Nothing Special   »   [go: up one dir, main page]

JPH0369595A - Production of diamond coated member - Google Patents

Production of diamond coated member

Info

Publication number
JPH0369595A
JPH0369595A JP20632689A JP20632689A JPH0369595A JP H0369595 A JPH0369595 A JP H0369595A JP 20632689 A JP20632689 A JP 20632689A JP 20632689 A JP20632689 A JP 20632689A JP H0369595 A JPH0369595 A JP H0369595A
Authority
JP
Japan
Prior art keywords
diamond
film
layer
carbon monoxide
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20632689A
Other languages
Japanese (ja)
Inventor
Toshimichi Ito
伊藤 利通
Atsuhiko Masuda
増田 敦彦
Nariyuki Hayashi
林 成幸
Masaya Tsubokawa
坪川 雅也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP20632689A priority Critical patent/JPH0369595A/en
Publication of JPH0369595A publication Critical patent/JPH0369595A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To improve adhesion to a substrate and wear resistance by forming plural diamond layers including at least a base layer and a surface layer on the surface of a silicon nitride-based sintered body with plural kinds of prescribed mixed gases. CONSTITUTION:A first mixed gas consisting of >=10vol.% CO and H2 is excited to produce a first active gas. This active gas is brought into contact with the surface of a base material whose surface layer is made of a silicon nitride-based sintered body to form a diamond layer. A second mixed gas consisting of <10vol.% CO and H2 is then excited to produce a second active gas and a diamond layer as a surface layer is formed with the active gas.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ダイヤモンド類被覆部材の製造方法に関する
。さらに詳しく言うと、基材との密着性に優れたダイヤ
モンド類膜を早い成膜速度で製造することのできるダイ
ヤモンド類被覆部材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a diamond-coated member. More specifically, the present invention relates to a method for producing a diamond-based member coated with a diamond-based film that can produce a diamond-based film with excellent adhesion to a base material at a high deposition rate.

[従来の技術] ダイヤモンド類の薄膜は、硬度、耐摩耗性、電気絶縁性
、熱伝導性、赤外線透過性および固体潤滑性などに優れ
ていることから、たとえば切削工具類、研磨材、耐摩耗
性機械部品、光学部品等の各種部材のハードコート材や
電気・電子材料などに利用されつつある。
[Prior Art] Diamond thin films have excellent hardness, abrasion resistance, electrical insulation, thermal conductivity, infrared transparency, solid lubricity, etc., and are therefore used, for example, in cutting tools, abrasive materials, and wear-resistant materials. It is being used as a hard coat material for various parts such as mechanical parts and optical parts, as well as electrical and electronic materials.

ところで、このタイヤセント類の薄膜て被覆してなるダ
イヤモンド類被覆部材か所期の性能を発揮するためには
、基材とダイヤモンド類の薄膜との密着性か優れていな
ければならない。
By the way, in order for a diamond-based coated member formed by coating with a thin film of tire cents to exhibit the desired performance, the adhesion between the base material and the diamond-based thin film must be excellent.

そこで、ダイヤモンド類の薄膜と基材との密着性を向」
ニさせることを目的として従来から、種々の提案がなさ
れている。
Therefore, we have improved the adhesion between the diamond thin film and the base material.
Various proposals have been made in the past for the purpose of achieving this.

特公昭Go−59086号公報には、基材であるsi。Japanese Patent Publication No. Sho Go-59086 discloses Si as a base material.

N4系素材の表面に膜厚0.5〜5oJLmのダイヤモ
ンド膜を形成する技術が開示されている。しかしながら
、この公報にはダイヤモンド類膜の合成条件に関する記
述がない。
A technique for forming a diamond film with a film thickness of 0.5 to 5 oJLm on the surface of an N4-based material has been disclosed. However, this publication does not describe the conditions for synthesizing the diamond-like film.

たしかに、Si3N4系素材は、比較的ダイヤモンドに
近い熱膨張係数を有するため、wc系超超硬合金どに比
較して密着性にすぐれたものである。しかしながらSi
3N4系素材にダイヤモンドを被覆形成しようとしても
、その成膜速度が非常に遅いという問題点を有している
It is true that the Si3N4 material has a coefficient of thermal expansion relatively close to that of diamond, so it has superior adhesion compared to WC cemented carbide and the like. However, Si
Even if it is attempted to coat a 3N4 material with diamond, the problem is that the film formation rate is extremely slow.

このため、炭素源ガス濃度を高くすることも考えられる
が、十分な性能を有するダイヤモンド被覆を行なうこと
ができず切削工具などへの利用は困難である。また性質
の異なるダイヤモンドの多層被覆も種々提案されている
。(特開昭62196371号公報、特開昭82−24
1898号公報、特開昭83−288994号公報など
)。
For this reason, it is possible to increase the concentration of the carbon source gas, but it is difficult to provide diamond coating with sufficient performance, making it difficult to use it for cutting tools and the like. Various multilayer coatings of diamonds with different properties have also been proposed. (Unexamined Japanese Patent Publication No. 62196371, Unexamined Japanese Patent Publication No. 82-24
1898, JP-A-83-288994, etc.).

しかしながら5i3Nn系素材に対して、成膜速度が早
く、しかも表面硬度、耐摩耗性などの表面特性を同時に
解決する方法は未だ提案されていない。
However, for 5i3Nn-based materials, no method has yet been proposed that allows rapid film formation and simultaneously improves surface properties such as surface hardness and wear resistance.

本発明の目的は、基材に対するダイヤモンド類膜の密着
性が良好で、表層部が耐摩耗性に特に優れた性質を有し
、かつ十分な膜厚のダイヤモンド類膜を早い成膜速度で
形成することのできる、窒化ケイ素系、ダイヤモンド類
被覆部材の製造方法を提供することにある。
The object of the present invention is to form a diamond-like film that has good adhesion to a substrate, has a surface layer that has particularly excellent wear resistance, and has a sufficient thickness at a high deposition rate. An object of the present invention is to provide a method for manufacturing a silicon nitride-based, diamond-coated member that can be coated with silicon nitride.

[課題を解決するための手段コ 前記目的を遠戚するための本願請求項1に記載の発明は
、少なくとも表層部が窒化ケイ素系焼結体からなる基材
の表面に、一酸化炭素の濃度が10容量%以上である一
酸化炭素と水素とを有する第一混合ガスを励起して得ら
れる活性ガスを基材に接触させてダイヤモンド類層を形
成し、一酸化炭素の濃度が10容量%未満である一酸化
炭素と水素とを有する第二混合ガスを励起して得られる
活性ガスて表層部ダイヤモンド層を形成することを特徴
とするダイヤモンド類被覆部材の製造方法であり、 本願請求項2に記載の発明は、前記混合ガス中の一酸化
炭素の濃度を連続的にまたは断続的に減少させてなる前
記請求項1に記載のダイヤモンド類被覆部材の製造方法
であり、 本願請求項3に記載の発明は、ダイヤモンド類被覆部材
のダイヤモンド類膜全体の膜厚か0.5〜1100pて
あり、最上ダイヤセント類膜の膜厚か、タイヤセント類
膜全体の膜厚の50%以下である前記請求項1に記載の
ダイヤモンド類被覆部材の製造方法である。
[Means for Solving the Problems] The invention according to claim 1 of the present application, which is a distant relative of the above object, provides a method for reducing the concentration of carbon monoxide on the surface of a base material, at least the surface layer of which is made of a silicon nitride-based sintered body. An activated gas obtained by exciting a first mixed gas containing carbon monoxide and hydrogen having a carbon monoxide concentration of 10% by volume or more is brought into contact with a substrate to form a diamond layer, and the carbon monoxide concentration is 10% by volume. 2. A method for manufacturing a diamond-coated member, characterized in that a surface diamond layer is formed using an active gas obtained by exciting a second mixed gas containing carbon monoxide and hydrogen that is less than The invention described in claim 3 is a method for manufacturing a diamond-like coated member according to claim 1, wherein the concentration of carbon monoxide in the mixed gas is continuously or intermittently reduced. In the described invention, the thickness of the entire diamond-like film of the diamond-like coated member is 0.5 to 1100p, and the thickness of the uppermost diamond-like film is 50% or less of the thickness of the entire tire cent-like film. A method of manufacturing a diamond-like coated member according to claim 1.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

一基材 本発明における窒化ケイ素系焼結体とは、窒化ケイ素を
主成分とする焼結体をいう。窒化ケイ素としては通常、
Si3N4を使用することができる。
A base material The silicon nitride-based sintered body in the present invention refers to a sintered body containing silicon nitride as a main component. Silicon nitride is usually
Si3N4 can be used.

前記焼結体は主成分たる窒化ケイ素と、AfL203 
、AIN、MgO,Cab、Y203Zr02 、Ti
O2、B4 C,TiN、WCなどの焼結助剤と、必要
に応じたウィスカー等の強化材とを適宜に混合して公知
の方法で焼結することにより得ることができる。
The sintered body contains silicon nitride as a main component and AfL203.
, AIN, MgO, Cab, Y203Zr02, Ti
It can be obtained by appropriately mixing a sintering aid such as O2, B4C, TiN, or WC, and reinforcing material such as whiskers as required, and sintering the mixture by a known method.

この焼結体は公知の焼結法により製造することができ、
中でもホットプレス法()fP)、熱1177等方圧成
形法(HIP)、ガス圧焼結法などの加圧焼結法が好ま
しい。
This sintered body can be manufactured by a known sintering method,
Among these, pressure sintering methods such as hot press method ()fP), heat 1177 isostatic pressing method (HIP), and gas pressure sintering method are preferred.

基材は、全部をこの焼結体で構成してもよいし、基材の
表層部のみをこの焼結体で構成し、それ以外の部分は他
の公知の材料で構成しても良い。サラニは、Si3N4
系材料をコーティングして表層部を形成したものであっ
てもよい。
The entire base material may be composed of this sintered body, or only the surface layer of the base material may be composed of this sintered body, and the other parts may be composed of other known materials. Sarani is Si3N4
The surface layer portion may be formed by coating a base material.

ここにいう公知の材料とは、たとえばシリコン、マンガ
ン、バナジウム、タリウム、アルミニウム、チタン、タ
ングステン、モリブデン、ゲルマニウム、クロム、ポロ
ンなどの金属1、半金属、これらの酸化物、窒化物、お
よび炭化物、これらの合金などがある。
The known materials here include metals such as silicon, manganese, vanadium, thallium, aluminum, titanium, tungsten, molybdenum, germanium, chromium, and poron, semimetals, and their oxides, nitrides, and carbides; There are alloys of these.

また、超硬工具類などに利用する場合の好ましい公知の
材料としては、たとえばWC−Co系合金、WC−Ti
C−Co系合金、WC−TiCTaC−Co系合金、W
C−TiN−Co系合金、W C−T i C−T i
 N −Co系合金、TiN−Ni、Ti N−Ti 
C−Niなどのサーメットなどを挙げることができる。
In addition, preferred known materials for use in cemented carbide tools include, for example, WC-Co alloy, WC-Ti
C-Co alloy, WC-TiCTaC-Co alloy, W
C-TiN-Co alloy, W C-T i C-T i
N-Co alloy, TiN-Ni, TiN-Ti
Examples include cermets such as C-Ni.

−ダイヤモンド類層の形成− 本発明においては、前記窒化ケイ素系焼結体の表面に、
少なくとも二層のダイヤモンド類膜を形成することが重
要である。すなわち、窒化ケイ素系焼結体に対する密着
性がより一層高められたダイヤモンド類で窒化ケイ素系
焼結体に接する層を高速度で形成し、表層部は、より一
層耐摩耗性の改善されたダイヤモンド層で形成すること
により、ダイヤモンド類膜全体として、基材に対するよ
り一層向上した密着性とより一層向上した耐摩耗性とを
併せ持たせるように、基材表面に少なくとも二層のダイ
ヤモンド類膜を形成するのである。したがって、本発明
においては、基材表面に接すると共に密着性と成膜速度
の改善されたダイヤモンド層と耐摩耗性の改善された表
層部とを有する。なお、ここで、「層」なる表現をした
が、本発明においては、両層の間に明確な界面を有する
場合も、あるいは明確な界面を右しない場合についても
、「層」を形成しているとする。
- Formation of diamond layer - In the present invention, on the surface of the silicon nitride-based sintered body,
It is important to form at least two layers of diamond-like films. In other words, the layer that is in contact with the silicon nitride sintered body is formed at high speed using diamonds that have even higher adhesion to the silicon nitride sintered body, and the surface layer is made of diamond that has even higher wear resistance. At least two layers of diamond-like films are formed on the surface of the base material so that the diamond-like film as a whole has both further improved adhesion to the base material and further improved wear resistance. It forms. Therefore, in the present invention, the diamond layer is in contact with the surface of the base material and has improved adhesion and film formation rate, and the surface layer portion has improved wear resistance. Although the expression "layer" is used here, in the present invention, a "layer" is formed even when there is a clear interface between the two layers, or when there is no clear interface between the two layers. Suppose there is.

前記ダイヤモンド類層は、一酸化炭素の濃度が10容量
%以上、好ましくは10〜80容量%である一酸化炭素
と水素とを有する第一混合ガスを励起して得られるプラ
ズマガスを基材に接触させることにより、形成される。
The diamond-like layer is made of a plasma gas obtained by exciting a first mixed gas containing carbon monoxide and hydrogen in which the concentration of carbon monoxide is 10% by volume or more, preferably 10 to 80% by volume, as a base material. It is formed by bringing it into contact.

前記第一混合ガス中の一酸化炭素ガスの濃度がlO容量
%未満であると、ダイヤモンド類の形成に長時間を要す
るようになるので生産性の見地からして好ましくない。
If the concentration of carbon monoxide gas in the first mixed gas is less than 10% by volume, it will take a long time to form diamonds, which is not preferable from the viewpoint of productivity.

なお、第一混合ガス中の一酸化炭素の濃度は、10容量
%以上である限り、ダイヤモンド類層の形成途中で、種
々に変化しても良い。具体的には、ダイヤモンド類層の
形成期間中、第一混合ガス中の一酸化炭素ガスの濃度は
10容量%以上の一定値であっても良いし、第一混合ガ
ス中の一酸化炭素ガスの初期濃度がダイヤモンド類層の
形成期間中に徐々に低下するように一酸化炭素ガスの濃
度を調節し、ダイヤモンド類層の形成終期にはほぼ10
容量%の一酸化炭素ガスの濃度になるように、その濃度
を調節しても良い。
Note that the concentration of carbon monoxide in the first mixed gas may vary variously during the formation of the diamond layer as long as it is 10% by volume or more. Specifically, during the formation period of the diamond layer, the concentration of carbon monoxide gas in the first mixed gas may be a constant value of 10% by volume or more, or the concentration of carbon monoxide gas in the first mixed gas may be a constant value of 10% by volume or more. The concentration of carbon monoxide gas is adjusted so that the initial concentration of carbon monoxide gradually decreases during the formation period of the diamond layer, and the concentration of carbon monoxide gas is adjusted so that the initial concentration of carbon monoxide gas gradually decreases during the formation period of the diamond layer.
The concentration may be adjusted so that the concentration of carbon monoxide gas is % by volume.

なお、本発明の目的を阻害しない範囲で、この第一混合
ガス中には他のガスが含有されていてもよい。
Note that this first mixed gas may contain other gases within a range that does not impede the object of the present invention.

他のガスとしては、たとえば、N2.He、Ne、Ar
等の不活性ガス等を挙げることができる。
Other gases include, for example, N2. He, Ne, Ar
Examples include inert gases such as.

いずれにしても、前記第一混合ガスは、熱フイラメント
法(EACVD法を含む)、直流プラズマCVD法(熱
プラズマ法も含む)、高周波プラズマCVD法(熱プラ
ズマ法も含む)、マイクロ波プラズマCVD法(有[場
−CVD法、ECR−CVD法も含む)、燃焼炎法、光
CVD法、スパッタリング法などで励起することができ
る。
In any case, the first mixed gas can be produced using a thermal filament method (including an EACVD method), a direct current plasma CVD method (including a thermal plasma method), a high frequency plasma CVD method (including a thermal plasma method), or a microwave plasma CVD method. Excitation can be performed by a method such as a method (including field-CVD method and ECR-CVD method), a combustion flame method, a photo-CVD method, a sputtering method, or the like.

なかでも本発明の目的に好ましいのは、各種プラズマC
VD法である。
Among them, various types of plasma C are preferable for the purpose of the present invention.
This is the VD method.

第一混合ガスを前記励起方法で励起して得られる活性ガ
スを基材に接触させる際の、基材の表面温度は、前記第
一混合ガスの励起方法により異なるので一層に決定する
ことはできないが、通常、300〜1,200℃、好ま
しくは800〜1,100℃である。
The surface temperature of the base material when the active gas obtained by exciting the first mixed gas using the excitation method is brought into contact with the base material cannot be further determined because it differs depending on the method of excitation of the first mixed gas. is usually 300 to 1,200°C, preferably 800 to 1,100°C.

この表面温度が、300℃より低いと、ダイヤモンド類
の析出速度が遅くなったり、析出物の結晶性、均質性が
失われたりする。一方、1,200℃より高くしても、
それに見合った効果は奏されず、エネルギー効率の点で
不利になるとともに、形成されたダイヤモンドがエツチ
ングされてしまうことがある。
If this surface temperature is lower than 300° C., the precipitation rate of diamonds will be slowed down, and the crystallinity and homogeneity of the precipitates will be lost. On the other hand, even if the temperature is higher than 1,200℃,
This does not have a commensurate effect, resulting in disadvantages in terms of energy efficiency, and the diamonds formed may be etched away.

活性ガスを基材表面に接触させる際の反応圧力は、通常
、10−6〜10” torr、好ましくは1O−5t
orr〜800torrである。
The reaction pressure when bringing the active gas into contact with the substrate surface is usually 10-6 to 10" torr, preferably 1O-5t.
orr to 800 torr.

反応圧力が1O−6torrよりも低いと、ダイヤモン
ド類の成膜速度が遅くなったり、ダイヤモンド類が析出
しなくなったりすることがある。
If the reaction pressure is lower than 10-6 torr, the rate of film formation of diamonds may become slow or the diamonds may not precipitate.

一方、103 torrより高くしてもそれに見合った
効果は奏されないことがある。
On the other hand, even if it is made higher than 103 torr, the corresponding effect may not be achieved.

励起ガスを基材に接触させる反応時間は、ダイヤモンド
類層の形成条件やダイヤモンド類層の厚みにより適宜に
決定される。
The reaction time for bringing the excited gas into contact with the base material is appropriately determined depending on the conditions for forming the diamond layer and the thickness of the diamond layer.

ダイヤモンド類層の形成が終了してから、表層部ダイヤ
モンド層を形成する。
After the formation of the diamond layer is completed, a surface diamond layer is formed.

表層部ダイヤモンド膜は、一酸化炭素の濃度が10容量
%未満、好ましくは2容量%以上10容量%未満である
一酸化炭素と水素とを有する第二混合ガスを励起して得
られるプラズマガスを、基材表面に既に形成されである
ダイヤモンド類膜に、接触させることにより、形成され
る。
The surface diamond film uses a plasma gas obtained by exciting a second mixed gas containing carbon monoxide and hydrogen in which the concentration of carbon monoxide is less than 10% by volume, preferably 2% by volume or more and less than 10% by volume. , is formed by bringing it into contact with a diamond-like film that has already been formed on the surface of the base material.

前記第二混合ガス中の一酸化炭素ガスの濃度が10容量
%以上であると、耐摩耗性の向上しないダイヤモンド類
膜が形成される。
If the concentration of carbon monoxide gas in the second mixed gas is 10% by volume or more, a diamond-like film with no improvement in wear resistance is formed.

表層部ダイヤモンド膜の形成に際し、第二混合ガス中の
一酸化炭素の濃度は、10容量%未満である限り、表層
部ダイヤモンド層の形成途中で、種1 々に変化しても良い。具体的には、ダイヤモンド層の形
成期間中、第二混合ガス中の一酸化炭素ガスの濃度は1
0容量%未渦の一定値であっても良いし、第二混合ガス
中の一酸化炭素ガスの初期濃度が表層部ダイヤモンド層
の形成期間中に徐々に低下するように一酸化炭素ガスの
濃度を調節しても良い。
During the formation of the surface diamond layer, the concentration of carbon monoxide in the second mixed gas may vary from species to species during the formation of the surface diamond layer, as long as it is less than 10% by volume. Specifically, during the formation period of the diamond layer, the concentration of carbon monoxide gas in the second mixed gas is 1.
The concentration of carbon monoxide gas may be set to a constant value of 0% by volume without swirling, or the concentration of carbon monoxide gas may be set such that the initial concentration of carbon monoxide gas in the second mixed gas gradually decreases during the formation period of the surface diamond layer. may be adjusted.

また、ダイヤモンド類層形成の終期における第一混合ガ
ス中の一酸化炭素ガス濃度と表層部ダイヤモンド層形成
の初期における第二混合ガス中の一酸化炭素ガス濃度と
を10容量%に一致させておいても良い。この場合は、
第一混合ガス中の一酸化炭素濃度と第二混合ガス中の一
酸化炭素ガス濃度とが連続的に変化しているといえる。
In addition, the carbon monoxide gas concentration in the first mixed gas at the final stage of diamond layer formation and the carbon monoxide gas concentration in the second mixed gas at the initial stage of surface diamond layer formation are made to match 10% by volume. It's okay to stay. in this case,
It can be said that the carbon monoxide concentration in the first mixed gas and the carbon monoxide gas concentration in the second mixed gas are continuously changing.

これとは逆に、ダ□イヤモンド類層形成の終期における
第一混合ガス中の一酸化炭素ガス濃度と表層部ダイヤモ
ンド層形成の初期における第二混合ガス中の一酸化炭素
ガス濃度とを不一致にしておいても良い。
On the contrary, the carbon monoxide gas concentration in the first mixed gas at the final stage of the diamond layer formation is made to be inconsistent with the carbon monoxide gas concentration in the second mixed gas at the early stage of the surface diamond layer formation. You can leave it there.

なお、本発明の目的を阻害しない範囲で、この2 第二混合ガス中には他のガスが含有されていてもよい。Note that these two methods may be used within the scope of not impeding the purpose of the present invention. Other gases may be contained in the second mixed gas.

他のガスとしては、前記ダイヤモンド類層の形成におい
て説明したのと同様である。また、第二混合ガスの励起
手段、基材の温度、反応圧力等についても、前記ダイヤ
モンド類層の形成において説明したのと同様である。
Other gases are the same as those explained in the formation of the diamond layer. Further, the excitation means for the second mixed gas, the temperature of the base material, the reaction pressure, etc. are also the same as those explained in the formation of the diamond layer.

本発明の方法により製造されるダイヤモンド類被覆部材
は、種々の用途に供することができ、とりわけ切削工具
等の加工工具に使用するのが好ましい。
The diamond-like coated member manufactured by the method of the present invention can be used for various purposes, and is particularly preferably used for processing tools such as cutting tools.

加工工具として本発明のダイヤモンド類被覆部材を使用
する場合、ダイヤモンド類層の厚みと表層部ダイヤモン
ド層の厚みとを次のように調整しておくのが好ましい。
When using the diamond-like coated member of the present invention as a processing tool, it is preferable to adjust the thickness of the diamond-like layer and the thickness of the surface diamond layer as follows.

すなわち、第1図に示すように、基材Aの上にはダイヤ
モンド類層Bが形成され、このダイヤモンド類HBの上
には表層部ダイヤモンド層Cが積層形成されている場合
に、ダイヤモンド類層Bの厚みdl  と、表層部ダイ
ヤモンド類層Cの厚みdl との和(dl +d2 )
は、0.57hm 〜100川m、好ましくは、5ルm
〜30pLmが良い。
That is, as shown in FIG. 1, when a diamond layer B is formed on the base material A and a surface diamond layer C is laminated on the diamond layer HB, the diamond layer B is formed on the base material A. The sum of the thickness dl of B and the thickness dl of the surface diamond layer C (dl + d2)
is 0.57hm to 100km, preferably 5km
~30 pLm is good.

ダイヤモンド類層Bの膜厚dl と表層部ダイヤモンド
層Cの膜厚dlとの和(d++d2)が5pm未満であ
ると、膜厚が不十分になり、工具の寿命が短くなり、ダ
イヤモンド類層Bの膜厚dlと表層部ダイヤモンド類層
Cの膜厚dlとの和(dl +d2 )が1100pL
を越えると、被覆形成のコストが大きくなり、またチッ
ピングが起き易くなるからである。
If the sum (d++d2) of the film thickness dl of the diamond-like layer B and the film thickness dl of the surface diamond layer C is less than 5 pm, the film thickness will be insufficient, the life of the tool will be shortened, and the diamond-like layer B The sum (dl + d2) of the film thickness dl and the film thickness dl of the surface diamond-like layer C is 1100 pL.
This is because if it exceeds this, the cost of forming the coating increases and chipping becomes more likely to occur.

なお、 表層部ダイヤモンド層Cの膜厚d2は、ダイヤ
モンド類膜全体の膜厚(d++d2)の50%以下、好
ましくは30%以下である。
The film thickness d2 of the surface diamond layer C is 50% or less, preferably 30% or less of the film thickness (d++d2) of the entire diamond-like film.

[実施例] 次に実施例を挙げて本発明をさらに具体的に説明する。[Example] Next, the present invention will be explained in more detail with reference to Examples.

(実施例1) ダイヤモンド類膜の合成 同一ロットの窒化ケイ素系焼結体からなるチップ(東芝
タンガロイ社製、T P G N 1B030BFX 
920)を基材とし、これをマイクロ波プラズマCVD
装置内の反応室に設置し、次の合成条件でチップの表面
にダイヤモンド類膜を形成させた。
(Example 1) Synthesis of diamond-like film Chips made of silicon nitride-based sintered bodies from the same lot (manufactured by Toshiba Tungaloy Corporation, T P G N 1B030BFX
920) as a base material and microwave plasma CVD
The device was installed in a reaction chamber, and a diamond-like film was formed on the surface of the chip under the following synthesis conditions.

合成条件 まず、第1段目は、原料ガスとしてCo/H。Synthesis conditions First, in the first stage, Co/H is used as the raw material gas.

混合ガスを用い、COガスの濃度を20容量%(一定濃
度)、基材温度をt、ooo℃、反応圧力を40 Ta
rr、合成時間を4時間にし、マイクロ波プラズマCV
D法(2,45GH2,400W)によりチップ上にダ
イヤモンド類膜を形成させた。
Using a mixed gas, the concentration of CO gas was 20% by volume (constant concentration), the substrate temperature was t, ooo°C, and the reaction pressure was 40 Ta.
rr, synthesis time 4 hours, microwave plasma CV
A diamond-like film was formed on the chip by method D (2,45GH2,400W).

次に、第2段目は、原料ガスとしてCO/ H2混合ガ
スを用い、COガスの濃度を5%(一定値)、基材温度
を1,000℃、反応圧力を40Torr、合成時間を
2時間にし、マイクロ波プラズマCVD法(2,45G
H2,450W)によりチップの表層部にダイヤモンド
膜を形成させた。
Next, in the second stage, CO/H2 mixed gas was used as the raw material gas, the concentration of CO gas was 5% (constant value), the substrate temperature was 1,000°C, the reaction pressure was 40 Torr, and the synthesis time was 2. Microwave plasma CVD method (2,45G
A diamond film was formed on the surface layer of the chip by heating (H2, 450 W).

置塵 以上のようにして得られたダイヤモンド類膜全体(最下
層+最上層)の膜厚は12pmであっ 5 た。
The thickness of the entire diamond-like film (bottom layer + top layer) obtained as described above was 12 pm.

切削試験 次に、」二記の条件で得られたダイヤモンド類膜付きチ
ップで、以下の条件で被切削材を切削した。
Cutting Test Next, a workpiece was cut using the diamond-like film-coated tip obtained under the conditions described in Section 2 under the following conditions.

切削条件 ■チップ形状: TPGN1130308■切削速度V
 : 100m/win ■切り込みd:1mm ■送りf : 0.085mm ■形式:wet ■被削材:Ti−6A文−4■ 切削結果 逃げ面の摩耗は、80分後で1l107pであった。
Cutting conditions ■Chip shape: TPGN1130308 ■Cutting speed V
: 100m/win ■Depth of cut: 1mm ■Feed f: 0.085mm ■Format: wet ■Workpiece material: Ti-6A pattern-4■ Cutting results: flank wear was 1l107p after 80 minutes.

(比較例1) ダイヤモンド類膜の合成 実施例1と同一の基材を使用して、これをマイクロ波プ
ラズマCVD装置内の反応室に設置し、次の合成条件で
チップの表面にダイヤモンド類膜 6 を形成させた。
(Comparative Example 1) Synthesis of Diamond-like Film Using the same base material as in Example 1, it was placed in a reaction chamber in a microwave plasma CVD apparatus, and a diamond-like film was formed on the surface of the chip under the following synthesis conditions. 6 was formed.

合成条件 原料ガスとしてCO/H2混合ガスを用い、COガスの
濃度を20%、基材温度を1,000℃、反応圧力を4
0Torr、合成時間を6時間とし、マイクロ波プラズ
マCVD法(2,45GH2,400W)によりチップ
上に一層のダイヤモンド類膜を形成させた。
Synthesis conditions CO/H2 mixed gas was used as the raw material gas, the concentration of CO gas was 20%, the substrate temperature was 1,000°C, and the reaction pressure was 4.
A single diamond-like film was formed on the chip by microwave plasma CVD (2,45 GH2, 400 W) at 0 Torr and for 6 hours for synthesis time.

展長 以上のようにして得られたダイヤモンド類膜の膜厚は1
4ルmであった。
The thickness of the diamond-like film obtained as described above is 1
It was 4 m.

切削試験 次に、上記の条件で得られたチップを実施例1と同様の
条件で切削したところ、逃げ面の摩耗は80分後で28
0Ji、mに達した。
Cutting test Next, the chip obtained under the above conditions was cut under the same conditions as in Example 1, and the wear on the flank surface was 28% after 80 minutes.
It reached 0Ji,m.

(比較例2) ダイヤモンド類膜の合成 実施例1と同一の基材を使用し、これをマイクロ波プラ
ズマCVD装置内の反応室に設置し、次の合成条件でチ
ップの表面に一層のダイヤモンド類膜を形成させた。
(Comparative Example 2) Synthesis of diamond-based film The same base material as in Example 1 was used, and this was placed in a reaction chamber in a microwave plasma CVD apparatus, and a layer of diamond-based film was formed on the surface of the chip under the following synthesis conditions. A film was formed.

企裏条丑 原料ガスとしてCo/H2混合ガスを用い、COガスの
濃度を5%、基材温度を1.000℃、反応圧力を40
Torr、合成時間を6時間とし、マイクロ波プラズマ
(2,45GH2,450W)によりチップ上にダイヤ
モンド類膜を形成させた。
Using a Co/H2 mixed gas as the raw material gas, the concentration of CO gas was 5%, the substrate temperature was 1.000°C, and the reaction pressure was 40°C.
Torr, the synthesis time was set to 6 hours, and a diamond-like film was formed on the chip by microwave plasma (2,45GH2,450W).

巖長 以上のようにして得られたダイヤモンド類膜の膜厚は6
井mであった。
The thickness of the diamond-like film obtained in this manner is 6.
It was Im.

切削試験 次に、上記の条件で得られたチップを実施例1と同様の
条件で切削したところ、60分切削後の時点で、ダイヤ
モンド膜の剥離が見られた。
Cutting Test Next, the chip obtained under the above conditions was cut under the same conditions as in Example 1, and peeling of the diamond film was observed after 60 minutes of cutting.

(実施例2) ダイヤモンド類膜の合成 実施例1と同一のチップを基材として、これをマイクロ
波プラズマCVD装置内の反応室に設置し、次の合成条
件でチップの表面にダイヤモンド類膜を形成させた。
(Example 2) Synthesis of a diamond-like film Using the same chip as in Example 1 as a base material, it was placed in a reaction chamber in a microwave plasma CVD apparatus, and a diamond-like film was formed on the surface of the chip under the following synthesis conditions. formed.

脅威条件 まず、第1段目は、原料ガスとしてCO/ H?混合ガ
スを用い、COO20濃度を30%(一定値)、基材温
度を1,000℃、反応圧力を40Torr、合成時間
を4時間とし、マイクロ波プラズマCVD法(2,45
GH2,380W)によりチップ上にダイヤモンド類膜
を形成させた。
Threat conditions First, in the first stage, CO/H? Using a mixed gas, the COO20 concentration was 30% (constant value), the substrate temperature was 1,000°C, the reaction pressure was 40 Torr, the synthesis time was 4 hours, and the microwave plasma CVD method (2,45
A diamond-like film was formed on the chip using GH2, 380W).

次に、第2段目は、原料ガスとしてCO/H2混合ガス
を用い、COO20濃度を7%、基材温度を1.000
℃、反応圧力を40Torr、合成時間を2時間とし、
マイクロ波プラズマCVD法(2,45GH2,450
W)によりチップの最下層上にダイヤモンド膜を形成さ
せた。
Next, in the second stage, a CO/H2 mixed gas was used as the raw material gas, the COO20 concentration was 7%, and the substrate temperature was 1.000.
℃, the reaction pressure was 40 Torr, and the synthesis time was 2 hours.
Microwave plasma CVD method (2,45GH2,450
A diamond film was formed on the bottom layer of the chip using W).

朦1 以上のようにして得られたダイヤモンド類膜全体の膜厚
は15gmであった。
朦1 The total thickness of the diamond-like film obtained as described above was 15 gm.

切削試験 次に、」二記の条件で得られたチップを実施例1と同様
の条件で切削したところ、逃げ面の摩耗は80分後で1
307Lmであった。
Cutting Test Next, when the chip obtained under the conditions described in Section 2 was cut under the same conditions as in Example 1, the wear on the flank surface was 1 after 80 minutes.
It was 307 Lm.

9 (実施例3) ダイヤモンド類膜の合成 実施例1と同一のチップを基材として、これをマイクロ
波プラズマCVD装置内の反応室に設置し、次の脅威条
件でチップの表面にダイヤモンド類膜を形成させた。
9 (Example 3) Synthesis of diamond-like film Using the same chip as in Example 1 as a base material, it was placed in a reaction chamber in a microwave plasma CVD apparatus, and a diamond-like film was formed on the surface of the chip under the following threat conditions. formed.

合成条件 まず、第1段目は、原料ガスとしてCO/ H2混合ガ
スを用い、COO20濃度を60%、基材温度を900
℃、反応圧力を40Torr、合成時間を3.5時間と
し、マイクロ波プラズマCVD法(2,45GH2、3
50W)によりチップ上にダイヤモンド類膜を形成させ
た。
Synthesis conditions First, in the first stage, a CO/H2 mixed gas is used as the raw material gas, the COO20 concentration is 60%, and the substrate temperature is 900%.
℃, the reaction pressure was 40 Torr, the synthesis time was 3.5 hours, and the microwave plasma CVD method (2,45GH2, 3
50 W) to form a diamond-like film on the chip.

次に、第2段目は、原料ガスとしてCO/H2混合ガス
を用い、COO20濃度を4%、基材温度を1.000
℃、反応圧力を40Torr、合成時間を2.5時間と
し、マイクロ波プラズマCVD法(2,45GH2,4
50W)によりチップの表層部にダイヤモンド膜を形成
させた。
Next, in the second stage, a CO/H2 mixed gas was used as the raw material gas, the COO20 concentration was 4%, and the substrate temperature was 1.000.
℃, the reaction pressure was 40 Torr, the synthesis time was 2.5 hours, and the microwave plasma CVD method (2,45GH2,4
50 W) to form a diamond film on the surface layer of the chip.

 0 腹遅 以上のようにして得られたダイヤモンド類膜全体の膜厚
は147tmであった。
The thickness of the entire diamond-like film obtained as described above was 147 tm.

切削試験 次に、上記の条件で得られたチップを実施例1と同様の
条件で切削したところ、逃げ面の摩耗は80分後で11
00JLであった。
Cutting test Next, the chip obtained under the above conditions was cut under the same conditions as in Example 1, and the wear on the flank surface was 11 after 80 minutes.
It was 00JL.

(比較例3) ダイヤモンド類膜の合成 COO20濃度を20%、基材温度を1.000℃、合
成時間を30時間にした外は前記実施例2と同様に実施
してチップ上にダイヤモンド類膜を形成させ、次いで合
成時間を10時間にした外は前記実施例2と同様に実施
して表層部にダイヤモンド膜を形成させた。
(Comparative Example 3) Synthesis of a diamond-like film A diamond-like film was formed on a chip in the same manner as in Example 2 except that the COO20 concentration was 20%, the substrate temperature was 1.000°C, and the synthesis time was 30 hours. A diamond film was then formed on the surface layer in the same manner as in Example 2 except that the synthesis time was changed to 10 hours.

朦瀝 以上のようにして得られたダイヤモンド類膜全体の膜厚
はEt5gmであった。
The thickness of the entire diamond-like film obtained as described above was Et5 gm.

切削試験 次に、」二記の条件で得られたチップを実施例1と同様
の条件で切削したところ、5分後、チッピングにより剥
離した。
Cutting Test Next, the chip obtained under the conditions described in Section 2 was cut under the same conditions as in Example 1, and after 5 minutes, it was peeled off by chipping.

[発明の効果] 本発明の製造方法によると、基材に対する密着性が良好
で、表面の耐摩耗性が特に向上したダイヤモンド類膜を
十分な膜厚で短時間に形成することができ、その結果、
耐摩耗性、耐欠損性の高いダイヤモンド被覆工具等に好
適なダイヤモンド類被覆部材を高い生産性の下で提供す
ることができる。
[Effects of the Invention] According to the manufacturing method of the present invention, a diamond-like film having good adhesion to a substrate and particularly improved surface wear resistance can be formed in a sufficient thickness in a short time. result,
A diamond-coated member suitable for diamond-coated tools and the like having high wear resistance and chipping resistance can be provided with high productivity.

したがって、本発明は切削工具、ダイス、耐摩耗部材等
の分野に大きな貢献をするものである。
Therefore, the present invention makes a significant contribution to the fields of cutting tools, dies, wear-resistant members, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法により製造される一例としてのダ
イヤモンド類被覆部材の断面を示す説明図である。
FIG. 1 is an explanatory diagram showing a cross section of a diamond-like coated member as an example manufactured by the method of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも表層部が窒化ケイ素系焼結体からなる
基材の表面に、一酸化炭素の濃度が10容量%以上であ
る一酸化炭素と水素とを有する第一混合ガスを励起して
得られる活性ガスを基材に接触させてダイヤモンド類層
を形成し、一酸化炭素の濃度が10容量%未満である一
酸化炭素と水素とを有する第二混合ガスを励起して得ら
れる活性ガスで表層部ダイヤモンド層を形成することを
特徴とするダイヤモンド類被覆部材の製造方法。
(1) A first mixed gas containing carbon monoxide and hydrogen having a carbon monoxide concentration of 10% by volume or more is excited onto the surface of a base material at least the surface layer of which is made of a silicon nitride-based sintered body. An active gas obtained by contacting a substrate with an active gas to form a diamond layer, and exciting a second mixed gas containing carbon monoxide and hydrogen in which the concentration of carbon monoxide is less than 10% by volume. A method for producing a diamond-coated member, comprising forming a surface diamond layer.
(2)前記混合ガス中の一酸化炭素の濃度を連続的にま
たは断続的に減少させてなる前記請求項1に記載のダイ
ヤモンド類被覆部材の製造方法。
(2) The method for producing a diamond-coated member according to claim 1, wherein the concentration of carbon monoxide in the mixed gas is continuously or intermittently reduced.
(3)ダイヤモンド類被覆部材のダイヤモンド類膜全体
の膜厚が0.5〜100μmであり、第二混合ガスを使
用して形成されるダイヤモンド膜の膜厚が、ダイヤモン
ド類膜全体の膜厚の50%以下である前記請求項1に記
載のダイヤモンド類被覆部材の製造方法。
(3) The total film thickness of the diamond-like film of the diamond-like coated member is 0.5 to 100 μm, and the film thickness of the diamond film formed using the second mixed gas is less than the total film thickness of the diamond-like film. The method for manufacturing a diamond-coated member according to claim 1, wherein the diamond-like coating member has a content of 50% or less.
JP20632689A 1989-08-09 1989-08-09 Production of diamond coated member Pending JPH0369595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20632689A JPH0369595A (en) 1989-08-09 1989-08-09 Production of diamond coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20632689A JPH0369595A (en) 1989-08-09 1989-08-09 Production of diamond coated member

Publications (1)

Publication Number Publication Date
JPH0369595A true JPH0369595A (en) 1991-03-25

Family

ID=16521445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20632689A Pending JPH0369595A (en) 1989-08-09 1989-08-09 Production of diamond coated member

Country Status (1)

Country Link
JP (1) JPH0369595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705271A (en) * 1994-04-01 1998-01-06 Ngk Spark Plug Co., Ltd. Method for producing diamond coated member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705271A (en) * 1994-04-01 1998-01-06 Ngk Spark Plug Co., Ltd. Method for producing diamond coated member
US5863606A (en) * 1994-04-01 1999-01-26 Ngk Spark Plug Co., Ltd. Method for producing diamond coated member

Similar Documents

Publication Publication Date Title
EP0597445B1 (en) Method of making synthetic diamond film
EP0503822B1 (en) A diamond- and/or diamond-like carbon-coated hard material
EP0442303A1 (en) CVD Diamond workpieces and their fabrication
JP3214891B2 (en) Diamond coated members
JPH0621360B2 (en) Diamond-coated sintered bond excellent in peel resistance and method for producing the same
JP3380294B2 (en) Tool with ultra-hard film and method of manufacturing the same
JPH04157157A (en) Production of artificial diamond coated material
JPH0369595A (en) Production of diamond coated member
JPH0425138A (en) Bonding tool
JP2797612B2 (en) Artificial diamond coated hard sintering tool member with high adhesion strength
JPH0542508B2 (en)
JPH03115572A (en) Improvement of adhesive property of synthetic diamond film on a base
JPH08104597A (en) Diamond laminated film and member with the same
JP3235206B2 (en) Diamond cutting tool and manufacturing method thereof
JPS63102801A (en) Diamond tool
JP3212057B2 (en) Diamond coated substrate and method for producing the same
JPH0328373A (en) Diamond-coated member and its production
JP3053652B2 (en) Diamond-containing sintered material
JPH06262525A (en) Grinding wheel and its manufacture
JPH01225774A (en) High-hardness polycrystalline diamond tool
JPH09220610A (en) Wire drawing die for thin wire using polycrystalline diamond synthesized by vapor deposition method
JP3346654B2 (en) Member with diamond-tungsten composite film
JPS6234704A (en) Diamond coated cutting tool
JPH05125542A (en) Manufacture of thin diamond film tool
JP3190090B2 (en) Manufacturing method of diamond coated member