分として、有機アルミニウ
ム化合物(A4)、若しくは有機アルミニウム化合物(
A4)と電子供与体(B3)との反応生成物(I)に四
塩化チタンを反応させて得られた固体生成物(I!)を
、有機アル亙ニウム化合物(A3)と水との反応生成物
(A3)の存在下、直鎮オレフィンおよびスチレンでそ
れぞれ1回以上、多段に重合処理し、更に電子供与体(
83)と電子受容体とを反応させて得られる三塩化チタ
ン組威物( Il1 )を用いる前記第1項に記載の製
造方法. (3)チタン含有固体触媒成分として、液状化したマグ
ネシウム化合物と析出剤、ハロゲン化合物、電子供与体
(B4)およびチタン化合物(T+)を接触して得られ
た固体生戊物(IV)を、有機アルミニウム化合物(A
2〉と水との反応生放物(A3)の存在下、直鎮オレフ
ィンおよびスチレンでそれぞれ1回以上、多段に重合m
理し、固体生成物(V)を得、更にハロゲン化合物(T
2)を反応させて得られるチタン含有担持型触媒成分(
V1)を用いる前記第1項に記載の製造方法.(0有機
アルミニウム化合物(A−として、一般式が八1R’J
”p4s−ip*p・+ (式中、Rl1R2はアルキ
ル基、シクロアルキル基、アリール基等の炭化水素基*
たはアルコキシ基を、Xはハロゲンを表わし、またρ,
p゛はO<p+p′≦3の任意の数を表わす.)で表わ
される有機アルミニウム化合物を用いる前記第1項に記
載の製造方法.(5)有機アルミニウム化合物(A2)
として、トリメチルアルミニウムを用いる前記第1項心
記載の製造方法. (6)チタン含有固体触媒成分に代えて、チタン含有固
体触媒成分と有機アルミニウム化合物(A1).および
必要に応じて電子供与体(B3)を組み合せ、このもの
に少量のすレフインを反応させて予備活性化した触媒成
分を用いる前記第1項に記載の製造方法. 本発明の構戒について以下に詳述する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an olefin polymer, and more particularly, to a method for producing an olefin polymer, which uses a specific titanium-containing solid catalyst component to produce an olefin polymer with excellent crystallinity and transparency. Concerning methods for producing polymers. (Prior art and its problems) Crystalline olefin polymers such as crystalline polypropylene are composed of transition metal compounds of groups ■ to ■ of the periodic table and organometallic compounds of metals of groups 1-III of the periodic table. It is well known that olefins can be obtained by polymerizing olefins using Ziegler-Natsuta catalysts, and among them, various titanium trichloride compositions, titanium, magnesium, halogens, and electron donors are used as transition metal compound catalyst components. Titanium-containing solid catalyst components, such as titanium-containing supported catalyst components, are widely used. Olefin polymers such as polybropylene obtained by the above method are superior in light weight, shapeability, mechanical strength, chemical stability, etc. compared to other plastics, and are also economically advantageous. Therefore, it is widely used in the production of various filIi-shaped products including films and sheets. However, when olefin polymers are shaped using conventional methods, the resulting molded products have problems such as not being as rigid as expected due to low crystallinity, and problems such as the molded products being translucent. Was. For this reason, attempts have been made to increase the crystallinity and improve the transparency of olefin polymers. 131.2H (hereinafter referred to as the prior invention) is proposed. The proposed composition has the effect of improving crystallinity to a certain degree, but since it uses a method of mixing syndiotactic polystyrene obtained by separate polymerization with polypropylene, syndiotactic polystyrene is separately obtained. Not only does this have the industrial disadvantage of requiring a manufacturing process, but the dispersibility of syndiotactic polystyrene into polypropylene is poor, resulting in insufficient nucleation and voids when made into a film. yA that will occur!
It had Il1. The present inventors have conducted extensive research into a method for producing highly crystalline olefin polymers that solves the problems faced by previous inventions. As a result, a titanium-containing solid catalyst component containing a syndiotactic styrene polymer block was discovered using a specific method, and olefins were polymerized using this titanium-containing solid catalyst component and a catalyst consisting of at least an organic alkalicum compound. The present inventors have discovered that the problems of the prior inventions described above can be solved by producing an olefin polymer using the same method as described above, leading to the present invention. As is clear from the above description, an object of the present invention is to provide a method for producing an olefin polymer with excellent crystallinity and transparency without industrial disadvantages. Another purpose is to provide an olefin polymer with excellent crystallinity and transparency. (Means for Solving Problem Ll) The present invention has the following features. (1) ■Titanium-containing solid catalyst component, ■Organoaluminum compound (A3), and, if necessary, ■Electron donor. In the method of producing an olefin polymer by polymerizing olefin using a catalyst consisting of (at), (1) a combination of an organoaluminum compound (A3) and water as a titanium-containing solid catalyst component during the production of the titanium-containing solid catalyst component; A method for producing an olefin polymer, characterized by using a titanium-containing solid catalyst component obtained by polymerization treatment with a straight-set olefin and styrene in the presence of a reaction product (A3) and further subsequent steps. (2) ) As a titanium-containing solid catalyst component, an organoaluminum compound (A4) or an organoaluminum compound (
A solid product (I!) obtained by reacting the reaction product (I) of A4) with an electron donor (B3) with titanium tetrachloride is reacted with an organic aluminum compound (A3) and water. In the presence of the product (A3), polymerization is carried out in multiple stages, one or more times each with a direct olefin and styrene, and then an electron donor (
83) and an electron acceptor. (3) As a titanium-containing solid catalyst component, a solid raw material (IV) obtained by contacting a liquefied magnesium compound with a precipitating agent, a halogen compound, an electron donor (B4), and a titanium compound (T+), Organoaluminum compound (A
2> and water In the presence of the raw material (A3), polymerization is carried out in multiple stages, one or more times each, with straight olefin and styrene.
A solid product (V) was obtained, and a halogen compound (T
2) is obtained by reacting the titanium-containing supported catalyst component (
The manufacturing method according to the above item 1 using V1). (0 organoaluminum compound (A-, the general formula is 81R'J
"p4s-ip*p・+ (wherein, Rl1R2 is a hydrocarbon group such as an alkyl group, cycloalkyl group, or aryl group*
or an alkoxy group, X represents a halogen, and ρ,
p'' represents an arbitrary number of O<p+p'≦3. ) The manufacturing method according to item 1 above, using an organoaluminum compound represented by: (5) Organoaluminum compound (A2)
The manufacturing method according to the above item 1 using trimethylaluminum. (6) In place of the titanium-containing solid catalyst component, a titanium-containing solid catalyst component and an organoaluminum compound (A1). The production method according to item 1 above, which uses a catalyst component which is preactivated by combining and, if necessary, an electron donor (B3) and reacting this with a small amount of solenoid. The structure of the present invention will be explained in detail below.

本発明のオレフイン重合体の製造に用いるチタン含有固
体触媒成分としては、該チタン含有固体触媒成分の製造
途中で有機アルミニウム化合物(A2)と水との反応生
成物(A3)の存在下、直鎮オレフィンおよびスチレン
を用いて重合’Allし、更に後続の工程を経て得られ
たチタン含有固体触媒成分を用いる. このようなチタン含有固体触媒成分の製造方法を具体的
に説明すると、例えば、有機アルミニウム化合物(A4
)と電子供与体(82)とを反応させて反応生成物(1
)を得て、この(1)と四塩化チタンとを反応させて得
られる固体生成物(II)、若しくは有機アル主二ウム
化合物(A4)と四塩化チタンとを反応させて得られる
固体生成物( II )を、有機アルミニウム化合物(
A3)と水との反応生成物(A3)の存在下、直娘オレ
フィンおよびスチレンをそれぞれ1回以上、多段に重合
処理し、更(電子供与体(aS)と電子受容体とを反応
させて得られる最終の三塩化チタン組成物( Ill 
)として、該チタン含有固体触媒成分が製造される. なお、本発明で「重合処理する』とは、直娘オレフィン
若しくはスチレンを重合可能な条件下に固体生成物( 
11 ) 、若しくは後述する固体生成物(!V)に接
触せしめて直頌オレフィン若しくはスチレンを重合せし
めることをいう。この重合!A理で固体生成物(TI)
、若しくは固体生戊物(rV)は、重合体で被覆された
状態となる. 上述の有機アルaニウム化合物(A4)と電子供与体(
B3)との反応は、溶媒(D1)中で−20℃〜200
℃、好ましくは−10℃〜100℃で30秒〜5時間行
なう.有機アルミニウム化合物(A4)、(B2)、(
DI)の添加順序に制限はなく、使用する量比は有機ア
ル竃ニウム化合物《^4)1モルに対し電子供与体(B
z) 0.1モル〜8モル、好ましくは1〜4モル、溶
媒0.5 L〜5L,好ましくは0.5 L〜2Lであ
る. かくして反応生成物(!)が得られる.反応生戊物(I
)は分離をしないで反応終了したままの液状態(反応生
戒液(1)と言うことがある.)で次の反応に供するこ
とができる. 次にこの反応生成物(!)と四塩化チタンとを、若しく
は有機アル稟二ウム化合物(A4)と四塩化チタンとを
反応させて固体生成物(I1)を得る,該反応は、−t
o℃〜2GQ℃、好ましくは0℃〜100℃でS分〜1
0時間行う.溶媒は用いない方が好ましいが、脂肪族ま
たは芳香族炭化水素を用いることができる. 反応生成物(1)若しくは有機アルミニウム化合物(A
4〉、四塩化チタン、および溶媒の混合は任意の順に行
えば良い.(■)若しくは有機アルミニウム化合物(A
4)、四塩化チタン、および溶媒の全量の混合は5時間
以内に終了するのが好ましく、混合中も反応が行われる
.全量混合後、更に5時間以内反応を継続することが好
ましい。
The titanium-containing solid catalyst component used in the production of the olefin polymer of the present invention may be directly quenched in the presence of a reaction product (A3) of the organoaluminum compound (A2) and water during the production of the titanium-containing solid catalyst component. A titanium-containing solid catalyst component obtained by polymerization using olefin and styrene and further subsequent steps is used. To specifically explain the method for producing such a titanium-containing solid catalyst component, for example, an organoaluminum compound (A4
) and the electron donor (82) to form a reaction product (1
), and a solid product (II) obtained by reacting this (1) with titanium tetrachloride, or a solid product obtained by reacting an organic aluminum compound (A4) with titanium tetrachloride. compound (II), an organoaluminum compound (
In the presence of the reaction product (A3) of A3) and water, the direct daughter olefin and styrene are each polymerized in multiple stages at least once, and further (by reacting an electron donor (aS) with an electron acceptor). The final titanium trichloride composition obtained (Ill
), the titanium-containing solid catalyst component is produced. In the present invention, "to polymerize" means to polymerize a direct olefin or styrene into a solid product (
11) or the direct polymerization of olefin or styrene by contacting with a solid product (!V) described below. This polymerization! A solid product (TI)
, or the solid raw material (rV) becomes coated with the polymer. The above-mentioned organic aluminium compound (A4) and an electron donor (
The reaction with B3) is carried out in the solvent (D1) at -20°C to 200°C.
℃, preferably -10℃ to 100℃ for 30 seconds to 5 hours. Organoaluminum compounds (A4), (B2), (
There is no restriction on the order of addition of DI), and the ratio of the amount of electron donor (B
z) 0.1 mol to 8 mol, preferably 1 to 4 mol, solvent 0.5 L to 5 L, preferably 0.5 L to 2 L. Thus, the reaction product (!) is obtained. Reaction product (I)
) can be used for the next reaction in the liquid state (sometimes referred to as reaction liquid (1)) after the reaction has completed without separation. Next, this reaction product (!) is reacted with titanium tetrachloride, or the organic aluminum compound (A4) and titanium tetrachloride are reacted to obtain a solid product (I1).
0°C to 2GQ°C, preferably 0°C to 100°C, S min to 1
Perform for 0 hours. Although it is preferable not to use a solvent, aliphatic or aromatic hydrocarbons can be used. Reaction product (1) or organoaluminum compound (A
4>, titanium tetrachloride, and the solvent may be mixed in any order. (■) or organoaluminum compound (A
4) It is preferable that the mixing of the entire amount of titanium tetrachloride and the solvent be completed within 5 hours, and the reaction will continue during the mixing. It is preferable to continue the reaction for another 5 hours after mixing the entire amount.

反応に用いるそれぞれの使用量は四塩化チタン1モルに
対し、溶媒はO〜3,OOOmJ2 ,反応生戊物(1
)若しくは有機アルミニウム化合物(A4)は、該(1
)若しくは有機アルミニウム化合物(A4)中の^If
f子数と四塩化チタン中のTi原子数の比(A1/T0
で0.05〜10、好ましくは0.06〜OJである. かくして得られた固体生成物( I1 )を有機アルミ
ニウム化合物(A2)と水との反応生成物(A3)の存
在下、直娘オレフィンおよびスチレンで多段に重合処理
する.該重合処理方法としては、反応生成物(1)若し
くは有機アルミニウム化合物(A4)と四塩化チタンと
の反応終了後、濾別またはデカンテーションにより液状
部分を分離除去した後、得られた固体生戊物( 11 
)を、溶媒に悲濁させ、更に有機アルミニウム化合物(
A3)と水との反応生成物(A3)を添加後、直顧オレ
フインおよびスチレンを多段に添加し、重合処理する方
法があげられる. なお、上記の直鎮オレフインおよびスチレンによる重合
処理はスチレン単独による重合処理でも良いが、直鎮オ
レフィンおよびスチレンを用いて最初に■直鎖オレフィ
ンで重合IA3lシ、引き続いて■スチレンで重合処理
することが、得られたチタン含有固体触媒成分の使用時
における重合運転性および得られたオレフィン重合体の
品質の面から好ましい方法である. 更にまた、重合処理は上記したように直鎖オレフィンお
よびスチレンをそれぞれ最低1回ずつ用いる方法の他、
2回以上例えばスチレンの重合処理後に更に■直鎖オレ
フィンを添加して重合処理を行うこと等も可能である. 重合処理の反応条件としては、直鎮オレフィン、スチレ
ンによるいずれの重合lA埋においても固体生戊物(l
1)中のチタン原子と、を有機アルミニウム化合物(A
2)と水との反応生成物(A3)中のアル稟ニウムとの
モル比が20:1〜1:5×10’ ,好適には4:1
〜1:2XlO’となるような、有機アル主ニクム化合
物(A2)と水との反応生成物(A3)の存在下、反応
温度0℃〜90℃で1分〜10時間、反応圧力は大気圧
( O kgf/clIl’G)〜10kgf/cm”
Gの条件下で、固体生成物(■) 100g当り、溶媒
100a+J2〜Sofl,直鎮オレフィン0.1g〜
100kg ,およびスチレン0.01g A−100
kgを用いて、最終の三塩化チタン組戒物( ■)中に
、直絵オレフィン重合体ブロックの含有量が0.1重量
%〜49,5重量%、ならびにスチレン重合体ブロック
の含有量が0.Ol重量%〜49.5重量となるように
重合させる. 該スチレン重合体ブロックの含有量が0.01重c”%
末満では、得られたチタン含有固体触媒或分を用いて製
造されたオレフイン重合体の結晶性と透明性の向上効果
が不十分であり、また上記範囲を超えると効果の向上が
顕著でなくなり、操作上および経済上の不利となる。
The amount of each used in the reaction is 1 mol of titanium tetrachloride, 0~3,000mJ2 of solvent, 1 mol of titanium tetrachloride,
) or the organoaluminum compound (A4) is the (1
) or ^If in organoaluminum compound (A4)
The ratio of the number of f atoms to the number of Ti atoms in titanium tetrachloride (A1/T0
is 0.05 to 10, preferably 0.06 to OJ. The thus obtained solid product (I1) is subjected to multistage polymerization treatment with a direct daughter olefin and styrene in the presence of a reaction product (A3) of an organoaluminum compound (A2) and water. As the polymerization treatment method, after the reaction between the reaction product (1) or the organoaluminum compound (A4) and titanium tetrachloride is completed, the liquid portion is separated and removed by filtration or decantation, and the obtained solid raw material is Things (11)
) is dissolved in a solvent, and then an organoaluminum compound (
After adding the reaction product (A3) of A3) and water, a method can be mentioned in which directly added olefin and styrene are added in multiple stages and polymerized. Note that the above polymerization treatment using straight chain olefin and styrene may be performed by polymerization treatment using styrene alone, but using straight chain olefin and styrene, first polymerization IA3l is performed with straight chain olefin, and then polymerization treatment is performed with ■styrene. This method is preferred from the viewpoint of polymerization operability when using the obtained titanium-containing solid catalyst component and the quality of the obtained olefin polymer. Furthermore, the polymerization treatment can be carried out by using linear olefin and styrene at least once each as described above.
It is also possible to perform the polymerization process two or more times, for example, by adding straight chain olefin after the styrene polymerization process. As for the reaction conditions for the polymerization treatment, solid raw material (L) is
1) The titanium atoms in the organic aluminum compound (A
The molar ratio of aluminum in the reaction product (A3) of 2) and water is 20:1 to 1:5×10', preferably 4:1.
~ 1:2 Atmospheric pressure (O kgf/clIl'G) ~ 10 kgf/cm"
Under the conditions of G, per 100g of solid product (■), 100a+J2~Sofl, 0.1g~ of straight olefin
100kg, and 0.01g of styrene A-100
kg, in the final titanium trichloride compound (■), the content of the direct-painted olefin polymer block is 0.1% to 49.5% by weight, and the content of the styrene polymer block is 0. Polymerize so that the weight of Ol is 49.5% by weight. The content of the styrene polymer block is 0.01% by weight
In Suemitsu, the effect of improving the crystallinity and transparency of the olefin polymer produced using the titanium-containing solid catalyst obtained was insufficient, and the improvement of the effect was not significant beyond the above range. , resulting in operational and economic disadvantages.

なお、既述したように該重合処理はスチレンのみでなく
、直鎖オレフィンも用いることが好ましく、この場合、
直鎮オレフイン重合体ブロックのスチレン重合体ブロッ
クに対する重量比はついては運転性の改善効果、および
得られるオレフイン重合体の品質向上効果の両面を考慮
して2/98〜98/2とすることが好ましい. 上述したいずれの重合処理においても、直鎮オレフィン
若しくはスチレンによる各段階の重合処理が終了した後
は、該反応混合物をそのまま次段階の重合処理に用いる
ことができる.また、共存する溶媒、未反応の直鎖オレ
フイン若しくはスチレン、および有機アルミニウム化合
物(A2)と水との反応生成物(A3)等を濾別若しく
はデカンテーション等で除き、再度溶媒と有機アルミニ
ウム化合物(A3)と水との反応生成物(A3)を添加
して、次段階のスチレン若しくは直鎮オレフィンによる
重合処理に用いてもよい。
In addition, as mentioned above, it is preferable to use not only styrene but also a linear olefin in the polymerization treatment, and in this case,
The weight ratio of the straight-set olefin polymer block to the styrene polymer block is preferably 2/98 to 98/2, considering both the effect of improving driveability and the effect of improving the quality of the obtained olefin polymer. .. In any of the above-mentioned polymerization treatments, after each stage of polymerization treatment using a straight-chain olefin or styrene is completed, the reaction mixture can be used as it is in the next stage of polymerization treatment. In addition, the coexisting solvent, unreacted linear olefin or styrene, and the reaction product (A3) of the organoaluminum compound (A2) and water are removed by filtration or decantation, and the solvent and the organoaluminum compound (A3) are removed again. A reaction product (A3) of A3) and water may be added and used in the next step of polymerization treatment with styrene or direct olefin.

重合処理時に用いる溶媒は、脂肪族炭化水素、脂環式炭
化水素、芳香族炭化水素である。
The solvent used during the polymerization process is an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.

反応終了後は、濾別またはデカンテーシ4ンにより液状
部分を分離除去した後、更に溶媒で洗浄を繰返した後、
得られた重合処理を施した固体生成物(以下固体生成物
( II − A )と言うことがある)を溶媒に懸濁
状態のまま次の工程に使用しても良く、更に乾燥して固
形物として取り出して使用しても良い. 固体生底物( II − A )は、ついで、これに電
子供与体(B3)と電子受容体(F)とを反応させる。
After the reaction is completed, the liquid part is separated and removed by filtration or decantation, and then washing is repeated with a solvent.
The obtained solid product subjected to polymerization treatment (hereinafter sometimes referred to as solid product (II-A)) may be used in the next step while suspended in a solvent, or it may be further dried to form a solid product. You can take it out and use it as an object. The solid biosediment (II-A) is then reacted with an electron donor (B3) and an electron acceptor (F).

この反応は溶媒を用いないでも行うことができるが、脂
肪族炭化水素を用いる方が好ましい結果が得られる. 使用する量は固体生成物(II−A)100gに対して
、(Bs)O.lg 〜1,000g,好ましくは0.
5g 〜200g,( F ) 0.1g 〜1,00
0g、好ましくは0.2g 〜500g,溶媒0 〜3
,OOO+l .好ましくは100 〜J,OOOmf
lテある。
Although this reaction can be carried out without using a solvent, better results are obtained using an aliphatic hydrocarbon. The amount used is (Bs) O. lg to 1,000g, preferably 0.1g.
5g ~200g, (F) 0.1g ~1,00
0g, preferably 0.2g to 500g, solvent 0 to 3
, OOO+l . Preferably 100 ~ J, OOOmf
There is one.

反応方法としては、■固体生戊物( 11 − A ’
)に電子供与体(B3)および電子受容体(F)を同時
に反応させる方法、■( u − A )に(F)を反
応させた後、(Bs)を反応させる方法、■( II 
− A )に(B3)を反応させた後、(F)を反応さ
せる方法、■(B3)と(F)を反応させた後、( T
I − A )を反応させる方法があるがいずれの方法
でも良い。
As for the reaction method, ■solid raw material (11-A'
) is reacted with an electron donor (B3) and an electron acceptor (F) at the same time, ■ (u-A) is reacted with (F) and then (Bs) is reacted, ■ (II
- Method of reacting A) with (B3) and then reacting (F), ■ After reacting (B3) with (F), (T
There is a method of reacting I-A), but any method may be used.

反応条件は、上述の■、■の方法においては、40℃〜
200℃、好ましくは50℃〜100℃で30秒〜5時
間反応させることが望ましく、■の方法においては( 
If − A )と(B3)の反応をO℃〜50℃で1
分〜3時間反応させた後、(F)とは前記■、■と同様
な条件下で反応させる。
The reaction conditions are 40°C to
It is desirable to react at 200°C, preferably 50°C to 100°C for 30 seconds to 5 hours.
If-A) and (B3) were reacted at 0°C to 50°C for 1
After reacting for minutes to 3 hours, it is reacted with (F) under the same conditions as in (1) and (2) above.

また■の方法においては(B3)と(F)を10℃〜1
00℃で30分〜2時間反応させた後、40℃以下に冷
却し、( II − A ”)を添加した後、前記■、
■と同様12条件下で反応させる. 固体生成物(II−A) 、(B3)、および(F)の
反応終了後は濾別またはデカンテーションにより液状部
分を分mill除去した後、更に溶媒で洗浄を繰返し、
本発明に用いるチタン含有固体触媒成分である三塩化チ
タン組戒物( II! )が得られる。
In addition, in method (■), (B3) and (F) are heated at 10°C to 1
After reacting at 00°C for 30 minutes to 2 hours, cooled to 40°C or lower, and adding (II-A''), the above
React under 12 conditions as in ②. After the reaction of the solid products (II-A), (B3), and (F) is completed, the liquid portion is removed by filtration or decantation, and then washing is repeated with a solvent.
A titanium trichloride combination compound (II!), which is a titanium-containing solid catalyst component used in the present invention, is obtained.

該三塩化チタン組戊物( II1 )の製造に用いられ
る有機アルミニウム化合物(A4)としては、一般式が
八1R’pR”1xs−{p*p’+ <式中、R′、
R2ハアルキル基、シクロアルキル基、アリール基等の
炭化水素基またはアルコギシ基を、Xはハロゲンを表わ
し、またp.p’はO<p+p’≦3の任意の数を表わ
す.)で表わされる有機アルミニウム化合物が使用され
る. その具体例としては、トリメチルアルミニウム、トリエ
チルアルミニウム、トリn−プロビルアルミニウム、ト
リn−ブチルアルミニウム、トリi−ブチルアルミニウ
ム、トリn−ヘキシルアルミニウム、トリI−ヘキシル
アルミニウム、トリ2−メチルベンチルアルミニウム、
トリn−オクチルアルミニウム、トリn−デシルアル稟
ニウム等のトリアルキルアルミニウム類、ジエチルアル
ミニウムモノクロライド、ジn−プロビルアルミニウム
モノクロライド、ジl−ブチルアルミニウムモノクロラ
イド、ジエチルアル稟ニウムモノフルオライド、ジエチ
ルアルな二ウムモノブロマイド、ジエチルアルaニウム
モノアイオダイド等のジアルキルアルミニウムモノハラ
イド類、ジエチルアル主二ウムハイドライド等のジアル
キルアルミニウムハイドライド類、メチルアルミニウム
セスキクロライド、エチルアル主二クムセスキクロライ
ド等のアルキルアルミニウムセスキハライド類、エチル
アルミニウムジクロライド、l−ブチルアルミニウムジ
クロライド等のモノアルキルアルミニウムジハライド類
などがあげられ、他にモノエトキシジエチルアルミニウ
ム、ジエトキシモノエチルアルミニウム等のアルコキシ
アルキルアルミニウム類を用いることもできる.これら
の有機アルミニウム化合物は2f!類以上を混合して用
いることもできる。
The organoaluminum compound (A4) used in the production of the titanium trichloride composite (II1) has the general formula 81R'pR"1xs-{p*p'+ <wherein, R',
R2 represents a hydrocarbon group such as an alkyl group, a cycloalkyl group, an aryl group, or an alkoxy group, X represents a halogen, and p. p' represents an arbitrary number of O<p+p'≦3. ) is used. Specific examples include trimethylaluminum, triethylaluminum, tri-n-probylaluminium, tri-n-butylaluminum, tri-i-butylaluminum, tri-n-hexylaluminum, tri-I-hexylaluminum, tri-2-methylbentylaluminum. ,
Trialkylaluminiums such as tri-n-octylaluminium and tri-n-decylaluminum, diethylaluminum monochloride, di-n-probylaluminium monochloride, di-l-butylaluminum monochloride, diethylaluminium monofluoride, diethyl dialkylaluminum monohalides such as al-aldium monobromide and diethylaluminium monoiodide; dialkylaluminum hydrides such as diethylaluminum hydride; alkylaluminium such as methylaluminum sesquichloride and ethylaluminum sesquichloride; Examples include sesquihalides, monoalkylaluminum dihalides such as ethylaluminum dichloride and 1-butylaluminum dichloride, and alkoxyalkylaluminums such as monoethoxydiethylaluminum and diethoxymonoethylaluminum can also be used. These organoaluminum compounds are 2f! It is also possible to mix and use more than one type.

本発明に係る重合処理時には、有機アル稟ニウム化合物
(A2)と水との反応生成物(A3)が使用される.こ
こで有機アル主二ウム化合物(A2)としては、一般式
AIR3,  (式中、R3は炭素数1〜8のアルキル
基を示す.)で表わされるトリアルキルアルミニウムや
、一般式R42^IX  (式中、R4は炭素数l〜B
のアルキル基を、×はハロゲンを示す.〉で表わされる
ジアルキルアル稟二ウムモノハライド等があげられる. 具体的には、トリメチルアル稟二ウム、トリエチルアル
ミニウム、トリn−プロビルアルミニウム、トリl−プ
ロビルアルミニウム、トリn−ブチルアルミニウム、ト
リ!−ブチルアルミニウム、トリn−へキシルアル稟ニ
ウム、トリn−オクチルアルミニウム、ジエチルアル稟
二ウムモノクロライド、ジn−プロビルアルミニウムモ
ノクロライド、ジ1−ブチルアルミニウムモノクロライ
ド、ジェチルアルミニウムモノフルオライド、ジェチル
アルミニウムモノブロマイド、ジエチルアル主ニクムモ
ノアイオダイド等があげられ、なかでもトリメチルアル
ミニウムが好ましい. 上記の有機アルミニウム化合物(A2)に水を反応させ
て得られる生成物(A3)は主として下記の一般式[1
1および一般式[ I1 ]で表されるアルキルアル主
ノキサン若しくは一般式[I]または一般式C n ]
において、Rが部分的に塩素、臭素などのハロゲン原子
で置換され、かつハロゲン含有量が401量%以下、好
ましくは30重量%以下のハロゲン化アルミノキサンで
ある. R (式中;Rは炭素数1〜8のアルキル基であり、nは1
〜約20の整数である.) この際の有機アルミニウム化合物(A2)と水との反応
方法としては様々な方法があるが、たとえば次の方法を
例示することができる。
During the polymerization treatment according to the present invention, a reaction product (A3) of an organic aluminum compound (A2) and water is used. Here, as the organic alkyl compound (A2), trialkylaluminum represented by the general formula AIR3, (wherein R3 represents an alkyl group having 1 to 8 carbon atoms), and the general formula R42^IX ( In the formula, R4 is a carbon number 1 to B
represents an alkyl group, and × represents a halogen. Examples include dialkylalkylaltanium monohalides represented by 〉. Specifically, trimethylalbinium, triethylaluminum, tri-n-propylaluminium, tri-l-propylaluminium, tri-n-butylaluminum, tri! -butylaluminum, tri-n-hexylaluminum, tri-n-octylaluminium, diethylaluminium monochloride, di-n-probylaluminum monochloride, di-1-butylaluminum monochloride, dietylaluminum monofluoride, Examples include diethylaluminum monobromide, diethylaluminum-based nicum monoiodide, and trimethylaluminum is particularly preferred. The product (A3) obtained by reacting the above organoaluminum compound (A2) with water is mainly produced by the following general formula [1
1 and an alkylalkyl-based noxane represented by the general formula [I1] or the general formula [I] or the general formula C n ]
is a halogenated aluminoxane in which R is partially substituted with a halogen atom such as chlorine or bromine, and the halogen content is 401% by weight or less, preferably 30% by weight or less. R (wherein; R is an alkyl group having 1 to 8 carbon atoms, and n is 1
~ is an integer of about 20. ) There are various methods for reacting the organoaluminum compound (A2) with water in this case, and the following method can be exemplified.

(1)吸着水を含有する化合物若しくは結晶水を有する
塩類、たとえば硫酸銅水和物、硫酸アルミニウム水和物
、塩化マグネシウム水和物などの炭化水素媒体懸濁液に
有機アルミニウム化合物(A2)を添加して反応させる
方法. (2)ベンゼン、トルエン、エチルエーテルなどの溶媒
中で有機アルミニウム化合物(A2)に直接水を作用さ
せる方法. 本発明に係る重合処理においては、上述の有機アルaニ
ウム化合物(A2)と水との反応生成物(A3)を単独
で用いることはもちろん、この生成物(A3)と未反応
の有機アルミニウム化合物(A2)を混合したものを用
いることも可能である. 本発明に使用するチタン含有固体触媒成分である三塩化
チタン組戒物( III )の製造に用いる電子供与体
としては、以下に示す種々のものが使用可能であるが、
(B2)、(BS)としてはエーテル類を主体に用い、
他の電子供与体はエーテル類と共用するのが好ましい. 電子供与体として用いられるものは、酸素、窒素、硫黄
、燐のいずれかの原子を有する有機化合物、すなわち、
エーテル類、アルコール類、エステル類、アルデヒド類
、脂肪酸類、ケトン類、ニトリル類、アミン類、ア稟ド
類、尿素又はチオ尿素類、イソシアネート類、アゾ化合
物、ホスフィン類、ホスファイト類、ホスフィナイト類
、硫化水素又はチオエーテル類、チオアルコール類、シ
ラノール類や51−0−(:結合を有する有機ケイ素化
合物などである. 具体例としては、ジメチルエーテル、ジェチルエーテル
、ジーn−プロビルエーテル、ジーn−プチルエーテル
、ジーl−ア稟ルエーテル、ジーn−ベンチルエーテル
、ジーn−ヘキシルエーテル、ジーi−ヘキシルエーテ
ル、ジーn−オクチルエーテル、ジーl−オクチルエー
テル、ジーn−ドデシルエーテル、ジフェニルエーテル
、エチレングリコールモノエチルエーテル、ジエチレン
グリコールジメチルエーテル、テトラヒドロフラン等の
エーテル類、メタノール、エタノール、プロバノール、
ブタノール、ペンタノール、ヘキサノール、オクタノー
ル、2−エチルヘキサノール、アリルアルコール、ベン
ジルアルコール、エチレングリコール、グリセリン等の
アルコール類、フェノール、クレゾール、キシレノール
、エチルフェノール、ナフトール等のフェノール類、メ
タクリル酸メチル、ギ酸メチル、酢酸メチル、酪酸メチ
ル、酢酸エチル、酢酸ビニル、酢酸n−プロビル、酢酸
l−プロビル、ギ酸ブチル、酢酸アくル、酢酸n−ブチ
ル、酢酸オクチル、酢酸フェニル、ブロビオン酸エチル
、安息香酸メチル、安息香酸エチル、安息香酸ブロビル
、安息香酸ブチル、安息香酸オクチル、安息香酸2−エ
チルヘキシル、トルイル酸メチル、トルイル酸エチル、
アニス酸メチル、アニス酸エチル、アニス酸プロビル、
アニス酸フェニル、ケイ皮酸エチル、ナフトエ酸メチル
、ナフトエ酸エチル、ナフトエ酸ブロビル、ナフトエ酸
ブチル、ナフトエal!2−エチルヘキシル、フェニル
酢酸エチル等のモノカルボン酸エステル類、コハク酸ジ
ェチル、メチルマロン酸ジェチル、プチルマロン酸ジエ
チル、マレイン酸ジブチル、プチルマレイン酸ジエチル
等の脂肪族多価カルボン酸エステル類、フタル酸モノメ
チル、フタル酸ジメチル、フタル酸ジエチル、フタル酸
ジーn−プロビル、フタル酸モノーn−ブチル、フタル
酸ジーn−ブチル、フタル酸ジーl−ブチル、フタル酸
ジーn−ヘプチル、フタル酸ジー2−エチルヘキシル、
フタル酸ジーn−オクチル、イソフタル酸ジエチル、イ
ソフタル酸ジプロビル、イソフタル酸ジブチル、イソフ
タル酸ジー2−エチルヘキシル、テレフタル酸ジエチル
、テレフタル酸ジブロビル、テレフタル酸ジブチル、ナ
フタレンジカルボン酸ジーl−ブチル等の芳香族多価カ
ルボン酸エステル類、アセトアルデヒド、ブロビオンア
ルデヒド、ベンズアルデヒド等のアルデヒド類、ギ酸、
酢酸、ブロビオン酸、酪酸、修酸、コハク酸、アクリル
酸、マレイン酸、吉草酸、安息香酸等のカルポン酸類、
無水安息香酸、無水フタル酸、無水テトラヒドロフタル
酸等の酸無水物、アセトン、メチルエチルケトン、メチ
ルイソブチルケトン、ベンゾフ美ノン等のケトン類,ア
セトニトリル、ペンゾニトリル等のニトリル類、メチル
アミン、ジエチルア主ン、トリブチルア稟ン、トリエタ
ノールアミン、β(N,N−ジメチルア處ノ)エタノー
ル、ビリジン、キノリン、α−ビコリン, 2,4.6
−トリメチルビリジン、2,2,6.8−テトラメチル
ビベリジン、2,2,5.5−テトラメチルピロリジン
、N,N,N’,N’−テトラメチルエチレンジアミン
、アニリン、ジメチルアニリン等のアよン類、ホルムア
ミド、ヘキサメチルリン酸トリアミド、 N,N,N’
 ,N’ ,N″−ペンタメチル−N’−β−ジメチル
アミノメチルリン酸トリアミド、オクタメチルビロホス
ホルアミド等のアくド類、N,N,N”.N゜−テトラ
メチル尿素等の尿素類、フェニルイソシアネート、トル
イルイソシアネート等のイソシアネート類、アゾベンゼ
ン等のアゾ化合物、エチルホスフィン、トリエチルホス
フィン、 トリn−オクチルホスフィン、トリフェニル
ホスフィン、トリフェニルホスフィンオキシド等のホス
フィン類、ジメチルホスファイト、ジn−オクチルホス
ファイト、トリエチルホスファイト、1・りn−ブチル
ホスファイト、トリフェニルホスファイト等のホスファ
イト類、エチルジエチルホスフィナイト、エチルブチル
ホスフィナイト、フ工ニルジフェニルホスフィナイト等
のホスフイナイト類、ジエチルチオエーテル、ジフ品ニ
ルチオエーテル、メチルフェニルチオエーテル等のチオ
エーテル類、エチルチオアルコール、n−プロビルチオ
アルコール、チオフェノール等のチオアルコール類やチ
オフェノール類、トリメチルシラノール、トリエチルシ
ラノール、トリフエニルシラノール等のシラノール類、
トリメチルメトキシシラン、ジメチルジメトキシシラン
、メチルフエニルジメトキシシラン、ジフエニルジメト
キシシラン、メチルトリメトキシシラン、ビニルトリメ
トキシシラン、フエニルトリメトキシシラン、トリメチ
ルエトキシシラン、ジメチルジエトキシシラン、ジフエ
ニルジエトキシシラン、メチルトリエトキシシラン、エ
チルトリエトキシシラン、ビニルトリエトキシシラン、
プチルトリエトキシシラン、フェニルトリエトキシシラ
ン、エチルトリl−プロボキシシラン、ビニルトリアセ
トキシシラン等のSi−0−C結合を有する有機ケイ素
等があげられる. これらの電子供与体は混合して使用することもできる。
(1) Organoaluminum compound (A2) is added to a hydrocarbon medium suspension of a compound containing adsorbed water or a salt having crystal water, such as copper sulfate hydrate, aluminum sulfate hydrate, magnesium chloride hydrate, etc. Method of addition and reaction. (2) A method in which water is allowed to directly act on the organoaluminum compound (A2) in a solvent such as benzene, toluene, or ethyl ether. In the polymerization treatment according to the present invention, not only the reaction product (A3) of the above-mentioned organic aluminium compound (A2) and water can be used alone, but also this product (A3) and an unreacted organic aluminum compound can be used. It is also possible to use a mixture of (A2). As the electron donor used in the production of the titanium trichloride composite compound (III), which is the titanium-containing solid catalyst component used in the present invention, the following various ones can be used,
(B2), (BS) mainly uses ethers,
It is preferable to share other electron donors with ethers. Those used as electron donors are organic compounds having any of oxygen, nitrogen, sulfur, and phosphorus atoms, that is,
Ethers, alcohols, esters, aldehydes, fatty acids, ketones, nitriles, amines, atoms, urea or thioureas, isocyanates, azo compounds, phosphines, phosphites, phosphinites , hydrogen sulfide or thioethers, thioalcohols, silanols, and organosilicon compounds having a 51-0-(: bond. Specific examples include dimethyl ether, diethyl ether, di-n-probyl ether, di-n -butyl ether, di-l-arenyl ether, di-n-bentyl ether, di-n-hexyl ether, di-i-hexyl ether, di-n-octyl ether, di-l-octyl ether, di-n-dodecyl ether, diphenyl ether, ethylene Ethers such as glycol monoethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, methanol, ethanol, probanol,
Alcohols such as butanol, pentanol, hexanol, octanol, 2-ethylhexanol, allyl alcohol, benzyl alcohol, ethylene glycol, glycerin, phenols such as phenol, cresol, xylenol, ethylphenol, naphthol, methyl methacrylate, methyl formate , methyl acetate, methyl butyrate, ethyl acetate, vinyl acetate, n-probyl acetate, l-propyl acetate, butyl formate, aryl acetate, n-butyl acetate, octyl acetate, phenyl acetate, ethyl blobionate, methyl benzoate, Ethyl benzoate, brovyl benzoate, butyl benzoate, octyl benzoate, 2-ethylhexyl benzoate, methyl toluate, ethyl toluate,
Methyl anisate, ethyl anisate, probyl anisate,
Phenyl anisate, ethyl cinnamate, methyl naphthoate, ethyl naphthoate, brobyl naphthoate, butyl naphthoate, naphthoate al! Monocarboxylic acid esters such as 2-ethylhexyl and ethyl phenylacetate, aliphatic polycarboxylic acid esters such as diethyl succinate, diethyl methylmalonate, diethyl butylmalonate, dibutyl maleate, diethyl butylmaleate, monomethyl phthalate , dimethyl phthalate, diethyl phthalate, di-n-probyl phthalate, mono-n-butyl phthalate, di-n-butyl phthalate, di-l-butyl phthalate, di-n-heptyl phthalate, di-2-ethylhexyl phthalate ,
Aromatic polyesters such as di-n-octyl phthalate, diethyl isophthalate, diprobyl isophthalate, dibutyl isophthalate, di-2-ethylhexyl isophthalate, diethyl terephthalate, dibrobyl terephthalate, dibutyl terephthalate, di-l-butyl naphthalene dicarboxylate, etc. carboxylic acid esters, aldehydes such as acetaldehyde, brobionaldehyde, benzaldehyde, formic acid,
Carboxylic acids such as acetic acid, brobionic acid, butyric acid, oxalic acid, succinic acid, acrylic acid, maleic acid, valeric acid, benzoic acid,
Acid anhydrides such as benzoic anhydride, phthalic anhydride, and tetrahydrophthalic anhydride; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and benzofumione; nitrites such as acetonitrile and penzonitrile; methylamine, diethyl amine, and tributyl amine. Rin, triethanolamine, β(N,N-dimethylamino)ethanol, viridine, quinoline, α-vicolin, 2,4.6
-trimethylpyridine, 2,2,6.8-tetramethylbiveridine, 2,2,5.5-tetramethylpyrrolidine, N,N,N',N'-tetramethylethylenediamine, aniline, dimethylaniline, etc. Ayones, formamide, hexamethylphosphoric triamide, N,N,N'
, N', N''-pentamethyl-N'-β-dimethylaminomethyl phosphoric acid triamide, octamethylbirophosphoramide, etc., N,N,N''. Ureas such as N°-tetramethylurea, isocyanates such as phenyl isocyanate and tolylisocyanate, azo compounds such as azobenzene, phosphines such as ethylphosphine, triethylphosphine, tri-n-octylphosphine, triphenylphosphine, and triphenylphosphine oxide. phosphites such as dimethyl phosphite, di-n-octyl phosphite, triethyl phosphite, 1-tri-n-butyl phosphite, triphenyl phosphite, ethyl diethyl phosphinite, ethyl butyl phosphinite, fluorophosphite, etc. Phosphinites such as nyldiphenylphosphinite, thioethers such as diethylthioether, diphenylthioether, methylphenylthioether, thioalcohols such as ethylthioalcohol, n-probylthioalcohol, thiophenol, thiophenols, trimethylsilanol , silanols such as triethylsilanol, triphenylsilanol,
Trimethylmethoxysilane, dimethyldimethoxysilane, methylphenyldimethoxysilane, diphenyldimethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, trimethylethoxysilane, dimethyldiethoxysilane, diphenyldiethoxysilane, Methyltriethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane,
Examples include organic silicones having Si-0-C bonds such as butyltriethoxysilane, phenyltriethoxysilane, ethyltri-l-proboxysilane, and vinyltriacetoxysilane. These electron donors can also be used in combination.

反応生成物(1)を得るための電子供与体(B2),固
体生成物( II − A )に反応させる(B3)の
それぞれは同じであっても異なっていてもよい. 重合処理に用いる直鎖オレフインとしては、エチレン、
プロピレン、プテンー1、ペンテンーl1ヘキセン−l
,オクテン−1等の直鎮オレフインが用いられ、特にエ
チレン、プロピレンが好ましく用いられる.これらの直
顧オレフインは1 fi以上が用いられる. 本発明で使用する電子受容体(F)は、周期律表■〜■
族の元素のハロゲン化物に代表される.具体例としては
、無水塩化アルくニクム、四塩化ケイ素、塩化第一スズ
、塩化第二スズ、四塩化チタン、四塩化ジルコニウム、
三塩化リン、五塩化リン、四塩化バナジウム、五塩化ア
ンチモンなどがあげられ、これらは混合して用いること
もできる。最も好ましいのは四塩化チタンである.溶媒
(D1)としてはつぎのものが用いられる。脂肪族炭化
水素としては、n−ペンタン、n−ヘキサン、n−へブ
タン、n−オクタン、i−オクタン等が示され、また、
脂肪族炭化水素の代りに、またはそれと共に、四塩化炭
素、クロロホルム、ジクロルエタン、トリクロルエチレ
ン、テトラクロルエチレン等のハロゲン化炭化水素も用
いることができる. 脂環式炭化水素としては、シクロヘキサン、メチルシク
ロヘキサン、シクロヘキセン、シクロヘブタン、シクロ
ベンタン、シクロペンテン等が示される. .芳香族化合物として、ベンゼン、トルエン,キシレン
、ナフタレン、メシチレン、デエレン、エチルベンゼン
、イソプロビルベンゼン等の芳香族炭化水素、クロルベ
ンゼン、クロルトルエン、クロルキシレン、クロルエチ
ルベンゼン、ジクロルベンゼン、ブロムベンゼン等のハ
ロゲン化物が示される. 以上の様にして得られた三塩化チタン組成物(川)の他
にも,例えば、液状化したマグ冫シウム化合物と析出剤
、ハロゲン化合物、電子供与体(B4)およびチタン化
合物(TI)を接触して得られた固体生成物(JV)を
、有機アルミニウム化合物(A3)と水との反応生成物
(A3)の存在下、直娘オl/フィンおよびスチレンで
多段に重合処理し、固体生成物(V)を得、該固体生成
物(V)にハロゲン化チタン化合物(T3)を反応させ
て得られるチタン含有担持型触媒威分(V1)も本発明
に用いるチタン含有固体触媒或分として使用することが
可能である.該チタン含有担持型触媒成分(■)の製造
方法を以下に示す. なお、本発明でいうマグネシウム化合物の「液状化」と
は、マグネシウム化合物自体が液体となる場合の他、そ
れ自体が溶媒に可溶であってi8液を形成する場合や、
他の化合物と反応し、若しくは錯体を形戒した結果、溶
媒に可溶化して溶液を形成する場合も含む.また、溶液
は完全に溶解した場合の他、コロイド状ないし半溶解状
の物質を含む状態のものであってもさしつかえない.液
状化すべさマグネシウム化合物としては、前述の「液状
化」の状態となりうるものならばどのようなものでも良
く、例えば、マグネシウムジハライド、アルコキシマグ
ネシウムハライド、アリーロキシマグネシウムハライド
、ジアルコキシマグネシウム、ジアリーロキシマグネシ
ウム、マグネシウムオキシハライド、酸化マグネシウム
、水酸化マグネシウム、マグネシウムのカルボン酸塩、
ジアルキルマグネシウム、アルキルマグネシウムハライ
ド等の他、金属マグネシウムも用いることができる。
The electron donor (B2) for obtaining the reaction product (1) and (B3) for reacting with the solid product (II-A) may be the same or different. Linear olefins used for polymerization include ethylene,
Propylene, Ptene-1, Pentene-1, Hexene-1
, octene-1 and the like are used, and ethylene and propylene are particularly preferably used. These direct olefins are used in amounts of 1 fi or more. The electron acceptors (F) used in the present invention are shown in the periodic table ■~■
It is represented by the halides of group elements. Specific examples include anhydrous aluminum chloride, silicon tetrachloride, stannous chloride, stannic chloride, titanium tetrachloride, zirconium tetrachloride,
Examples include phosphorus trichloride, phosphorus pentachloride, vanadium tetrachloride, and antimony pentachloride, and these can also be used in combination. The most preferred is titanium tetrachloride. The following solvents are used as the solvent (D1). Examples of aliphatic hydrocarbons include n-pentane, n-hexane, n-hebutane, n-octane, i-octane, etc.
Halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloroethane, trichlorethylene, and tetrachlorethylene can also be used instead of or together with aliphatic hydrocarbons. Examples of alicyclic hydrocarbons include cyclohexane, methylcyclohexane, cyclohexene, cyclohebutane, cyclobentane, and cyclopentene. .. Aromatic compounds include aromatic hydrocarbons such as benzene, toluene, xylene, naphthalene, mesitylene, deerene, ethylbenzene, and isopropylbenzene, and halogens such as chlorobenzene, chlorotoluene, chloroxylene, chloroethylbenzene, dichlorobenzene, and bromobenzene. A monster is shown. In addition to the titanium trichloride composition (Kawa) obtained as described above, for example, a liquefied magnesium compound, a precipitating agent, a halogen compound, an electron donor (B4), and a titanium compound (TI) are used. The solid product (JV) obtained by contacting is subjected to multi-stage polymerization treatment with direct daughter ol/fin and styrene in the presence of a reaction product (A3) of an organoaluminum compound (A3) and water to form a solid product. The titanium-containing supported catalyst component (V1) obtained by obtaining the product (V) and reacting the solid product (V) with the halogenated titanium compound (T3) is also a titanium-containing solid catalyst component used in the present invention. It can be used as The method for producing the titanium-containing supported catalyst component (■) is shown below. In addition, "liquefaction" of a magnesium compound as used in the present invention refers to cases in which the magnesium compound itself becomes a liquid, as well as cases in which the magnesium compound itself becomes soluble in a solvent and forms an i8 liquid,
This also includes cases in which a compound is solubilized in a solvent and forms a solution as a result of reacting with other compounds or forming a complex. In addition, the solution may be completely dissolved or may contain colloidal or semi-dissolved substances. The magnesium compound to be liquefied may be any compound that can be liquefied as described above, such as magnesium dihalide, alkoxymagnesium halide, aryloxymagnesium halide, dialkoxymagnesium, diary roxymagnesium, magnesium oxyhalide, magnesium oxide, magnesium hydroxide, magnesium carboxylate,
In addition to dialkylmagnesium, alkylmagnesium halide, etc., metal magnesium can also be used.

また、これらのマグネシウム化合物若しくは金属マグネ
シウムは、電子供与体、ケイ素化合物、アルミニウム化
合物との反応物であっても良い。
Moreover, these magnesium compounds or metal magnesium may be a reaction product with an electron donor, a silicon compound, or an aluminum compound.

マグネシウム化合物を液状化する方法は公知の手段が用
いられる.例えば、マグネシウム化合物をアルコール、
アルデヒド、アくン、あるいはカルボン酸で液゛状化す
る方法(特開昭56−811号公報等)、オルトチタン
酸エステルで液状化する方法(特開昭54−40.29
3号公報等〉、リン化合物で液状化する方法(特間昭5
8−19307号公報等)等の他、これらを組み合せた
方法等があげられる。また上述の方法を適用することの
できない、C−Mg結合を有する有機マグネシウム化合
物については、エーテル、ジオキサン、ピリジン等に可
溶であるのでこれらの溶液として用いるか、有機金属化
合物と反応させて、一般式が1.11g.R”,R’.
  ( Mはアルきニウム、亜鉛、ホウ素、またはベリ
リウム原子、R5、R6は炭化水素残基、L Qs ’
、s>O,vを樋の原子価とするとr◆s”vp◆2q
の関係にある.)で示される錯化合物を形成させ(特開
昭50−139,885号公報等)、炭化水素溶媒に溶
解し、液状化することができる. 更にまた、金属マグネシウムを用いる場合には、アルコ
ールとオルl・チタン酸エステルで液状化する方法(特
開昭50−51587号公報等〉や、エーテル中でハロ
ゲン化アルキルと反応させ、いわゆるグリニャール試薬
を形成する方法で液状化することができる. 以上の様なマグネシウム化合物を液状化させる方法の中
で、例えば、塩化マグネシウムをチタン酸エステルおよ
びアルコールを用いて炭化水素溶媒(D2)に溶解させ
る場合について述べると、塩化マグネシウムl−eルに
対して、チタン酸エステルを0.1モル〜2モル、アル
コールを0.1モル〜5モル、溶媒(D2)を0.1j
Z〜5j2用いて、各成分を任意の添加順序で混合し、
その懸濁液を攪拌しながら40℃〜200℃、好ましく
は50℃軸 150℃で加熱する。
A known method is used to liquefy the magnesium compound. For example, if a magnesium compound is mixed with alcohol,
A method of liquefying with an aldehyde, alkyl or carboxylic acid (JP-A-56-811, etc.), a method of liquefying with an orthotitanate ester (JP-A-54-40.29, etc.)
3, etc., method of liquefying with phosphorus compound (Tokuma 1973)
8-19307, etc.), as well as methods combining these methods. Furthermore, for organomagnesium compounds having a C-Mg bond to which the above method cannot be applied, since they are soluble in ether, dioxane, pyridine, etc., they can be used as a solution of these or reacted with an organometallic compound. The general formula is 1.11g. R", R'.
(M is an aluminium, zinc, boron, or beryllium atom, R5 and R6 are hydrocarbon residues, L Qs'
, s>O, if v is the valence of the gutter, then r◆s”vp◆2q
There is a relationship between ) can be formed (JP-A-50-139,885, etc.), dissolved in a hydrocarbon solvent, and liquefied. Furthermore, when metallic magnesium is used, it can be liquefied with alcohol and ortho-titanate (such as JP-A-50-51587), or reacted with an alkyl halide in ether using the so-called Grignard reagent. Among the above methods of liquefying a magnesium compound, for example, when magnesium chloride is dissolved in a hydrocarbon solvent (D2) using a titanate ester and alcohol. In terms of magnesium chloride, 0.1 to 2 moles of titanate, 0.1 to 5 moles of alcohol, and 0.1j of solvent (D2).
Using Z~5j2, mix each component in any order of addition,
The suspension is heated with stirring at 40°C to 200°C, preferably 150°C on the 50°C axis.

該反応および溶解に要する時間は5分〜7時間、好まし
くはlO分〜5時間である。
The time required for the reaction and dissolution is 5 minutes to 7 hours, preferably 10 minutes to 5 hours.

チタン酸エステルとしてはTi (OR’) 4で表わ
されるオルトチタン酸エステル、およびR8→0−Ti
(OR”) (OR ’ Q+−h−OR ”で表わさ
れるポリチタン酸エステルである.ここでR7、R8、
R9、RIGおよぴR1は炭素数1〜20のアルキル基
、または炭素数3N20のシクロアルキル基であり、t
は2〜20の数である. 具体的には、オルトチタン酸メチル、オルトチタン酸エ
チル、オルトチタン酸n−プロビル、オノ【トチタン酸
l−プロビル、オルトチタン酸n−プチル、オルトチタ
ン酸l−プチル、オルトチタンlmn−アミル、オルト
チタン酸2−エチルヘキシル、オルトチタン酸n−オク
チル、オルトチタン酸フェニルおよびオルトチタン酸シ
クロヘキシルなどのオルトチタン酸エステル、ポリチタ
ン酸メチル、ポリチタン酸エチル、ポリチタン酸n−プ
ロビル、ポリチタンMi−プロビル、ポリチタン酸n−
ブチル、ポリチタン酸I−ブチル、ポリチタン酸n−ア
ミル、ポリチタン酸2−エチルヘキシル、ポリチタン酸
n−オクチル、ポリチタン酸フェニルおよびポリチタン
酸シクロヘキシルなどのポリチタン酸エステルを用いる
ことができる. ポリチタン酸エステルの使用量は、オルトチタン酸エス
テルに換算して、オルトチタン酸エステル相当局を用い
ればよい。
As the titanate ester, orthotitanate ester represented by Ti (OR') 4 and R8→0-Ti
(OR") (OR'Q+-h-OR"). Here, R7, R8,
R9, RIG and R1 are an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3N20 carbon atoms, and t
is a number from 2 to 20. Specifically, methyl orthotitanate, ethyl orthotitanate, n-probyl orthotitanate, ono[l-propyl totitanate, n-butyl orthotitanate, l-butyl orthotitanate, lmn-amyl orthotitanate, Orthotitanate esters such as 2-ethylhexyl orthotitanate, n-octyl orthotitanate, phenyl orthotitanate and cyclohexyl orthotitanate, methyl polytitanate, ethyl polytitanate, n-probyl polytitanate, Mi-propyl polytitanate, polytitanium acid n-
Polytitanate esters such as butyl, I-butyl polytitanate, n-amyl polytitanate, 2-ethylhexyl polytitanate, n-octyl polytitanate, phenyl polytitanate, and cyclohexyl polytitanate can be used. The amount of polytitanate to be used may be determined by converting it into orthotitanate and using the orthotitanate phase authority.

アルコールとしては脂肪族飽和および不飽和アルコール
を使用することができる。具体的には、メタノール、エ
タノール、n−プロパノール、!・いバノール、n−ブ
タノール、ベンタノー・17,゛サノール、オクタノー
ル、2−エチルヘキサノール、およびフリルアルコール
などの1価アルコールのほかに、エチレングリコール、
トリメチレングリコールおよびグリセリンなどの多価ア
ルコールも用いることができる。その中でも炭素数4〜
lOの脂肪族飽和アルコールが好ましい.不活性炭化水
素溶媒(02)としては、前述の三塩化チタン組成物(
 In )を製造する際に用いられた溶媒(J)と同様
なものが使用できるが、中でも脂肪族炭化水素が好まし
い。
As alcohols it is possible to use aliphatic saturated and unsaturated alcohols. Specifically, methanol, ethanol, n-propanol,!・In addition to monohydric alcohols such as ibanol, n-butanol, bentanol, 17,゛sanol, octanol, 2-ethylhexanol, and furyl alcohol, ethylene glycol,
Polyhydric alcohols such as trimethylene glycol and glycerin can also be used. Among them, carbon number is 4~
1O aliphatic saturated alcohols are preferred. As the inert hydrocarbon solvent (02), the aforementioned titanium trichloride composition (
The same solvents as the solvent (J) used in producing In) can be used, but aliphatic hydrocarbons are particularly preferred.

固体生成物(rV)は上記の液状化したマグネシウム化
合物と析出剤(×3)、ハロゲン化合物(X3)、電子
供与体(B4)およびチタン化合物(T1)を接触して
得られる。析出剤(X3)としては、ハロゲン、ハロゲ
ン化炭化水素、ハロゲン含有ケイ素化合物、ハロゲン含
有アルミニウム化合物、ハロゲン含有チタン化合物、ハ
ロゲン含有ジルコニウム化合物、ハロゲン含有バナジウ
ム化合物の様なハロゲン化剤があげられる. また、液状化したマグネシウム化合物が前述した有機マ
グネシウム化合物の場合には、活性水素を有する化合物
、例えば、アルコール、St−}1結合を有するポリシ
ロキサン等を用いることもできる.これらの析出剤(X
+)の使用量は、マグネシウム化合物1モルに対して0
.1モル〜SOモル用いる.また、ハロゲン化合物(×
3)としては、ハロゲンおよびハロゲンを含有する化合
物があげられ、析出剤の例としてあげられたハロゲン化
剤と同様なものが使用可能であり、析出剤としてハロゲ
ン化剤を用いた場合には、ハロゲン化合物(×2)の新
たな使用を必ずしも必要としない。ハロゲン化合物(×
2)の使用量はマグネシウム化合物lモルに対して0.
1モル〜50モル用いる. 電子供与体(B4)としては、既述の(B2)および(
B3)と同様なものが用いられ、好ましくは、芳香族モ
ノカルボン酸エステル類、芳香族多価カルボン酸エステ
ル類、アルコキシシラン類、特に好ましくは、芳香族多
価カルボン酸エステル類が用いられる.これら電子供与
体(B4)はi fffi類以上が用いられ、その使用
量はマグネシウム化合物1モルに対し、0.01モル〜
Sモルである.固体生成物(IV)の調製に必要なチタ
ン化合物(τ3)は、一般式Tl (OR”) 4−u
Xu(式中、RI2はアルキル基、シクロアルキル基、
またはアリール基を、×はハロゲンを表わし、UはO<
u≦4の任意の数である.)で表わされるハロゲン化チ
タン化合物や、前述のマグネシウム化合物の液状化の際
にあげられたオルトチタン酸エステルやポリチタン酸エ
ステルが用いられる. ハロゲン化チタン化合物の具体例としては、四塩化チタ
ン、四臭化チタン、三塩化メトキシチタン、三塩化エト
キシチタン、三塩化ブロポキシチタン、三塩化ブトキシ
チタン、三塩化フェノキシチタン、三臭化エトキシチタ
ン、三臭化ブトキシチタン、二塩化ジメトキシチタン、
二塩化ジエトキシチタン、二塩化ジプロボキシチタン、
二塩化ジブトキシチタン、二塩化ジフェノキシチタン、
二臭化ジエトキシチタン、二臭化ジブトキシチタン、塩
化トリメトキシチタン、塩化トリエトキシチタン、塩化
トリブトキシチタン、塩化トリフェノキシチタン等があ
げられる。
A solid product (rV) is obtained by contacting the above liquefied magnesium compound with a precipitating agent (x3), a halogen compound (X3), an electron donor (B4) and a titanium compound (T1). Examples of the precipitation agent (X3) include halogenating agents such as halogens, halogenated hydrocarbons, halogen-containing silicon compounds, halogen-containing aluminum compounds, halogen-containing titanium compounds, halogen-containing zirconium compounds, and halogen-containing vanadium compounds. Further, when the liquefied magnesium compound is the above-mentioned organomagnesium compound, a compound having active hydrogen, such as an alcohol or a polysiloxane having an St-}1 bond, can also be used. These precipitating agents (X
+) is used in an amount of 0 per mole of magnesium compound.
.. Use 1 mole to SO mole. In addition, halogen compounds (×
Examples of 3) include halogens and halogen-containing compounds, and the same halogenating agents mentioned as examples of precipitating agents can be used. When a halogenating agent is used as a precipitating agent, New use of the halogen compound (x2) is not necessarily required. Halogen compounds (×
The amount of 2) used is 0.00% per mol of magnesium compound.
Use 1 mol to 50 mol. As the electron donor (B4), the above-mentioned (B2) and (
Those similar to B3) are used, preferably aromatic monocarboxylic acid esters, aromatic polyvalent carboxylic acid esters, alkoxysilanes, and particularly preferably aromatic polyvalent carboxylic acid esters. As these electron donors (B4), i fffi types or more are used, and the amount used is 0.01 mol to 1 mol of the magnesium compound.
It is S mole. The titanium compound (τ3) required for the preparation of the solid product (IV) has the general formula Tl (OR”) 4-u
Xu (wherein RI2 is an alkyl group, a cycloalkyl group,
or an aryl group, × represents a halogen, and U represents O<
Any number with u≦4. ), and the orthotitanate esters and polytitanates mentioned above for liquefaction of magnesium compounds are used. Specific examples of halogenated titanium compounds include titanium tetrachloride, titanium tetrabromide, methoxytitanium trichloride, ethoxytitanium trichloride, propoxytitanium trichloride, butoxytitanium trichloride, phenoxytitanium trichloride, and ethoxytitanium tribromide. , butoxytitanium tribromide, dimethoxytitanium dichloride,
Diethoxytitanium dichloride, diproboxytitanium dichloride,
Dibutoxytitanium dichloride, diphenoxytitanium dichloride,
Examples include diethoxytitanium dibromide, dibutoxytitanium dibromide, trimethoxytitanium chloride, triethoxytitanium chloride, tributoxytitanium chloride, triphenoxytitanium chloride, and the like.

才ルトチタン酸エステルおよびポリチタン酸エステルと
しては既述のものと同様なものがあげられる. これらチタン化合物(T1)は1種類以上が用いられる
が、チタン化合物(TI)としてハロゲン化チタン化合
物を用いた場合は、ハロゲンを有しているので析出剤(
×1)およびハロゲン化合物(×2)の使用については
任意である。
Examples of the titanate ester and polytitanate include those mentioned above. One or more types of these titanium compounds (T1) are used, but when a halogenated titanium compound is used as the titanium compound (TI), since it has a halogen, the precipitating agent (T1) is used.
The use of x1) and halogen compound (x2) is optional.

また、マグネシウム化合物の液状化の際にチタン酸エス
テルを使用した場合にも、チタン化合物(T!)の新た
な使用は任意である.チタン化合物(T1)の使用量は
マグネシウム化合物1モルに対し、 0.1モル〜10
0モルである.以上の液状化したマグネシウム化合物、
析出剤(×3)、ハロゲン化合物(×2)、電子供与体
(B4)およびチタン化合物(T+)を攪拌下に接触し
て固体生成物(■)を得る.接触の際には、不活性炭化
水素溶媒(D3)を用いても良く、また各成分をあらか
じめ希釈して用いても良い.用いる不活性炭化水素溶媒
(Ds)としては既述の(D3)と同様なものが例示で
きる.使用量はマグネシウム化合物1モルに対し、O〜
S,OOOaj2である. 接触の方法については種々の方法があるが、例えば、■
液状化したマグネシウム化合物に(x0)を添加し、固
体を析出させ、該固体に(×3)、(B4)、(TI)
を任意の順に接触させる方法.■液状化したマグネシウ
ム化合物と(B4)を接触させた溶液に(Xl3を添加
し、固体を析出させ、該固体に(×3)、(T3)を任
意の順に接触させる方法.■液状化したマグネシウム化
合物と(TI)を接触させた後,  fX1)を添加し
、更に(B4)、(×2)を任意の順に接触させる方法
等がある。
Furthermore, even when a titanate ester is used during liquefaction of a magnesium compound, additional use of the titanium compound (T!) is optional. The amount of titanium compound (T1) used is 0.1 mol to 10 mol per mol of magnesium compound.
It is 0 mole. or more liquefied magnesium compounds,
A precipitating agent (x3), a halogen compound (x2), an electron donor (B4), and a titanium compound (T+) are brought into contact with each other under stirring to obtain a solid product (■). During the contact, an inert hydrocarbon solvent (D3) may be used, or each component may be diluted beforehand. Examples of the inert hydrocarbon solvent (Ds) to be used include those similar to the above-mentioned (D3). The amount used is O to 1 mole of magnesium compound.
S, OOOaj2. There are various methods of contact, for example, ■
Add (x0) to the liquefied magnesium compound to precipitate a solid, and add (x3), (B4), (TI) to the solid.
A method of making contact in any order. ■ A method of adding (Xl3) to a solution in which the liquefied magnesium compound and (B4) were brought into contact to precipitate a solid, and contacting the solid with (x3) and (T3) in any order. There is a method in which after bringing the magnesium compound and (TI) into contact, fX1) is added, and then (B4) and (x2) are brought into contact in any order.

各成分の使用量については前述の範囲であるが、これら
の成分は一時に使用してもよいし、数段階に分けて使用
しても良い。また既述したように、一つの成分が他の成
分をも特徴づける原子若しくは基を有する場合は、他の
成分の新たな使用は必ずしも必要でない.例えば、マグ
ネシウム化合物を液状化する際にチタン酸エステルを使
用した場合は(Ti)が、析出剤(XI)としてハロゲ
ン含有チタン化合物を使用した場合は(×3)および(
T1)が、析出剤(X+)としてハロゲン化剤を使用し
た場合は(×2)がそれぞれ任意の使用威分となる.各
成分の接触温度は、−40℃〜◆180℃、好まし《は
−20℃〜◆150℃であり、接触時間は反応圧力が大
気圧〜lOkg/ca2Gでl段階ごとに5分〜8時間
、好ましくは10分〜6時間である.かくして得られた
固体生成物(rV)を、有機アルミニウム化合物(A2
)と水との反応生成物(A3)の存在下、直鎮オレフィ
ンおよびスチレンで多段に重合処理する.該重合処理方
法としては、固体生成物(TV)を得る反応の終了後、
濾別またはデカンテーシジンにより液状部分を分離除去
した後、得られた固体生或物(TV)を溶媒に懸濁させ
、更に有機アルミニウム化合物(A2)と水との反応生
成物(A3)を添加後、直鎮オレフィンおよびスチレン
を多段に添加し、重合処理する方法があげられる. 直娘オレフィンおよびスチレンによる多段重合処理の条
件は、既述の三塩化チタン組成物( II1 )を得る
際に行った直娘オレフィンとスチレンによる多段重合処
理の条件と同様であり、最終のチタン含有担持型触媒成
分(V1)中に、直鎖オレフィン重合体ブロックの含有
量が0.1瓜量%〜49.5!i量%、ならびにスチレ
ン重合体ブロックの含有量が(1.01重量%〜49.
511量%となるように、また直鎮オレフィン重合体ブ
ロックのスチレン重合体ブロックに対する重量比が27
g8〜98/2となるように行う. なお、該重合処理時において、安息香酸エチル、トルイ
ル酸メチルおよびアニス酸エチルなどのカルボン酸エス
テルやフェニルトリエトキシシラン、ジフェニルジメト
キシシランおよびメチルトリエトキシシランなどの有機
ケイ素化合物等に代表される電子供与体を共存させるこ
とも可能である.それらの使用量は固体生戊物([V)
100g当り、O〜5.OOOg程度である。
The amount of each component to be used is within the above-mentioned range, but these components may be used all at once or in several stages. Furthermore, as mentioned above, if one component has an atom or group that also characterizes the other component, new use of the other component is not necessarily necessary. For example, when a titanate ester is used to liquefy a magnesium compound, (Ti) is used, but when a halogen-containing titanium compound is used as a precipitating agent (XI), (x3) and (
In T1), when a halogenating agent is used as the precipitating agent (X+), (x2) is the arbitrary usage power. The contact temperature of each component is -40°C to ◆180°C, preferably -20°C to ◆150°C, and the contact time is 5 minutes to 8 minutes per 1 step at a reaction pressure of atmospheric pressure to 10 kg/ca2G. The time is preferably 10 minutes to 6 hours. The solid product (rV) thus obtained was treated with an organoaluminum compound (A2
) and water in the presence of the reaction product (A3), polymerization is carried out in multiple stages using straight olefin and styrene. The polymerization treatment method includes, after completion of the reaction to obtain the solid product (TV),
After separating and removing the liquid portion by filtration or decantation, the obtained solid product (TV) is suspended in a solvent, and further a reaction product (A3) of the organoaluminum compound (A2) and water is added. , a method in which straight olefin and styrene are added in multiple stages and polymerized. The conditions for the multistage polymerization treatment using the direct daughter olefin and styrene are the same as those for the multistage polymerization treatment using the direct daughter olefin and styrene performed when obtaining the titanium trichloride composition (II1) described above, and The content of the linear olefin polymer block in the supported catalyst component (V1) is 0.1% to 49.5%! i amount % and the content of styrene polymer block (1.01 wt % to 49.
511% by weight, and the weight ratio of the straight-set olefin polymer block to the styrene polymer block was 27%.
Do this so that the ratio is 8 to 98/2. In addition, during the polymerization process, electron-donating compounds such as carboxylic acid esters such as ethyl benzoate, methyl toluate, and ethyl anisate, and organosilicon compounds such as phenyltriethoxysilane, diphenyldimethoxysilane, and methyltriethoxysilane are used. It is also possible for bodies to coexist. The amount used is solid raw material ([V)
Per 100g, O~5. It is about OOOg.

重合処理は用いられる有機アルミニウム化合物(A2)
と水との反応生成物(A3L溶媒(D4)、および直鎖
オレフィンは、それぞれ既述の三塩化チタン組成物( 
Il1 )を得る際に行った瓜合IA理時に用いられた
ものと同様なものがあげられる。
The organoaluminum compound (A2) used in the polymerization treatment
and water (A3L solvent (D4), and the linear olefin are the titanium trichloride compositions described above (
The same method as that used in the urination IA process used to obtain Il1) can be mentioned.

以上のように直娘オレフィンおよびスチレンによる多@
重合処理を行い、既述の不活性炭化水素溶媒で洗浄され
て、固体生成物(V)が得られる。
As described above, polyolefins and styrene
The solid product (V) is obtained by polymerization treatment and washing with the previously mentioned inert hydrocarbon solvent.

続いて、固体生成物(V)にハロゲン化チタン化合物(
T2)を反応させて最終のチタン含有担持型触媒成分(
V1)が得られる.ハロゲン化チタン化合物(T2)と
しては、既述の固体生成物(rV)の調製に必要なチタ
ン化合物(↑1)の例としてあげられた一般式Ti(O
R”)<−uXu (式中、R′2はアルキル基、シク
ロアルキル基、またはアリール基を、Xはハロゲンを表
わし、UはO<u≦4の任意の数である。)で表わされ
るハロゲン化チタン化合物が用いられ、具体例としても
同様なものが例示できるが、四塩化チタンが最も好まし
い。
Subsequently, a halogenated titanium compound (
T2) to react to form the final titanium-containing supported catalyst component (
V1) is obtained. As the halogenated titanium compound (T2), the general formula Ti(O
R") A halogenated titanium compound is used, and although similar examples can be given, titanium tetrachloride is most preferred.

固体生成物(V)とハロゲン化チタン化合物(T2)と
の反応は、固体生成物(V)中のマグネシウム化合物1
モルに対して、ハロゲン化チタン化合物(T3)を1モ
ル以上使用して、反応温度20℃〜200℃、反応圧力
は大気圧〜lokg/cm’Gの条件下で5分〜6時間
、好ましくは10分〜5時間反応させる.また、該反応
時には不活性炭化水素溶媒(D3)や電子供与体(B1
)の存在下において行なうことも可能であり、具体的に
は既述の(01)〜(D4)や(B3)〜(B4)と同
様な不活性溶媒や電子供与体が用いられる。
In the reaction between the solid product (V) and the halogenated titanium compound (T2), the magnesium compound 1 in the solid product (V)
Using 1 mole or more of the halogenated titanium compound (T3) per mole, reaction temperature of 20 ° C. to 200 ° C., reaction pressure of atmospheric pressure to lokg/cm'G, preferably for 5 minutes to 6 hours. Let react for 10 minutes to 5 hours. In addition, during the reaction, an inert hydrocarbon solvent (D3) and an electron donor (B1
), and specifically, the same inert solvents and electron donors as in (01) to (D4) and (B3) to (B4) described above are used.

これらの使用量は、固体生成物(V)100gに対して
(Ds)はO 〜5 , OOOmJ2 ,固体生成物
(V)中のマグネシウム化合物1モルに対して(B3)
はO〜2モルの範囲が望ましい。固体生成物(V)とハ
ロゲン化チタン化合物(T2)および必要に応じて更に
電子供与体との反応後は濾別またはデヵンテーション法
により固体を分m後不活性炭化水素溶媒で洗浄し、未反
応物あるいは副生物などを除去して、最終のチタン含有
担持型触媒成分(■〉が得られる. 以上の様にして得られた、製造途中で有機アルミニウム
化合物(A2)と水との反応生成物(A3)の存在下、
直鎮オレフィンおよびスチレンで多段重合!A理されて
得られたチタン含有固体触媒成分は、公知のポリプロピ
レン等のオレフィン重合体製造用チタン触媒威分と同様
に用いることができる.該チタン含有固体触媒成分は、
有機アル主二ウム化合物 (AI)、および必要に応じ
て電子供与体(B3)と組み合せて触媒とするか、更に
オレフィンを少量重合させて予備活性化した触媒として
オレフィン重合に用いられる。
These usage amounts are as follows: (Ds) is O ~ 5, OOOmJ2 per 100 g of solid product (V), and (B3) is per mole of magnesium compound in solid product (V).
is preferably in the range of 0 to 2 moles. After the reaction of the solid product (V) with the halogenated titanium compound (T2) and, if necessary, an electron donor, the solid is separated by filtration or decantation for several minutes and then washed with an inert hydrocarbon solvent to remove any unreacted material. By removing substances or by-products, the final titanium-containing supported catalyst component (■) is obtained. In the presence of (A3),
Multi-stage polymerization using straight olefin and styrene! The titanium-containing solid catalyst component obtained by the A process can be used in the same manner as known titanium catalyst components for producing olefin polymers such as polypropylene. The titanium-containing solid catalyst component is
It is used in olefin polymerization as a catalyst in combination with an organic aluminum compound (AI) and, if necessary, an electron donor (B3), or as a preactivated catalyst by further polymerizing a small amount of olefin.

オレフィンの重合は用いる有機アルミニウム化合物(A
.)としては既述した三塩化チタン組成物( II+ 
)を得る際に用いた(A.)と同様な有機アルミニウム
化合物を使用することができる.また電子供与体(83
)は、有機酸エステル、アルコキシシラン化合物やアリ
ーロキシシラン化合物等の様なS+−0−C結合を有す
る有機ケイ素化合物、エーテル、ケトン、酸無水物、ア
ミン等が好ましく用いられる. 具体的には前述したチタン含有固体触媒成分を製造する
際に用いる電子供与体(B2)〜(B4)として例示し
たものの他, 2,2,6.6−テトラメチルビベリジ
ン、2,2,5.5−テトラメチルビロリジン等の立体
障害の大きいアミン類や、トリメチルメトキシシラン、
トリメチルエトキシシラン、ジメチルジメトキシシラン
、ジメチルジエトキシシラン、ジフェニルジメ1・キシ
シラン、メチルフエニルジメトキシシラン、ジフェニル
ジエトキシシラン、エチルトリエトキシシラン、メチル
トリメトキシシラン、ビニルトリメトキシシラン、フェ
ニルトリメトキシシラン、メチルトリエトキシシラン、
エチルトリエトキシシラン、ビニルトリエトキシシラン
、プチルトリエトキシシラン、フェニルトリエトキシシ
ラン、エチルトリl−プロポキシシラン、ビニルトリア
セトキシシラン等のsi−o−c結合を有する有機ケイ
素化合物があげられる。
In the polymerization of olefins, the organoaluminum compound (A
.. ) is the titanium trichloride composition (II+
The same organoaluminum compound as used in (A.) for obtaining ) can be used. Also, electron donor (83
) is preferably an organic acid ester, an organosilicon compound having an S+-0-C bond such as an alkoxysilane compound or an aryloxysilane compound, an ether, a ketone, an acid anhydride, an amine, or the like. Specifically, in addition to those exemplified as electron donors (B2) to (B4) used in producing the titanium-containing solid catalyst component described above, 2,2,6,6-tetramethylbiveridine, 2,2 , amines with large steric hindrance such as 5.5-tetramethylpyrrolidine, trimethylmethoxysilane,
Trimethylethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, methylphenyldimethoxysilane, diphenyldiethoxysilane, ethyltriethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane,
Examples include organosilicon compounds having a si-oc bond such as ethyltriethoxysilane, vinyltriethoxysilane, butyltriethoxysilane, phenyltriethoxysilane, ethyltril-propoxysilane, and vinyltriacetoxysilane.

各触媒成分の使用量は通常のオレフィン重合の場合と同
様であるが、具体的には、チタン含有固体触媒成分1g
に対し、有機アル主二ウム化合物(A+) 0.005
〜500g,電子供与体(B1) O 〜200g程度
である. まk予備活性化に用いられるオレフィンとしては、エチ
レン、プロピレン、プテンー11ペンテンー!、ヘキセ
ンーl、ヘプテン−1等の直鎖モノ才レフィン類、4−
メチルーベンテン−1,2−メチルーベンテン−1等の
枝鎖モノオレフィン類等である。
The amount of each catalyst component used is the same as in the case of normal olefin polymerization, but specifically, 1 g of the titanium-containing solid catalyst component is used.
In contrast, organic aluminum compound (A+) 0.005
~500g, electron donor (B1) O ~200g. The olefins used for preactivation include ethylene, propylene, and pentene! , hexene-1, heptene-1, etc., linear monoolefins, 4-
These include branched monoolefins such as methyl-bentene-1,2-methyl-bentene-1.

これらの才レフィンは、重合対象であるオレフィンと同
じであっても異なっていても良く、又2以上のオレフィ
ンを混合して用いることもできる. 上記の触媒を用いるオレフィンの重合形式は限定されず
、スラリー重合、バルク重合の様な液相重合のほか、気
相重合でも好適に実施できる。
These olefins may be the same as or different from the olefin to be polymerized, and two or more olefins may be used as a mixture. The type of polymerization of olefin using the above catalyst is not limited, and in addition to liquid phase polymerization such as slurry polymerization and bulk polymerization, gas phase polymerization can also be suitably carried out.

スラリー重合またはバルク重合にはチタン含有固体触媒
成分と有機アルミニウム化合物(A1)、および必要に
応じて、電子供与体(B+)とを組み合せた触媒でも充
分に効果を表わすが、気相重合の場合は、オレフィンを
反応させて予備活性化したものが望ましい.スラリー重
合またはバルク重奇に続いて気相重合を行う場合は、当
初使用する触媒が前者であっても、気相重合のときは既
にオレフィンの反応が行われているから、後者の触媒と
同じものとなって優れた効果が得られる.予備活性化は
ブロバン、ブタン、n−ベンタン、n−ヘキサン、n−
へブタン、ベンゼン、トルエン等の炭化水素溶媒中で行
うこともでき、液化プロピレン、液化ブテンー1などの
液化オレフィン中でも、気体のエチレン、ブロビレン中
でも行うことができ、また予備活性化の際に水素を共存
させても良い。
For slurry polymerization or bulk polymerization, a catalyst containing a titanium-containing solid catalyst component, an organoaluminum compound (A1), and, if necessary, an electron donor (B+) is sufficiently effective, but in the case of gas phase polymerization It is preferable to use one that has been preactivated by reacting with an olefin. When performing gas phase polymerization following slurry polymerization or bulk polymerization, even if the catalyst initially used is the former, it is the same as the latter catalyst because the olefin reaction has already occurred during gas phase polymerization. You can get excellent results. Preactivation is performed using brobane, butane, n-bentane, n-hexane, n-
It can be carried out in a hydrocarbon solvent such as hebutane, benzene, toluene, etc., it can also be carried out in a liquefied olefin such as liquefied propylene or liquefied butene-1, or in gaseous ethylene or brobylene. They may coexist.

予備活性化の際にあらかじめスラリー重合又はバルク重
合又は気相重合によって得られた重合体粒子を共存させ
ることもできる.その重合体は、重合対象のオレフィン
重合体と同じであっても異なったものでもよい.共存さ
せる重合体粒子は、チタン含有固体触媒成分1gに対し
、0〜5,000gの範囲にある. 予備活性化の際に用いた溶媒又はオレフィンは、予備活
性化の途中で又は予備活性化終了後に減圧溜去又は濾別
等により、除くこともでき、又固体生成物を、その1g
当り8[IJ2を越えない量の溶媒に懸濁させるために
、溶媒を加えることもできる. 上記のようにして、組み合わせたチタン含有固体触媒成
分と有機アルaニウム化合物(A3)、および必要(応
じて、電子供与体(B3)からなる触媒、又は更にオレ
フィンで予備活性化した触媒は、オレフィンの重合体の
製造に用いられる。オレフィンを重合させる重合形式と
しては、前述したように、■n−ベンタン、n−ヘキサ
ン、n−へブタン、n一オクタン、ベンゼン若しくはト
ルエン等の炭化水素溶媒中で行うスラリー重合、■液化
プロピレン、液化ブテンー1などの液化オレフィンモノ
マー中で行うバルク重合、■エチレン、ブロビレン等の
オレフィンを気相で重合させる気相重合若しくは、■以
上の■〜■の二以上を段階的に組合わせる方法がある。
During preactivation, polymer particles previously obtained by slurry polymerization, bulk polymerization, or gas phase polymerization can also be coexisting. The polymer may be the same as or different from the olefin polymer to be polymerized. The amount of coexisting polymer particles is in the range of 0 to 5,000 g per 1 g of the titanium-containing solid catalyst component. The solvent or olefin used in the preactivation can be removed by distillation under reduced pressure or filtration during or after the preactivation, and the solid product can be removed by distillation under reduced pressure or filtration.
A solvent may also be added to suspend the solution in an amount of not more than 8[IJ2]. As described above, the catalyst consisting of the combined titanium-containing solid catalyst component and the organo-alanium compound (A3) and, if necessary, the electron donor (B3), or the catalyst further preactivated with an olefin, is It is used in the production of olefin polymers. As mentioned above, the polymerization method for polymerizing olefins is as follows: ■ Hydrocarbon solvents such as n-bentane, n-hexane, n-hebutane, n-octane, benzene, or toluene. Slurry polymerization carried out in liquefied olefin monomers such as liquefied propylene and liquefied butene-1; 2) Gas phase polymerization in which olefins such as ethylene and brobylene are polymerized in the gas phase; There is a way to combine the above steps in stages.

いずれの場合も重合温度は室温(20℃)〜200℃、
重合圧力は常圧( O kg/cm”G)〜50kg/
ca”Gで、通常5分〜20時間程度実施される. 重合の際2分子量制御のための適量の水素を添加するな
どは従来の重合方法と同じである.また、重合に供せら
れるオレフィンは、エチレン、ブロビレン、ブテンー1
、ヘキセン−1、オクテン−1のような直鎖モノオレフ
イン類、4−メチルベンテン−1, 2−メチルーベン
テンーlなどの枝鎮モノオレフィン類、ブタジエン、イ
ソプレン、クロロブレンなどのジオレフィン類などであ
り、また、これ等の各々の単独重合のみならず、相互に
他のすレフィンと組合わせて、例えばブロビレンとエチ
レン、ブテンー1とエチレン、プロピレンとブテンー1
の如く組合わせるかブロビレン、エチレン、ブテンー1
のように三成分を組合わせて共重合を行うことも出来、
また、多V1重合でフィードするオレフィンの種類を変
えてブロック共重合を行うこともできる。
In either case, the polymerization temperature is room temperature (20°C) to 200°C,
Polymerization pressure is normal pressure (O kg/cm"G) ~ 50 kg/
ca"G, and is usually carried out for about 5 minutes to 20 hours. The addition of an appropriate amount of hydrogen to control the molecular weight during polymerization is the same as in conventional polymerization methods. In addition, the olefin used for polymerization are ethylene, brobylene, butene-1
, linear monoolefins such as hexene-1 and octene-1, branched monoolefins such as 4-methylbentene-1,2-methylbentene-1, and diolefins such as butadiene, isoprene, and chlorobrene. In addition, not only can each of these be polymerized individually, but also in combination with other olefins, such as brobylene and ethylene, butene-1 and ethylene, propylene and butene-1, etc.
Combine as follows: brobylene, ethylene, butene-1
Copolymerization can also be carried out by combining three components as shown in
Further, block copolymerization can also be carried out by changing the type of olefin fed in multi-V1 polymerization.

〔作 用〕[For production]

本発明に係る多段重合処理によフて生戒した直鎖牙レフ
ィンースグレンブロック共重合体を含むチタン含有固体
触媒成分を用いて、本発明の方法に従って得られたオレ
フィン重合体は、造核作用を有する、主にシンジオタク
チックスチレン重合体と一部がアイソタクチツクスチレ
ン重合体からなる立体規則性スチレン重合体ブロックを
含むことから、該オレフィン重合体を用いて製造された
成形品は、特にシンジオタクチックスチレン重合体の持
つ造核作用により高結晶性を有し、透明性も高い. 更に、本発明に係る直鎮オレフインースチレンの多段重
合lA埋によって生戒した直鎖オレフインースチレンブ
ロック共重合体は、その直鎖オレフィンブロック部分が
オレフイン重合体と相溶性を持つことによって、スチレ
ン重合体ブロックのオレフィン重合体への分散性が高度
に向上するので、スチレン重合体ブロックの持つ造核作
用が著しく発揮されることから、得られるオレフイン重
合体を用いて製造した戒形品の結晶性および透明性を一
層向上させ、フィルムにおいてもポイドの発生を著しく
少なくしているものと推定される.〔実施例〕 以下、実施例によって本発明を説明する。実施例、比較
例において用いられている用語の定義、および測定方法
は次の通りである. MFR :メルトフローレートJIS K 7210 
 表1の条件14による.     (単位: g71
0分)内部ヘーズ:表面の影響を除いたフィルム内部の
ヘーズであり、プレス機を用いて温度200℃、圧力2
00kg/cm”Gの条件下でオレフィン重合体を厚さ
 150μのフィルムとし、フィルムの両面に流動バラ
フィンを塗った後、JTS K7105に準拠してヘー
ズを測定した.(単位二%) 結晶化温度:示差走査熱量計を用いて、10℃/分の降
温速度で測定した.    (単位二℃)曲げ弾性率:
オレフィン重合体100重量部に対して、テトラキス[
メチレン−3−(3゜一,5゜−ジーt−ブチルー4゜
−ヒドロキシフェニル)プロビオネート]メタン0.1
重量部、およびステアリン酸カルシウム0.1重量部を
混合し、該混合物をスクリューロ径4h+iの押出造粒
機を用いて造粒した.ついで該造粒物を射出成形機で溶
融樹脂温度230℃、金型温度50℃でJIS形のテス
トビースを作戒し、該テストビースについて湿度50%
、室温23℃の室内で72時間放置した後、JIS K
 72G3に準拠して曲げ弾性率を測定した.    
   (阜位: kgf/am”)ボイド:前項と同様
にしてオレフィン重合体の造粒を行い、得られた造粒物
をT−ダイ式製膜機を用い、溶融樹脂温度250℃で押
出し、20℃の冷却ロールで厚さ1mmのシートを作成
した.該シートを150℃の熱風で70秒間加熱し、二
軸延伸機を用いて、縦横方向に7倍づつ延伸し、厚さ2
0μの二軸延伸フィルムを得た.該フィルムを光学顕m
鏡にて観察し、直径が10μ以上のポイドの数を測定し
、1 cm”当り30個未満をQ,30個以上をXで示
した。
The olefin polymer obtained according to the method of the present invention using a titanium-containing solid catalyst component containing a straight chain olefin-grain block copolymer that has been cured by the multistage polymerization process according to the present invention is Molded articles manufactured using this olefin polymer contain a stereoregular styrene polymer block mainly composed of syndiotactic styrene polymer and partially isotactic styrene polymer, which has a nuclear effect. In particular, it has high crystallinity due to the nucleation effect of syndiotactic styrene polymer, and has high transparency. Furthermore, the linear olefin-styrene block copolymer produced by the multi-stage polymerization of straight-chain olefin-styrene according to the present invention has compatibility with the olefin polymer, so that the linear olefin-styrene block copolymer has compatibility with the olefin polymer. Since the dispersibility of the polymer block in the olefin polymer is highly improved, the nucleation effect of the styrene polymer block is significantly exhibited, and the crystals of pre-shaped products manufactured using the resulting olefin polymer are improved. It is estimated that this further improves the properties and transparency of the film, and significantly reduces the occurrence of voids in the film. [Example] The present invention will be described below with reference to Examples. Definitions of terms used in Examples and Comparative Examples and measurement methods are as follows. MFR: Melt flow rate JIS K 7210
According to condition 14 in Table 1. (Unit: g71
0 minutes) Internal haze: This is the haze inside the film excluding the influence of the surface.
The olefin polymer was formed into a film with a thickness of 150μ under the condition of 00kg/cm"G, and after coating both sides of the film with liquid paraffin, the haze was measured in accordance with JTS K7105. (Unit: 2%) Crystallization temperature : Measured using a differential scanning calorimeter at a cooling rate of 10°C/min. (Unit: 2°C) Flexural modulus:
Tetrakis[
Methylene-3-(3゜-1,5゜-di-t-butyl-4゜-hydroxyphenyl)probionate]methane 0.1
parts by weight, and 0.1 parts by weight of calcium stearate were mixed, and the mixture was granulated using an extrusion granulator with a screw diameter of 4h+i. Next, the granules were molded into JIS type test beads using an injection molding machine at a molten resin temperature of 230°C and a mold temperature of 50°C, and the humidity of the test beads was 50%.
, after being left indoors at a room temperature of 23°C for 72 hours, JIS K
The flexural modulus was measured in accordance with 72G3.
(Position: kgf/am”) Void: Granulate the olefin polymer in the same manner as in the previous section, extrude the resulting granules using a T-die film forming machine at a molten resin temperature of 250°C, A sheet with a thickness of 1 mm was prepared using a cooling roll at 20°C.The sheet was heated with hot air at 150°C for 70 seconds, and then stretched by a factor of 7 in the longitudinal and lateral directions using a biaxial stretching machine to obtain a sheet with a thickness of 2 mm.
A biaxially stretched film of 0μ was obtained. The film was examined under an optical microscope.
The number of poids having a diameter of 10 μm or more was measured by observing with a mirror, and less than 30 poids per 1 cm were marked as Q, and 30 or more were marked as X.

実施例1 (1)有機アルミニウム化合物(A2)と水との反応生
成物(A3)のmI! 内容積301の攪拌機を備えたステンレス製反応器を窒
素置換した後、硫酸銅・S水和物37kgと脱水したト
ルエン50℃を装入し、lFtまで冷却後、内温が15
℃を保つようにコントロールしながら攪拌下にトルエン
Siで希釈したトリメチルアルミニウム500モルを4
時間かけて添加した.添加後、15℃で48時間反応を
続けた後、固体を除去し、更に室温下でトルエンを一部
減圧留去してメチルアルミノキサンを含むトルエン溶液
40ftを得た. (2)チタン含有固体触媒成分の調製 n−ヘキサン6j2、ジエチルアルミニウムモノクロラ
イド(DEAC) 5.0モル、ジイソアミルエーテル
12.0モルを25℃で5分間で混合し、15分間同温
度で反応させて反応生戒液(I)(ジイソアくルエーテ
ル/ DEACのモル比2.4)を得た。
Example 1 (1) mI of the reaction product (A3) of the organoaluminium compound (A2) and water! After purging a stainless steel reactor with an internal volume of 301 cm with a stirrer with nitrogen, 37 kg of copper sulfate/S hydrate and dehydrated toluene at 50°C were charged, and after cooling to 1Ft, the internal temperature was 15°C.
500 mol of trimethylaluminum diluted with toluene Si was added to
Added over time. After the addition, the reaction was continued at 15°C for 48 hours, and then the solids were removed, and a portion of the toluene was distilled off under reduced pressure at room temperature to obtain 40ft of a toluene solution containing methylaluminoxane. (2) Preparation of titanium-containing solid catalyst component n-hexane 6j2, 5.0 mol of diethylaluminum monochloride (DEAC), and 12.0 mol of diisoamyl ether were mixed at 25°C for 5 minutes, and reacted at the same temperature for 15 minutes. A reaction solution (I) (molar ratio of diisoaryl ether/DEAC of 2.4) was obtained.

窒素置換された反応器に四塩化チタン40モルを入れ、
35℃に加熱し、これに上記反応生戒液(1)の全量を
 180分間で滴下した後、同温度に60分間保ち、8
0℃に昇温して更に1時間反応させ、室温まで冷却し、
上澄液を除診、n−ヘキサン20J2を加えてデカンテ
ーションで上澄液を除く操作を4回繰り返して、固体生
成物(I!)を得た.この( I1 )の全量を上記(
1)で得たメチルアルミノキサン400モルを含むトル
エン溶液中に懸濁させ、30℃でエチレン420Nj!
を添加し、同温度で1時間重合:!6J!を行った.反
応時間経過後、未反応エチレンを除去し、スチレン9.
5kgを加えて40℃で2時間1合処理を行った。反応
終了後、上澄液を除きトルエン3iを加えてデカンテー
シ髄ンで除く操作を4回繰り返して、エチレンースチレ
ンによる多段重合処理を施した固体生成物([1一八)
を得た. この固体生成物( n−A )の全量をn−ヘキサン9
j2中C懸濁させた状態で、四塩化チタン3.5kgを
室温にて約io分間で加え、80℃にて30分間反応さ
せた後、更にジイソアミルエーテル1.Itkgを加え
、80℃で1時間反応させた.反応終了後、上澄液を除
く操作を5回繰り返した後、減圧で乾燥させ、三塩化チ
タン組成物(In)を得、本発明に用いるチタン含有固
体触媒成分とした。
Put 40 moles of titanium tetrachloride into a reactor purged with nitrogen,
The mixture was heated to 35°C, and the entire amount of the reaction liquid (1) was added dropwise thereto over 180 minutes, and then kept at the same temperature for 60 minutes.
The temperature was raised to 0°C, the reaction was further carried out for 1 hour, and the mixture was cooled to room temperature.
The operation of removing the supernatant, adding 20J2 of n-hexane, and removing the supernatant by decantation was repeated four times to obtain a solid product (I!). The total amount of this (I1) is expressed as (
It was suspended in a toluene solution containing 400 moles of methylaluminoxane obtained in 1), and 420 Nj of ethylene was added at 30°C.
was added and polymerized for 1 hour at the same temperature:! 6J! I did. After the reaction time has passed, unreacted ethylene is removed and styrene 9.
5 kg was added and the mixture was treated at 40° C. for 2 hours. After the reaction was completed, the supernatant liquid was removed, toluene 3i was added, and the operation of removing with decantation was repeated four times to obtain a solid product ([118]) subjected to multistage polymerization treatment with ethylene-styrene.
I got it. The total amount of this solid product (n-A) was dissolved in n-hexane 9
3.5 kg of titanium tetrachloride was added to C in suspension in J2 at room temperature for about io minutes, and after reacting at 80°C for 30 minutes, diisoamyl ether 1. Itkg was added and reacted at 80°C for 1 hour. After the reaction was completed, the operation of removing the supernatant liquid was repeated five times, and then dried under reduced pressure to obtain a titanium trichloride composition (In), which was used as a titanium-containing solid catalyst component used in the present invention.

該三塩化チタン組成物(m)中のエチレン重合体ブロッ
クの含有量は14.3重量%、スチレン重合体ブロック
の含有量は14.31量%、およびチタン含有量はta
.O@量%であった. (3)予備活性化触媒成分の調製 内容積80j2の傾斜羽根付きステンレス製反応器を窒
素ガスで置換した後、n−ヘキサン40J2,ジエチル
アルミニウムモノクロライド200g,チタン含有固体
触媒成分として(2)で得た三塩化チタン組戊物(II
I)45Qgを室温で加えた後、反応器内の温度を40
℃にし、プロピレン800gを加え、40℃で1時間、
予備活性化lA理を行った(三塩化チタン組戒物(II
I)Ig当り、ブロビレン1.Og反応).反応終了後
、n−ヘキサンで洗浄してから、濾過、乾燥して予備活
性化触媒威分を得た. [4]オレフィン重合体の製造 窒素ra換をした内容積150J2の攪拌機を備えたL
/D− 4のステンレス製横型重合器にMFR 2.0
のボリプロビレンパウダー30kgを投入後、上記(3
)で得た予備活性化触媒成分にn−ヘキサンを添加し、
4.0重量%のn−ヘキサン懸濁液とした後、該悲濁冫
夜をチタン原子yA算で5.6稟リグラム原子/hr 
,ジエチルアル且二ウムモノクロライドの30重量%ー
ヘキサン溶液をジエチルアルミニウムモノクロライドと
して4.7g/hrで連続的に供給した.また重合器の
気相中の濃度が1.0容積%を保っように水素を、全圧
が23kg/ci’Gを保つようにブロビ1ノンをそれ
ぞれ供給して、ブロビレンの気相重合を70℃において
、160時間連続して行った。
The content of the ethylene polymer block in the titanium trichloride composition (m) is 14.3% by weight, the content of the styrene polymer block is 14.31% by weight, and the titanium content is ta.
.. It was O @ amount%. (3) Preparation of preactivated catalyst component After purging a stainless steel reactor with inclined blades with an internal volume of 80J2 with nitrogen gas, 40J2 of n-hexane, 200g of diethylaluminium monochloride, and (2) as the titanium-containing solid catalyst component were added. The obtained titanium trichloride composite (II
I) After adding 45Qg at room temperature, the temperature inside the reactor was increased to 40Qg.
℃, add 800 g of propylene, and heat at 40℃ for 1 hour.
Pre-activation IA treatment was performed (titanium trichloride group sacrament (II)
I) Brobylene per Ig 1. Og reaction). After the reaction was completed, the mixture was washed with n-hexane, filtered, and dried to obtain a preactivated catalyst. [4] Production of olefin polymer L equipped with a stirrer with an internal volume of 150 J2 and nitrogen ra exchange
/D-4 stainless steel horizontal polymerizer with MFR 2.0
After adding 30 kg of polypropylene powder, the above (3)
n-hexane was added to the preactivated catalyst component obtained in ),
After making it into a 4.0% by weight suspension in n-hexane, the gloomy night was calculated as 5.6 milligram atoms/hr in terms of titanium atoms yA.
A 30% by weight hexane solution of diethylaluminum monochloride was continuously supplied at 4.7 g/hr as diethylaluminum monochloride. In addition, hydrogen was supplied so that the concentration in the gas phase of the polymerization reactor was maintained at 1.0% by volume, and brobylone was supplied so that the total pressure was maintained at 23 kg/ci'G, and the gas phase polymerization of brobylene was carried out for 70%. The test was carried out continuously for 160 hours at ℃.

該重合中は、重合器内の重合体の保有レベルが45容積
%となるように重合体を連続的に 13.5kg/hr
で抜き出した.抜き出された重合体を続いてブロビレン
オキサイドを0.2容積%含む窒素ガスを用いて95℃
にて30分間接触処理し、ポリブロビIノンを得た. 比較例1 (1)チタン含有固体触媒成分の調製 実施例1の(2)において、固体生成物(ti)をエチ
レンおよびスチレンによる多段重合処理をすることなし
に固体生戊物( IT − A )相当物とすること以
外は同様にして三塩化チタン組威物を得た. (2)予備活性化触媒成分の調製 実施例1の(3) において、三塩化チタン組戒物( 
II+ )の代わりに上記(1)で得た三塩化チタン組
成物を用いること以外は同様にして予備活性化触媒成分
を得k. (3)オレフィン重合体の製造 実施例1の[4]において、予備活性化触媒成分として
上記(2)で得た予備活性化触媒成分を用いること以外
は同様にしてプロピレンの重合を行い、ボリブロピレン
を得た。
During the polymerization, the polymer was continuously fed at a rate of 13.5 kg/hr so that the polymer retention level in the polymerization vessel was 45% by volume.
I extracted it. The extracted polymer was then heated at 95°C using nitrogen gas containing 0.2% by volume of brobylene oxide.
A contact treatment was carried out for 30 minutes to obtain polybrovinone. Comparative Example 1 (1) Preparation of titanium-containing solid catalyst component In (2) of Example 1, the solid product (ti) was prepared as a solid raw material (IT-A) without performing a multistage polymerization treatment with ethylene and styrene. A titanium trichloride compound was obtained in the same manner except that the equivalent material was used. (2) Preparation of pre-activated catalyst component In (3) of Example 1, titanium trichloride composite material (
A preactivated catalyst component was obtained in the same manner except that the titanium trichloride composition obtained in (1) above was used in place of II+).k. (3) Production of olefin polymer Propylene was polymerized in the same manner as in [4] of Example 1, except that the preactivated catalyst component obtained in (2) above was used as the preactivated catalyst component, and polypropylene was I got it.

比較例2 (1)実施例1の(1)と同様はしてメチルアルミノキ
サンのトルエン溶液を得た. (2)比較例1の(1)と同様にして三塩化チタン組成
物を得た. (3)実施例1の(3)で使用した反応器にトルエン2
0J2,上記(1)で得たメチルアルaノキサンのトル
エン溶液をアルミニウム原子として 100モル、上記
《2〉 で得た三塩化チタン組戒物450gを室温下に
導入した.続いて、スチレン1.8kgを加え、35℃
で2時間、予備活性化処理を行った(三塩化チタン組成
物1g当り、スチレン0.2g反応)。反応終了後、ト
ルエンで洗浄してから、濾過、乾燥して予備活性化触媒
成分を得た。
Comparative Example 2 (1) A toluene solution of methylaluminoxane was obtained in the same manner as in Example 1 (1). (2) A titanium trichloride composition was obtained in the same manner as in (1) of Comparative Example 1. (3) Add 2 toluene to the reactor used in (3) of Example 1.
0J2, 100 moles of the toluene solution of methylalanoxane obtained in (1) above as aluminum atoms and 450 g of the titanium trichloride compound obtained in <<2>> above were introduced at room temperature. Next, 1.8 kg of styrene was added and heated to 35°C.
Preactivation treatment was carried out for 2 hours (0.2 g of styrene was reacted per 1 g of titanium trichloride composition). After the reaction was completed, the mixture was washed with toluene, filtered, and dried to obtain a preactivated catalyst component.

[4]実施例1の[4]において、予備活性化触媒成分
として上記ク3〉で得た予備活性化触媒成分を用いるこ
と以外は同様にしてプロピレンの重合を行ったところ、
生成した塊状重合体が重合体抜き出し配管を閉塞したし
まった為、重合開始後、10時間でプロピレンの重合を
停止しなければならなかった. 比較例3 特開昭82−104,818号公報記載の実施例1に従
って、シクロベンタジエニルチタニウムトリクロライド
とメチルアルミノキサンからなる触媒を用いてスチレン
を重合して得られたシンジオタクチックボリス千レン1
.6gを比較例1で得られたポリブロビレン10kgに
混合して、シンジオタクチックポリスチレンを160重
量ppm含有したボリブロビレン組成物を得た. 比較例4および実施例2.3 実施例1の(2) &:おいて、重合処理に用いたエチ
レンおよびスチレンの使用量を変化させて、含有量がそ
れぞれ表のような三塩化チタン組成物( Il1 ’)
を得た.以後は実施例1と同様にしてポリプロピレンを
得た. 実施例4 (1)有機アル稟ニウム化合物(A2)と水との反応生
成物(A3)の調製 実施例1の(2)と同様にしてメチルアルミノキサンの
トルエン溶液を得た. (2)チタン含有固体触媒成分の調製 攪拌機付ステンレス製反応器中において、デカン31,
無水塩化マグネシウム480g,オルトチタン酸n−ブ
チル1.7kgおよび2−エチル−1−ヘキサノールl
.95kgを混合し、攪拌しながら130℃に1時間加
熱して溶解させ均一な溶液とした.該均一溶液を70℃
とし、攪拌しながらフタル酸ジイソブチル180gを加
え1時間経過後四塩化ケイ素5.2kgを2.5時間か
けて滴下し固体を析出させ、更に70℃に1時間加熱し
た.固体を溶液から分離し、ヘキサンで洗浄して固体生
戊物(TV)を得た.該固体生成物(rV)全量を上記
(1)で得たメチルアル粂ノキサン140モルを含む量
のトルエン溶液中に懸濁させた後、エチレンIIONf
tを添加し、30℃にて1時間重合処理を行った.反応
時間経過後、未反応エチレンを除去し、スチレン4.5
kgを加えて35℃で2時間重合処理を行った.反応終
了後、上澄液をデカンテーションで除いた後、61のト
ルエンで3回洗浄して固体生成物(V)を得た。
[4] Propylene was polymerized in the same manner as in [4] of Example 1, except that the preactivated catalyst component obtained in step 3 above was used as the preactivated catalyst component.
The polymerization of propylene had to be stopped 10 hours after the start of polymerization because the generated bulk polymer blocked the polymer extraction pipe. Comparative Example 3 Syndiotactic boris thousand rene obtained by polymerizing styrene using a catalyst consisting of cyclobentadienyl titanium trichloride and methylaluminoxane according to Example 1 described in JP-A-82-104,818. 1
.. 6 g was mixed with 10 kg of polybropylene obtained in Comparative Example 1 to obtain a polybropylene composition containing 160 ppm by weight of syndiotactic polystyrene. Comparative Example 4 and Example 2.3 In (2) &: of Example 1, the amounts of ethylene and styrene used in the polymerization treatment were changed to produce titanium trichloride compositions whose contents were as shown in the table. (Il1')
I got it. Thereafter, polypropylene was obtained in the same manner as in Example 1. Example 4 (1) Preparation of reaction product (A3) of organic aluminum compound (A2) and water A toluene solution of methylaluminoxane was obtained in the same manner as in Example 1 (2). (2) Preparation of titanium-containing solid catalyst component In a stainless steel reactor equipped with a stirrer, decane 31,
480 g of anhydrous magnesium chloride, 1.7 kg of n-butyl orthotitanate, and 1 liter of 2-ethyl-1-hexanol.
.. 95 kg were mixed and heated to 130°C for 1 hour while stirring to dissolve and form a uniform solution. The homogeneous solution was heated to 70°C.
Then, 180 g of diisobutyl phthalate was added with stirring, and after 1 hour, 5.2 kg of silicon tetrachloride was added dropwise over 2.5 hours to precipitate a solid, and the mixture was further heated to 70° C. for 1 hour. The solid was separated from the solution and washed with hexane to obtain a solid raw material (TV). After suspending the entire amount of the solid product (rV) in a toluene solution containing 140 mol of methylaluminoxane obtained in (1) above, ethylene III
t was added, and polymerization was carried out at 30°C for 1 hour. After the reaction time has passed, unreacted ethylene is removed and styrene 4.5
kg was added and polymerization was carried out at 35°C for 2 hours. After the reaction was completed, the supernatant liquid was removed by decantation and washed three times with 61 toluene to obtain a solid product (V).

該固体生成物(V)全量を1.2−ジクロルエタン5f
lに溶かした四塩化チタン5J2と混合し、続いて、フ
タル酸ジイソブチル180gを加え、攪拌しながら 1
00℃に2時間反応させた後、同温度においてデカンテ
ーションにより液相郎を除き、再び、1.2−ジクロル
エタン51および四塩化チタン51を加え、 100℃
に2時間攪拌し、ヘキサンで洗浄後乾燥してチタン含有
担持型触媒成分(VT)を得、本発明に用いるチタン含
有固体触媒成分とした。
The entire amount of the solid product (V) was added to 5f of 1,2-dichloroethane.
180 g of diisobutyl phthalate was added while stirring.
After reacting at 00°C for 2 hours, the liquid phase was removed by decantation at the same temperature, 1,2-dichloroethane 51 and titanium tetrachloride 51 were added again, and the mixture was heated to 100°C.
The mixture was stirred for 2 hours, washed with hexane, and dried to obtain a titanium-containing supported catalyst component (VT), which was used as a titanium-containing solid catalyst component used in the present invention.

該チタン含有担持型触媒成分(V1)は、その粒子形状
が球形に近く、エチレン重合体ブロックの含有量はit
.aii量%、スチレンX合体ブロックの含有量は29
.4重量%、およびチタン含有量は1.8重量%であっ
た。
The titanium-containing supported catalyst component (V1) has a nearly spherical particle shape, and the content of ethylene polymer blocks is
.. aii amount%, the content of styrene X combined block is 29
.. 4% by weight, and the titanium content was 1.8% by weight.

(3)予備活性化触媒成分の調製 内容積30氾の攪拌機付きステンレス製反応器を窒素ガ
スで置換した後、n−ヘキサン2i,I−リエチルアル
ミニウム40g、および上記(2)で得たチタン含有相
持触媒威分(V’[)200gを加えた。続いて、30
℃にてエチレンを190NJ2供給し、予備活性化fi
埋を行った(チタン含有担持触媒威分1g当り、エチレ
ン1.0g反応).反応時間経過後、未反応エチレンを
除去、n−ヘキサンでの洗浄を行い、更に乾燥させて予
備活性化触媒成分を得た。
(3) Preparation of preactivated catalyst components After purging a stainless steel reactor with a stirrer with a volume of 30 ml with nitrogen gas, 2i n-hexane, 40 g of I-ethylaluminum, and the titanium obtained in (2) above were added. 200 g of co-supported catalyst content (V'[) was added. Subsequently, 30
Preactivation fi by supplying 190 NJ2 of ethylene at ℃
(1.0 g of ethylene reacted per 1 g of titanium-containing supported catalyst). After the reaction time had elapsed, unreacted ethylene was removed, washed with n-hexane, and further dried to obtain a preactivated catalyst component.

[4]オレフィン重合体の製造 窒素1t換をしk内容積80北の攪拌機を備えたL/D
・3の横型重合器にVFR2.0のボリブロビ1/ンパ
ウダー20kgを投入後、上記(3)で得た予備活性化
触媒成分にn−ヘキサンを添加し、 4.Oii量%の
n−ヘキサン懸濁液とした後、該懸濁液をチタン原子換
算で0.33ミリグラム原子ハrで、更はトリエチルア
ル處ニウムを7.5g/hr ,およびジフェニルジメ
トキシシランを2.3g/hrでそれぞれ別の供給口か
ら連続的(供給した。
[4] Manufacture of olefin polymer L/D with 1 ton of nitrogen exchange and a stirrer with internal volume of 80 mm
・After charging 20 kg of VFR 2.0 Volibrovy 1/N powder into the horizontal polymerization vessel in step 3, add n-hexane to the preactivated catalyst component obtained in step (3) above. After making a suspension in n-hexane with a concentration of Oii%, the suspension was treated with 0.33 milligram atoms of ha in terms of titanium atoms, triethylaluminum at 7.5 g/hr, and diphenyldimethoxysilane. Continuously (supplied) from separate supply ports at a rate of 2.3 g/hr.

また重合器の気相中の濃度が0.15容積%を保つよう
に水素を、全圧が23kg/cm2Gを保つようにプロ
ピレンをそれぞれ供給して、ブロビレンの気相重合を7
0℃において 120時間連続して行った.該重合中は
、重合器内の重合体の保有レベルが60容積%となるよ
うに重合体を連続的に 10.0kg/hrで抜き出し
た。抜き出した重合体について実施例1の[4]と同様
な後処理を行い、ボリブロビレンを得た. 比較例5 実施例4の(2)において、エチレンおよびスチレンに
よる多段重合処理を省略し、固体生戊物(rV)を固体
生成物(V)相当物とすること以外は同様にしてチタン
含有担持型触媒成分を得た。
In addition, hydrogen was supplied so that the concentration in the gas phase of the polymerization reactor was maintained at 0.15% by volume, and propylene was supplied so that the total pressure was maintained at 23 kg/cm2G.
The test was carried out continuously for 120 hours at 0°C. During the polymerization, the polymer was continuously extracted at a rate of 10.0 kg/hr so that the polymer retention level in the polymerization vessel was 60% by volume. The extracted polymer was subjected to the same post-treatment as in [4] of Example 1 to obtain polypropylene. Comparative Example 5 Titanium-containing support was carried out in the same manner as in Example 4 (2) except that the multi-stage polymerization treatment with ethylene and styrene was omitted and the solid raw material (rV) was used as the solid product (V) equivalent. A type catalyst component was obtained.

以後は、該チタン含有担持型触媒威分を用いて実施例4
の(3) . [4]と同様にしてブロビレンを得た. 実施例5 (1)実施例1の(1)と同様にしてメチルアルくノキ
サンのトルエン溶液を得た. (2)n−へブタン4℃、ジエチルアルミニウムモノク
ロライド 5.0モル、ジイソアミルエーテル9,0モ
ル、ジn−ブチルエーテル5.0モルを18℃で30分
間反応させて得た反応液を四塩化チタン27、5モル中
に40℃で300分間かかって滴下した後、同湯度に 
1.5時間保ち反応させた後、65℃に昇温し、1時間
反応させ、上澄液を除き、n−ヘキサン2iを加えデカ
ンテーシ日ソで除く操作を6回毅り返し、得られた固体
生成物( I1 ) 1.8kgを上記(1)で得たメ
チルアルミノキサンのトルエン溶液全量中に懸濁させ、
30℃にてエチレン220NItを添加し、同温度で1
時間重合処理を行った。反応時間経過後、未反応エチレ
ンを除去し、スチレン1G.OKgを加え30℃で2時
間重合処理を行った。
Hereinafter, Example 4 will be carried out using the titanium-containing supported catalyst component.
(3). Brobylene was obtained in the same manner as [4]. Example 5 (1) A toluene solution of methylalkynoxane was obtained in the same manner as in Example 1 (1). (2) A reaction solution obtained by reacting n-hebutane at 4°C, 5.0 mol of diethylaluminum monochloride, 9.0 mol of diisoamyl ether, and 5.0 mol of di-n-butyl ether at 18°C for 30 minutes was After dropping into 27.5 moles of titanium chloride at 40℃ for 300 minutes, the water temperature was the same.
After reacting for 1.5 hours, the temperature was raised to 65°C, reacted for 1 hour, the supernatant liquid was removed, n-hexane 2i was added, and the operation was repeated 6 times to remove by decantation with soap and water. 1.8 kg of the solid product (I1) was suspended in the entire amount of the toluene solution of methylaluminoxane obtained in (1) above,
220 NIt of ethylene was added at 30°C, and 1
A time polymerization treatment was performed. After the reaction time has passed, unreacted ethylene is removed and styrene 1G. OKg was added and polymerization was carried out at 30°C for 2 hours.

反応終了後、上澄液をデカンテーションで除いた後、ト
ルエン201を加えデカンテーシ1ンで除く操作を2回
繰り返し、更にn−ヘキサン2iで洗浄し、多段重合処
理を施した固体生成物( TI − A )を得た.引
き続いて固体生成物(II−A)をn−へキチン7L中
に懸濁させ、四塩化チタン1.8kg , n−ブチル
エーテル1.8kgを加え、60℃で3時間反応させた
. 反応終了後、上澄液をデカンテーションで除いた後、2
01のn−ヘキサンを加えて5分間攪拌し、静置して上
澄液を除く操作を3回繰り返した後、減圧乾燥させて三
塩化チタン組戊物( II1 )を得た. (3)実施例1の(3)において、チタン含有固体触媒
成分として上記(2)で得k三塩化チタン組威物( I
I1 )を用いること、また反応終了後のn−ヘキサン
による洗浄、乾燥をしないこと以外は同様にして予備活
性化触媒成分をスラリー状態で得た.[4]窒素置換を
した内容積1501の2段タービン翼を備えた攪拌機付
き重合器へ、上記(3)で得た予備活性化触媒威分スラ
リーをチタン原子換算で13稟リグラム原子/hrで、
ジエチルアルaニウムモノクロライドをチタンに対して
モル比が3.0となるように同一配管から、また別配管
からn−へキサンを21kg/hrで連続的に供給した
.更にまた重合器の気相中の濃度が1.5容積%を保つ
ように水素を、全圧が10kg/cm”Gを保つように
プロピレンをそれぞれ供給して、ブロビレンのスラリー
重合を70℃において 120時間、連続して行った.
該重合中は、重合器内の重合体スラリーの保有レベルが
75容積%となるように重合体スラリーを重合器から連
続的に内容積50J2のフラッシュタンクに抜き出した
.フラッシュタンクにおいて落圧し、未反応の水素、プ
ロピレンを除去する一方、メタノールを1 kg/hr
で供給し70℃にて接触処理した.引き続いてスラリー
を遠心分wi機にかけて溶媒を分離後、乾燥し、ポリプ
ロピレンを10kg/hrで得た. 比較例6 実施例5の(2)において、エチレンおよびスチレンに
よる重合処理をせずに固体生成物(U)を固体生成物(
 II 一A )相当物とすること以外は同様にして三
塩化チタン組成物を得た。以後、該三塩化チタン組成物
を用いては実施例5の(3)、[4]と同様にしてポリ
ブロビレンを得た. 実施例6 (1)実施例1の(1)と同様にしてメチルアル稟ノキ
サンのトルエン溶液を得た。
After the reaction was completed, the supernatant was removed by decantation, and the operation of adding 201 toluene and removing by decantation was repeated twice, followed by washing with 2i n-hexane, and a solid product (TI) was subjected to multistage polymerization treatment. - A) was obtained. Subsequently, the solid product (II-A) was suspended in 7 L of n-hexitine, 1.8 kg of titanium tetrachloride and 1.8 kg of n-butyl ether were added, and the mixture was reacted at 60°C for 3 hours. After the reaction was completed, the supernatant was removed by decantation, and then
Adding n-hexane from No. 01, stirring for 5 minutes, standing still and removing the supernatant liquid was repeated three times, followed by drying under reduced pressure to obtain a titanium trichloride composite (II1). (3) In (3) of Example 1, the titanium trichloride compound (I) obtained in (2) above was used as the titanium-containing solid catalyst component.
A preactivated catalyst component was obtained in the form of a slurry in the same manner as above, except that I1) was used and that washing with n-hexane and drying were not performed after the reaction was completed. [4] Add the preactivated catalyst slurry obtained in (3) above to a nitrogen-substituted polymerization reactor equipped with a stirrer and a two-stage turbine blade with an internal volume of 1,501 cm at a rate of 13 square grams atoms/hr in terms of titanium atoms. ,
Diethylaluminium monochloride was continuously supplied at a molar ratio of 3.0 to titanium from the same pipe, and n-hexane was continuously supplied from a separate pipe at a rate of 21 kg/hr. Furthermore, hydrogen was supplied so that the concentration in the gas phase of the polymerization vessel was maintained at 1.5% by volume, and propylene was supplied so that the total pressure was maintained at 10 kg/cm"G, and the slurry polymerization of brobylene was carried out at 70 °C. It was conducted continuously for 120 hours.
During the polymerization, the polymer slurry was continuously drawn out from the polymerization vessel into a flash tank with an internal volume of 50 J2 so that the retention level of the polymer slurry in the polymerization vessel was 75% by volume. While reducing the pressure in the flash tank and removing unreacted hydrogen and propylene, methanol was added at 1 kg/hr.
It was supplied at 70°C and subjected to contact treatment. Subsequently, the slurry was centrifuged to separate the solvent and dried to obtain polypropylene at 10 kg/hr. Comparative Example 6 In (2) of Example 5, the solid product (U) was converted into the solid product (U) without the polymerization treatment with ethylene and styrene.
II-A) A titanium trichloride composition was obtained in the same manner except that the corresponding product was used. Thereafter, using the titanium trichloride composition, polybrobylene was obtained in the same manner as in Example 5 (3) and [4]. Example 6 (1) A toluene solution of methylaluminoxane was obtained in the same manner as in Example 1 (1).

(2)三塩化アル稟二ウム(無水) 1.7kgと水酸
化マグネシウム0.6kgを振動ミルで250℃にて3
時間粉砕させながら反応させた所、塩化水素ガスの発生
を伴いながら反応が起こった.加熱終了後、窒素気流中
で冷却し、マグネシウム含有固体を得た. 攪拌機付きステンレス製反応器中において、デカン6℃
、マグネシウム含有固体1.0kg ,オルトチタン酸
n−ブチル3.4kg , 2−エチル−1−ヘキサノ
ール3.9kgを混合し、攪拌しながら、 130℃に
2時間加熱して溶解させ均一な溶液とした.その溶液を
70℃とし、p一トルイル酸エチル0.2kgを加え1
時間反応させた後、フタル酸ジイソブチル0.4kgを
加え更に1時間反応後、攪拌しながら四塩化ケイ素10
kgを2時間30分かけて滴下し固体を析出させ、更に
70℃、1時間攪拌した.固体を溶液から分離し精製へ
キチンにより洗浄し固体生成物(TV)を得た。
(2) 1.7 kg of aluminum trichloride (anhydrous) and 0.6 kg of magnesium hydroxide were heated at 250°C in a vibrating mill.
When the reaction was carried out while being pulverized for a period of time, the reaction occurred with the generation of hydrogen chloride gas. After heating, it was cooled in a nitrogen stream to obtain a magnesium-containing solid. Decane at 6°C in a stainless steel reactor with a stirrer.
, 1.0 kg of magnesium-containing solid, 3.4 kg of n-butyl orthotitanate, and 3.9 kg of 2-ethyl-1-hexanol were mixed and heated to 130°C for 2 hours with stirring to dissolve and form a homogeneous solution. did. The solution was heated to 70°C, and 0.2 kg of ethyl p-toluate was added.
After reacting for an hour, 0.4 kg of diisobutyl phthalate was added, and after further reaction for 1 hour, silicon tetrachloride 10
kg was added dropwise over 2 hours and 30 minutes to precipitate a solid, and the mixture was further stirred at 70°C for 1 hour. The solid was separated from the solution and purified by washing with chitin to obtain a solid product (TV).

該固体生成物(rV)全量を上記(1)で得たメチルア
ルミノキサン 150モルを含む量のトルエン溶液に懸
濁させた後、ジフェニルジメトキシシラン145gを加
えてから、エチレン120Nj!を添加し、30℃にて
1時間重合処理を行った.反応時間経過後、未反応エチ
レンを除去し、スチレン4.7Kgを加え35℃で2時
間重合処理を行った.反応終了後、上澄液を除きトルエ
ン20ILを加えてデカンテーションで上澄液を除く操
作を3回繰り返した後、更にn−ヘキサン20ftで洗
浄しエチレンおよびスチレンで重合処理された固体生成
物(V)を得た. 該固体生成物(V)全量を1.2−ジクロルエタン10
1で希釈した四塩化チタン10λとともにフタル酸ジイ
ソブチル0.4kgを加え、攪拌しながら 100℃に
2時間反応させた後、同温度にてデカンテーションによ
り液相部を除き、再び1.2−ジクロルエタンtoj2
,四塩化チタンlOJ2を加え、攪拌しながら 100
℃に2時間反応させた後、熱濾過にて固体部を採取して
n−ヘキサンで洗浄し、乾燥してチタン含有担持型触媒
成分(’/I)を得た.該チタン含有担持型触媒成分(
V1)中のエチレン重合体ブロック含有量は11.8!
i量%、スチレン重合体ブロック含有量は29.4!!
量%、およびチタン含有量は2.01量%であった. (3)実施例4の(3)において、チタン含有固体触媒
成分として上記(2)で得たチタン担持型触媒成分(V
[)を用いること以外は同様にして予備活性化触媒成分
を得た. [4]実施例4の[4]において、予備活性化触媒成分
として上記(3)で得られた予備活性化触媒成分を使用
すること、またプロピレンの気相重合時に重合器の気相
中の濃度が0.2容積%を保つようにエチレンを更に供
給すること以外は同様にしてプロビレンーエチレン共重
合を行い、プロピレンーエチレン共重合体を得た. 比較例7 実施例6の(2)において、エチレンおよびスチレンス
による重合処理を省略して固体生成物(IV)を固体生
成物(V)相当物とすること以外は同様はしてチタン含
有担持型触媒成分を得た。
After suspending the entire amount of the solid product (rV) in a toluene solution containing 150 moles of methylaluminoxane obtained in (1) above, 145 g of diphenyldimethoxysilane was added, and then 120 Nj! of ethylene was added. was added and polymerization was carried out at 30°C for 1 hour. After the reaction time had elapsed, unreacted ethylene was removed, 4.7 kg of styrene was added, and polymerization was carried out at 35°C for 2 hours. After the reaction was completed, the supernatant liquid was removed, 20 liters of toluene was added, and the supernatant liquid was removed by decantation, which was repeated three times.Then, the solid product was washed with 20 ft of n-hexane and polymerized with ethylene and styrene. V) was obtained. The total amount of the solid product (V) was dissolved in 10% of 1,2-dichloroethane.
Add 0.4 kg of diisobutyl phthalate together with 10 λ of titanium tetrachloride diluted with 1, react at 100°C for 2 hours with stirring, remove the liquid phase by decantation at the same temperature, and add 1,2-dichloroethane again. toj2
, titanium tetrachloride lOJ2 was added, and while stirring 100
After reacting at ℃ for 2 hours, a solid portion was collected by hot filtration, washed with n-hexane, and dried to obtain a titanium-containing supported catalyst component ('/I). The titanium-containing supported catalyst component (
The ethylene polymer block content in V1) is 11.8!
i amount%, styrene polymer block content is 29.4! !
% by weight, and the titanium content was 2.01% by weight. (3) In (3) of Example 4, the titanium-supported catalyst component (V
A preactivated catalyst component was obtained in the same manner except that [) was used. [4] In [4] of Example 4, the preactivated catalyst component obtained in the above (3) is used as the preactivated catalyst component, and during the gas phase polymerization of propylene, the Propylene-ethylene copolymerization was carried out in the same manner except that ethylene was further supplied so that the concentration was maintained at 0.2% by volume to obtain a propylene-ethylene copolymer. Comparative Example 7 A titanium-containing supported type was prepared in the same manner as in (2) of Example 6, except that the polymerization treatment with ethylene and styrene was omitted and the solid product (IV) was made equivalent to the solid product (V). A catalyst component was obtained.

以後は、該チタン含有担持型触媒成分をチタン含有固体
触媒成分として用いること以外は実施例6の(3)、[
4]と同様にしてプロビレンーXチレン共重合体を得た
. 以上の実施例および比較例のチタン含有固体触媒成分条
件および結果を表に示す. 〔発明の効果〕 本発明の主要な効果は、フィルムにした際にもボイドの
発生が歩ない、透明性と結晶性に著しく優れたオレフィ
ン重合体が、製造上の問題を何等生じることなく安定し
て得られることである.前述した実施例で明らかなよう
に、本発明の方法によれば製造上の問題もなく、長期間
の安定生産が可能である.また得られたオレフィン重合
体を用いて製造したフィルムの内部ヘーズも2.0%〜
4.0%であり、本発明に係る多段重合処理を施してい
ない公知の触媒成分を使用して得られた通常のオレフィ
ン重合体を用いて製造したフィルムの約9%〜約12%
に比べて著しく高い透明性を有する.結晶化温度につい
ても約8℃〜約1l℃上昇しており、著しく結晶性が向
上した結果、曲げ弾性率も向上している.(実施例1〜
6、比較例1.5〜7参照)
Thereafter, except for using the titanium-containing supported catalyst component as the titanium-containing solid catalyst component, (3) and [
4], a propylene-X tyrene copolymer was obtained. The titanium-containing solid catalyst component conditions and results of the above examples and comparative examples are shown in the table. [Effects of the Invention] The main effects of the present invention are that the olefin polymer, which has excellent transparency and crystallinity and does not generate voids even when made into a film, is stable without causing any manufacturing problems. This is what you can get by doing this. As is clear from the examples described above, the method of the present invention allows stable production over a long period of time without any manufacturing problems. In addition, the internal haze of the film produced using the obtained olefin polymer is 2.0%~
4.0%, which is about 9% to about 12% of the film produced using a conventional olefin polymer obtained using a known catalyst component that has not been subjected to the multistage polymerization treatment according to the present invention.
It has significantly higher transparency than . The crystallization temperature also increased by about 8°C to about 11°C, and as a result of the marked improvement in crystallinity, the flexural modulus also improved. (Example 1~
6. See Comparative Examples 1.5 to 7)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法を説明するための製造工程図(
フローシ一ト)である.
FIG. 1 is a manufacturing process diagram (
flow sheet).

Claims (1)

【特許請求の範囲】 [1](1)チタン含有固体触媒成分と、(2)有機ア
ルミニウム化合物(A_1)、および必要に応じて、(
3)電子供与体(B_1)からなる触媒を用いてオレフ
ィンを重合させてオレフィン重合体を製造する方法にお
いて、 (1)チタン含有固体触媒成分として該チタン含有固体
触媒成分の製造途中で有機アルミニウム化合物(A_2
)と水との反応生成物(A_3)の存在下、直鎖オレフ
ィンおよびスチレンで重合処理し、更に後続の工程を経
て得られたチタン含有固体触媒成分を用いることを特徴
とするオレフィン重合体の製造方法。 [2]チタン含有固体触媒成分として、有機アルミニウ
ム化合物(A_4)、若しくは有機アルミニウム化合物
(A_4)と電子供与体(B_2)との反応生成物(
I )に四塩化チタンを反応させて得られた固体生成物(
II)を、有機アルミニウム化合物(A_2)と水との反
応生成物(A_3)の存在下、直鎖オレフィンおよびス
チレンでそれぞれ1回以上、多段に重合処理し、更に電
子供与体(B_3)と電子受容体とを反応させて得られ
る三塩化チタン組成物(III)を用いる特許請求の範囲
第1項に記載の製造方法。 [3]チタン含有固体触媒成分として、液状化したマグ
ネシウム化合物と析出剤、ハロゲン化合物、電子供与体
(B_4)およびチタン化合物(T_1)を接触して得
られた固体生成物(IV)を、有機アルミニウム化合物(
A_2)と水との反応生成物(A_3)の存在下、直鎖
オレフィンおよびスチレンでそれぞれ1回以上、多段に
重合処理し、固体生成物(V)を得、更にハロゲン化チ
タン化合物(T_2)を反応させて得られるチタン含有
担持型触媒成分(VI)を用いる特許請求の範囲第1項に
記載の製造方法。 [4]有機アルミニウム化合物(A_1)として、一般
式がAlR^1_pR^2_p′X_3_−_(_p_
+_p′_)(式中、R^1、R^2はアルキル基、シ
クロアルキル基、アリール基等の炭化水素基またはアル
コキシ基を、Xはハロゲンを表わし、またp、p′は0
<p+p′≦3の任意の数を表わす。)で表わされる有
機アルミニウム化合物を用いる特許請求の範囲第1項に
記載の製造方法。 [5]有機アルミニウム化合物(A_2)として、トリ
メチルアルミニウムを用いる特許請求の範囲第1項に記
載の製造方法。 [6]チタン含有固体触媒成分に代えて、チタン含有固
体触媒成分と有機アルミニウム化合物 (A_1)、および必要に応じて電子供与体(B_1)
を組み合せ、このものに少量のオレフィンを反応させて
予備活性化した触媒成分を用いる特許請求の範囲第1項
に記載の製造方法。
[Scope of Claims] [1] (1) a titanium-containing solid catalyst component, (2) an organoaluminum compound (A_1), and, if necessary, (
3) In a method for producing an olefin polymer by polymerizing an olefin using a catalyst consisting of an electron donor (B_1), (1) an organoaluminum compound is added as a titanium-containing solid catalyst component during the production of the titanium-containing solid catalyst component; (A_2
) and water in the presence of a reaction product (A_3), a linear olefin and styrene are polymerized, and a titanium-containing solid catalyst component obtained by further subsequent steps is used. Production method. [2] As a titanium-containing solid catalyst component, an organoaluminum compound (A_4) or a reaction product of an organoaluminum compound (A_4) and an electron donor (B_2) (
A solid product obtained by reacting titanium tetrachloride with I) (
II) is polymerized in multiple stages with linear olefin and styrene at least once each in the presence of the reaction product (A_3) of the organoaluminum compound (A_2) and water, and then polymerized with the electron donor (B_3) and electron The manufacturing method according to claim 1, which uses titanium trichloride composition (III) obtained by reacting with a receptor. [3] As a titanium-containing solid catalyst component, a solid product (IV) obtained by contacting a liquefied magnesium compound with a precipitating agent, a halogen compound, an electron donor (B_4), and a titanium compound (T_1) is used as an organic Aluminum compounds (
In the presence of the reaction product (A_3) of A_2) and water, polymerization is performed in multiple stages, one or more times each with a linear olefin and styrene to obtain a solid product (V), and further a halogenated titanium compound (T_2) The manufacturing method according to claim 1, using the titanium-containing supported catalyst component (VI) obtained by reacting the titanium-containing supported catalyst component (VI). [4] As the organoaluminum compound (A_1), the general formula is AlR^1_pR^2_p'X_3_-_(_p_
+_p'_) (wherein R^1 and R^2 represent a hydrocarbon group such as an alkyl group, cycloalkyl group, or aryl group or an alkoxy group, X represents a halogen, and p and p' are 0
<p+p'≦3. ) The manufacturing method according to claim 1, using an organoaluminum compound represented by: [5] The manufacturing method according to claim 1, wherein trimethylaluminum is used as the organoaluminum compound (A_2). [6] Instead of the titanium-containing solid catalyst component, a titanium-containing solid catalyst component and an organoaluminum compound (A_1), and if necessary, an electron donor (B_1)
2. The manufacturing method according to claim 1, which uses a catalyst component which is preactivated by combining the above components and reacting this component with a small amount of olefin.
JP23258389A 1989-09-07 1989-09-07 Preparation of olefin polymer Pending JPH0395208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23258389A JPH0395208A (en) 1989-09-07 1989-09-07 Preparation of olefin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23258389A JPH0395208A (en) 1989-09-07 1989-09-07 Preparation of olefin polymer

Publications (1)

Publication Number Publication Date
JPH0395208A true JPH0395208A (en) 1991-04-19

Family

ID=16941631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23258389A Pending JPH0395208A (en) 1989-09-07 1989-09-07 Preparation of olefin polymer

Country Status (1)

Country Link
JP (1) JPH0395208A (en)

Similar Documents

Publication Publication Date Title
JPS58219207A (en) Polypropylene having high rigidity and melt viscoelasticity and preparation thereof
US5173540A (en) Catalyst component for producing highly crystalline olefin polymers and a process for producing the same
JP2554538B2 (en) Method for producing polypropylene
JPH01311106A (en) Production of titanium catalyst component for polymerization of olefin
JPH0395208A (en) Preparation of olefin polymer
JPH075803B2 (en) Method for producing highly stereoregular polypropylene composition
JP2676266B2 (en) Method for producing polypropylene composition
JP2657666B2 (en) Method for producing titanium catalyst component for α-olefin polymerization
JP2562947B2 (en) Polypropylene resin composition, its production method and use
JP2950426B2 (en) Polypropylene, its production method and molded article
JP2549915B2 (en) Supported titanium catalyst component for producing olefin polymer and method for producing the same
JP2671018B2 (en) Titanium catalyst component for α-olefin polymerization and method for producing the same
JPH01313509A (en) Production of titanium catalyst component for olefin polymerization
JP2733793B2 (en) Method for producing polypropylene
JP2589582B2 (en) Mg-containing titanium trichloride composition for olefin polymerization and method for producing the same
JPH01278502A (en) Titanium catalyst component for polymerization of olefin and production thereof
JPH02102243A (en) Polypropylene composition and preparation thereof and molded item thereof
JPH01262120A (en) Oriented polypropylene film
JPH01279940A (en) Polypropylene resin composition
JPH02135203A (en) Titanium catalyst component for producing olefinic polymer and production thereof
JPH0297507A (en) Titanium catalyst component for producing polyolefin and manufacture thereof
JPH0696654B2 (en) Polypropylene composition, method for producing the same, and molded article
JPH0321608A (en) Production of highly rigid polypropylen
JPH02129247A (en) Polypropylene composition and its production and molding
JPH01306410A (en) Production of high rigid polypropylene