Nothing Special   »   [go: up one dir, main page]

JPH0369516B2 - - Google Patents

Info

Publication number
JPH0369516B2
JPH0369516B2 JP55067555A JP6755580A JPH0369516B2 JP H0369516 B2 JPH0369516 B2 JP H0369516B2 JP 55067555 A JP55067555 A JP 55067555A JP 6755580 A JP6755580 A JP 6755580A JP H0369516 B2 JPH0369516 B2 JP H0369516B2
Authority
JP
Japan
Prior art keywords
fatty acid
glyceride
melting point
separated
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55067555A
Other languages
Japanese (ja)
Other versions
JPS56163196A (en
Inventor
Takaaki Matsuo
Norio Sawamura
Yukio Hashimoto
Wataru Hashida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP6755580A priority Critical patent/JPS56163196A/en
Publication of JPS56163196A publication Critical patent/JPS56163196A/en
Publication of JPH0369516B2 publication Critical patent/JPH0369516B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は油脂の加工法に関するものである。 油脂加工において、水素添加、分別、エステル
交換等は、従来からの最も基本的手段である。こ
のうち、エステル交換方法について脂質分解酵素
を用いる方法が近年新しく示唆されるに至つた
が、この方法は、従来アルカリ金属系触媒等を用
いてのエステル交換では困難であつた、グリセリ
ドの特定部位に特定の脂肪酸を導入することが容
易で、その点、油脂加工技術の自在性を拡大する
可能性をもつ。 エステル交換のこの選択性は、特に、ハードバ
ター、カカオ脂様油脂の製造技術分野に有用で、
2位に結合する脂肪酸がオレイン酸に富む油脂
に、グリセリドの1、3位に対し選択性を有する
脂質分解酵素を作用させて外部脂肪酸源から所望
の脂肪酸を導入すれば、単に全体の脂肪酸組成に
おいてだけでなく、各部位の脂肪酸組成において
も、カカオ脂の組成に、より良く近似させること
を可能にする。 例えば、POP(2−オレオジパルミチン)に富
む油脂画分の1、3位にステアリン酸を導入する
態様や、トリオレインに富む油脂画分の1、3位
にパルミチン酸または及びステアリン酸を導入す
る態様である。 しかしながら、選択的エステル交換の本質は、
選択的に作用する部位間の脂肪酸分布のランダム
化(無秩序化)である。従つて、加工しようとす
る原料油脂と目的とする油脂の間の作用部位の構
成脂肪酸の差が大きければ大きい程、大量の導入
脂肪酸源を必要とし、或は、エステル交換後目的
とする油脂と分離して回収した脂肪酸または脂肪
酸エステルの組成が、導入脂肪酸源と著しく異な
つた組成となつて、再び同一の系の導入脂肪酸源
としては用い難い、という欠点が増大する。ま
た、加工しようとする原料油脂と目的とする油脂
の間の構成脂肪酸の差があまり大きくない場合で
も、目的とする油脂と導入脂肪酸源の間の作用部
位の脂肪酸組成が極めて近似しているとき(例え
ば目的とする油脂の特定部位からある種の脂肪酸
を殆ど除いてしまおうとするとき等)は、やはり
同様に、大量の導入脂肪酸源を必要とする難点が
ある。 選択的エステル交換をカカオ脂様油脂等の結晶
性が重視されるハードバターに適用する際の他の
難点は、エステル交換に付随する加水分解による
収率の低下、及び加水分解物とグリセリドの相溶
性のためのグリセリドの品質阻害である。この問
題は、反応を乾燥系で行うことにより改善される
が、醗酵工業における一般的傾向と同様に、反応
時間の短縮は依然改善されるべき課題の一つであ
る。 このような状態にあつて、選択的エステル交換
反応をハードバター製造の油脂加工技術に適用す
ることについて種々検討する中で、本発明者ら
は、エステル交換反応物から油脂と分離して回収
した脂肪酸または脂肪酸エステルを水素添加し、
これを原料の一部に循環使用することが、加工し
ようとする原料油脂に対する導入脂肪酸源の使用
量を減少させまたハードバター製品の品質上昇・
収率向上に寄与し、さらには反応時間の短縮に有
用であること、等を見出しこの発明を完成したの
である。 この発明は、グリセリドa及びトリグリセリド
と分離できる脂肪酸エステルまたは脂肪酸bとか
らなる混合物cをトリグリセリドの1、3位をエ
ステル交換するが2位をエステル交換しない酵素
を用いて選択的にエステル交換した反応物dか
ら、トリグリセリドと分離できる脂肪酸エステル
または脂肪酸eをグリセリドfと分離後水素添加
し、これgを混合物cの一部として使用する循環
系の反応物dからグリセリドを分離してハードバ
ターを得ることを骨子とする油脂の加工法であ
る。 以下この発明を詳細に説明する。 グリセリドaは前述のように、2位に結合する
脂肪酸がオレイン酸に富む油脂がよい。オリーブ
油、オレイツクサフラワー油、ツバキ油、パーム
油、菜種油(Zero Erucicタイプ)、シア脂、サ
ル脂、マンゴー脂、コーカム、ボルネオタロー、
及びマラバル脂等、そのままのまたは分画した油
脂で、2位に結合する脂肪酸中、オレイン酸が慨
ね70%以上のものがよい。 トリグリセリドと分離できる脂肪酸エステルま
たは脂肪酸bは、導入脂肪酸源であり、パルミチ
ン酸またはステアリン酸を含むものがよい。該脂
肪酸エステルまたは脂肪酸bは遊離脂肪酸の形態
でも、アルコールエステルの形態でもよいが、ト
リグリセリドと分離できるものであるべきであ
る。例えばエステルがジグリセリドのように、ト
リグリセリドと共融混合物となつて通常の工業的
手段で殆ど分離できないものは、製品中に残存し
てハードバターの品質を阻害してしまう欠点があ
る。アルコールエステルは、1価アルコールの
他、プロピレングリコールエステル等の2価アル
コールエステル、ソルビタンエステル等を挙げる
ことができるが、最も好ましいのは、1価で炭素
数1〜4の低級アルコールのエステルである。後
述する炭素数の異なる脂肪酸のエステルを分画除
去する工程を含む製造系においては、エステルb
は1価のアルコールのエステルとしなければ、脂
肪酸の種類によるエステル間の分離が困難とな
る。 グリセリドa及びトリグリセリドと分離できる
脂肪酸エステルまたは脂肪酸bとからなる混合物
cは、可及的乾燥した状態でエステル交換反応に
供するようにするのがよい。混合物c中の水分含
量が高いと、エステル交換に付随して加水分解が
進行し、トリグリセリドとは分離し難いジグリセ
リド含量の生成が増大し、SFIカーブ、クーリン
グカーブ、テンパリングの作業が重視されるハー
ドバターの製造において採用し難い原料となる。
混合物c中の水分含量は、低い方が好ましく例え
ば、0.18重量%以下とするのがよい。かかる乾燥
乃至非加水系において優れた活性を示す酵素剤と
して好ましいものは、酵素を一旦水系下で担体に
分散、吸着、乃至結合せしめ、これを乾燥して得
たもので、他に、特に処理を施してないものでも
菌体内酵素のように弱い活性ながら使用すること
ができるものもある。もつともこの発明で、低水
分系においてエステル交換活性があり、目的とす
る選択性を示すものは、酵素の種類及び調製法は
何ら、限定されるところでない。 エステル交換の選択性は、トリグリセリドの
1、3位をエステル交換するが2位をエステル交
換しない性質を有するものである。このような選
択性を示す酵素として膵臓リパーゼ、米ヌカリパ
ーゼ等の動植物起源のもの、リゾープス・デレマ
ー、リゾープス・ジヤポニカス、リゾープス・ニ
ベウス、アスペルギルス・ニガー、ムコール・ジ
ヤバニカス等の微生物起源のもの等が例示され
る。反応温度は慨ね20〜75℃の範囲内である。 反応物dから、トリグリセリドと分離できる脂
肪酸エステルまたは脂肪酸e及びグリセリドfを
分離するに、蒸留、吸着等公知の方法をもつて行
うことが出来る。 グリセリドfはそのまま、または分別により高
融点部若しくは及び低融点部を除去してハードバ
ターを得るが、このような高融点部または及び低
融点部をカツトする技術はハードバター製造にお
いて周知に属する。同一のグリセリドfからハー
ドバターを得るに、ハードバターとしての品質と
収量は概ね反比例の関係にある。 この発明で脂肪酸エステルまたは脂肪酸eをグ
リセリドfと分離後水素添加し、これgを混合物
cの一部として使用する循環系を構成し、該循環
系の反応物dからグリセリドを分離してハードバ
ターを得る効果の一つは、脂肪酸エステルまたは
脂肪酸eを単に循環使用する場合に比べて、循環
系の反応物dからグリセリドを分離して得るハー
ドバターの品質を低下させることなく収率を増大
させ、或は、収率を低下させることなくハードバ
ターの品質を向上させることである。水素添加物
gを混合物cの一部として循環使用する他の効果
は、上述の製造系において、原料油脂aの使用量
に比べての、導入脂肪酸源bの使用量が著しく少
なくてすむことである。水素添加物gを混合物c
の一部として循環使用するさらに別の効果は、エ
ステル交換に要する反応時間の短縮であり、この
効果は、グリセリドfの全部または低融点部を混
合物cの一部として循環使用することも併せ実施
することにより一層増大する。 すなわち、グリセリドf成分の循環は、一定の
原料油脂aに対して行われるエステル交換が複数
段に分割して行われることを意味し、この多段反
応においてその都度いわばリフレツシユした水素
添加物gが供給され、且つグリセリドfの低融点
部を混合物cの一部として供給されるときは、所
期の組成となつたグリセリドの部分を再び反応に
晒して分解、合成の過程を経るようなロスがな
く、極めて効率的であることも併せて、エステル
交換反応全体の時間が短縮される効果が大きいの
である。この、グリセリドfの全部または低融点
部を混合物cの一部として循環使用する態様は、
混合物cの、エステル交換が選択的に行われる部
位に結合する脂肪酸中、炭素数18の不飽和脂肪酸
(オレイン酸、リノール酸、またはリノレン酸)
が10%以上のとき特に有用である。すなわち、混
合物cの不飽和度がこの程度以上に高いものであ
ればあるほど、エステル交換反応を1回で反応率
100まで行わせたところで、グリセリドfはもと
もと低融点部を除去しなければ良好な品質のハー
ドバターが得られないのであつて、上述のような
態様をとることによつて、特に工程がふえるわけ
でもなく、また分離した低融点部を再度利用して
収率の向上をはかれる効果が、上述の反応時間短
縮の他に奏するためである。従来グリセリドを
高・中・低の各融点成分に分別する場合の低融点
部は、2−不飽和、1、3−ジ飽和というハード
バターとしての有効成分が少なく、或はジグリセ
リドの様な品質阻害物質が多くて、再びハードバ
ターの原料として用いられることがなかつたが、
この発明では、2位が不飽和である性質をハード
バターに積極的に利用し、かつ、グリセリド含量
の低いものが得られるので循環使用が妨げられに
くいのである。 脂肪酸エステルまたは脂肪酸eを水素添加する
に先立ち、必要に応じて水素添加触媒の触媒毒の
除去、精製を行うことができる。水素添加の程度
は、いわゆる極硬と称される状態まで行うのが最
も望ましいが、通常回収した脂肪酸エステルまた
は脂肪酸eの、エステル交換が行われる部位の脂
肪酸の不飽和部分(不飽和の程度は沃素価で表現
できる)の少なくとも4割以上は、水素添加して
飽和化するのがよい。ここでの水素添加の程度が
大きい程、上述の品質向上、収率増大、グリセリ
ドaに対する脂肪酸エステルまたは脂肪酸bの使
用量の低下、エステル交換反応時間短縮の効果が
大きいのである。 この発明の好ましい他の態様は、反応物d、脂
肪酸エステルまたは脂肪酸e、または水素添加物
gから、トリグリセリドと分離できる炭素数16以
下の脂肪酸のエステルまたは炭素数16以下の脂肪
酸の留分を分離し、これを系外に除去する工程を
併せ行うことであるが、この態様は、反応物dか
ら脂肪酸エステルまたは脂肪酸e及びグリセリド
fを分離することと一段で行うことができる(精
留)。この態様は、混合物c中の、エステル交換
が行われる部位に結合する脂肪酸が、C18脂肪酸
とC16脂肪酸から主としてなり、しかも目的とす
るハードバターのあるべき脂肪酸組成から勘案し
てC16脂肪酸含量を低下させようとするとき、脂
肪酸エステルまたは脂肪酸eの成分を硬化するこ
とによる効果、すなわち、吸率増大、グリセリド
aに対する脂肪酸エステルまたは脂肪酸bの使用
量の低下、及びエステル交換反応時間短縮の効果
を増大させる効果がある。今日の世界ではSOS
(2−オレオジステアリン)に富む資源よりも
POPに富む資源の方が、豊富かつ安価であるの
でPOP(2−オレオ1、3−パルミトステアリ
ン)に富むハードバターを得るには、POPに富
む資源を利用する方がSOSに富む資源を利用する
より安価であるし、また、カカオ脂やハードバタ
ーの融点調整など物性改良剤に用いることのでき
る純度の高いSOSまたはPOPの製造では、高価
なSOSを製造した方が有利で、反応物d、脂肪酸
エステルまたは脂肪酸e、または水素添加物gか
らC16以下の留分を除去する該態様を、利用して
有用なことが多い。 この発明で混合物c中の、グリセリドに対する
脂肪酸エステルまたは脂肪酸の割合は、通常1:
0.2〜5の範囲から採用されるが、反復される製
造系全体でみると、消費されるグリセリドに対す
る消費される脂肪酸供給源の使用量は極めて少量
ですむのは本発明による効果の一つである。 以下この発明を実施例で説明する。 実施例 1 市販のリゾープス・ジヤポニカスのリパーゼ
1.5部を冷水5部に分散溶解し、硅藻土2.5部を加
えて混合した後20℃で減圧乾燥して、水分1.8%
の硅藻土酵素を得た。 一方パームの中融点部(IV35)100部とステア
リン酸メチル(純度90%、IV0.5)100部を混合
後、減圧乾燥し、水分0.01%の反応基質を得た。
この反応基質200部に対し前述の硅藻土酵素を10
部加え吸湿しない様に45℃で4日間撹拌した後酵
素剤を除去し、さらに精留によりトリグリセリド
区分(以下T.G.区分ということがある)、C16
分(C1690%純度)、及びC18区分(C1890%純度)
に分画し、C18区分は硬化(水素添加)を行つて
IV1以下とした後、別の新しいステアリン酸メチ
ルを加えて最初と同じ量とし、再度新たなパーム
中融点部と1:1に混ぜ、上記製造系を反復し
た。毎回得るトリグリセリド区分は溶剤分別によ
り高融点部を除去してハードバターとした。比較
として回収したC18区分を硬化しない他は同じで
ある製造系についても反復した。 回収したメチルエステルのIVを以下に示す。
This invention relates to a method for processing fats and oils. In oil and fat processing, hydrogenation, fractionation, transesterification, etc. are the most basic conventional methods. Among these methods, a method using lipolytic enzymes has recently been newly suggested as a transesterification method. It is easy to introduce specific fatty acids into oils and fats, and in this respect, it has the potential to expand the flexibility of oil and fat processing technology. This selectivity of transesterification is particularly useful in the field of hard butter, cocoa butter-like oil production technology;
If the desired fatty acid is introduced from an external fatty acid source into an oil or fat whose fatty acid bound to the 2nd position is rich in oleic acid by the action of a lipolytic enzyme that is selective for the 1st and 3rd positions of glycerides, the overall fatty acid composition can be changed simply by introducing the desired fatty acid from an external fatty acid source. This makes it possible to better approximate the composition of cacao butter not only in the composition but also in the fatty acid composition of each part. For example, stearic acid is introduced into the 1st and 3rd positions of an oil fraction rich in POP (2-oleodipalmitin), and palmitic acid or stearic acid is introduced into the 1st and 3rd positions of an oil fraction rich in triolein. This is the mode of doing so. However, the essence of selective transesterification is
It is randomization (disordering) of fatty acid distribution between sites that acts selectively. Therefore, the greater the difference in the constituent fatty acids of the active site between the raw material oil to be processed and the target oil, the greater the need for a large amount of introduced fatty acid source, or the greater the difference between the target oil and fat after transesterification. This increases the drawback that the separated and recovered fatty acid or fatty acid ester has a composition significantly different from that of the introduced fatty acid source, making it difficult to use it again as an introduced fatty acid source in the same system. In addition, even if the difference in the constituent fatty acids between the raw material oil and fat to be processed and the target oil is not very large, when the fatty acid composition of the active site between the target oil and fat and the introduced fatty acid source is extremely similar. (For example, when trying to remove most of a certain type of fatty acid from a specific part of the target fat or oil), there is also the drawback that a large amount of introduced fatty acid source is required. Other difficulties in applying selective transesterification to hard butters where crystallinity is important, such as cocoa butter-like oils, are the reduction in yield due to hydrolysis accompanying transesterification, and the phase formation of the hydrolyzate and glycerides. Glyceride quality is inhibited due to solubility. This problem can be improved by conducting the reaction in a dry system, but as is the general trend in the fermentation industry, shortening the reaction time is still one of the issues to be improved. Under these circumstances, while conducting various studies on the application of selective transesterification to fat and oil processing technology for producing hard butter, the present inventors discovered that the transesterification reaction product was separated from fats and oils and recovered. Hydrogenating fatty acids or fatty acid esters,
By recycling this as part of the raw material, the amount of introduced fatty acid source used in the raw material fats and oils to be processed can be reduced, and the quality of hard butter products can be improved.
This invention was completed after discovering that it contributes to improving the yield and is also useful for shortening the reaction time. This invention is a reaction in which a mixture c consisting of glyceride a and triglyceride and a separable fatty acid ester or fatty acid b is selectively transesterified using an enzyme that transesterifies the 1st and 3rd positions of triglyceride but does not transesterify the 2nd position. From product d, fatty acid ester or fatty acid e that can be separated from triglyceride is separated from glyceride f and then hydrogenated, and this g is used as part of mixture c.Glyceride is separated from reactant d in the circulation system to obtain hard butter. This is a method of processing fats and oils that is based on this. This invention will be explained in detail below. As mentioned above, glyceride a is preferably an oil or fat in which the fatty acid bonded to the 2-position is rich in oleic acid. Olive oil, Oriental flower oil, Camellia oil, Palm oil, Rapeseed oil (Zero Erucic type), Shea butter, Sal fat, Mango fat, Corcum, Borneo tallow,
It is preferable to use raw or fractionated fats and oils such as Malabar fat and Malabar fat, which generally contain 70% or more of oleic acid among the fatty acids bonded to the 2-position. The fatty acid ester or fatty acid b that can be separated from triglyceride is a source of introduced fatty acids, and preferably contains palmitic acid or stearic acid. The fatty acid ester or fatty acid b may be in the form of a free fatty acid or an alcohol ester, but should be separable from triglycerides. For example, esters such as diglycerides form a eutectic mixture with triglycerides and can hardly be separated by normal industrial means, which has the disadvantage of remaining in the product and impairing the quality of hard butter. Alcohol esters include monohydric alcohols, dihydric alcohol esters such as propylene glycol esters, sorbitan esters, etc., but the most preferred are esters of monovalent lower alcohols having 1 to 4 carbon atoms. . In a production system including a step of fractionating and removing esters of fatty acids having different carbon numbers, which will be described later, ester b
Unless it is an ester of a monohydric alcohol, it will be difficult to separate esters based on the type of fatty acid. The mixture c consisting of glyceride a and triglyceride and the separable fatty acid ester or fatty acid b is preferably subjected to the transesterification reaction in as dry a state as possible. If the water content in mixture c is high, hydrolysis will proceed along with transesterification, increasing the production of diglyceride content that is difficult to separate from triglyceride, and will increase the hardness of the SFI curve, cooling curve, and tempering operations. It is a raw material that is difficult to use in the production of butter.
The water content in mixture c is preferably lower, for example, 0.18% by weight or less. Preferred enzyme agents that exhibit excellent activity in dry or non-hydrolyzed systems are those obtained by dispersing, adsorbing, or bonding the enzyme to a carrier in an aqueous system, and then drying this. Even those that have not been treated with microbial enzymes can still be used, although they have weak activity. However, in the present invention, there are no limitations on the type or preparation method of the enzyme, as long as it has transesterification activity in a low moisture system and exhibits the desired selectivity. The selectivity of transesterification is such that the 1st and 3rd positions of the triglyceride are transesterified, but the 2nd position is not transesterified. Examples of enzymes that exhibit such selectivity include those of animal and plant origin such as pancreatic lipase and rice bran lipase, and those of microbial origin such as Rhizopus deremer, Rhizopus japonicus, Rhizopus niveus, Aspergillus niger, and Mucor jabanicas. Ru. The reaction temperature is generally within the range of 20-75°C. The fatty acid ester that can be separated from the triglyceride or the fatty acid e and the glyceride f can be separated from the reactant d by a known method such as distillation or adsorption. Hard butter can be obtained from glyceride f as it is or by fractionating to remove the high melting point portion or the low melting point portion, and the technique of cutting off the high melting point portion or the low melting point portion is well known in the field of hard butter production. When hard butter is obtained from the same glyceride f, the quality and yield of hard butter are generally inversely proportional. In this invention, a circulating system is constructed in which fatty acid ester or fatty acid e is separated from glyceride f and then hydrogenated, and this g is used as a part of mixture c, and glyceride is separated from reactant d in the circulating system to make hard butter. One of the effects of obtaining this is that compared to the case where fatty acid ester or fatty acid e is simply recycled, the yield is increased without deteriorating the quality of hard butter obtained by separating glyceride from the reactant d in the circulation system. , or to improve the quality of hard butter without reducing the yield. Another effect of recycling the hydrogenated substance g as part of the mixture c is that in the above-mentioned production system, the amount of the introduced fatty acid source b can be significantly smaller than the amount of the raw material fat a. be. Hydrogenate g to mixture c
Another effect of recycling as part of mixture c is a reduction in the reaction time required for transesterification, and this effect can also be achieved by recycling all or the low melting point part of glyceride f as part of mixture c. By doing so, it will further increase. In other words, the circulation of the glyceride f component means that the transesterification performed on a certain raw material fat a is carried out in multiple stages, and in this multistage reaction, refreshed hydrogenated product g is supplied each time. In addition, when the low melting point part of glyceride f is supplied as part of mixture c, there is no loss due to the process of decomposition and synthesis by exposing the part of the glyceride that has the desired composition to the reaction again. In addition to being extremely efficient, the overall transesterification time is greatly reduced. This embodiment in which all or the low melting point part of glyceride f is recycled as part of mixture c,
An unsaturated fatty acid having 18 carbon atoms (oleic acid, linoleic acid, or linolenic acid) among the fatty acids bonded to the site where transesterification is selectively performed in mixture c.
is particularly useful when is greater than 10%. In other words, the higher the degree of unsaturation in mixture c, the higher the reaction rate in one transesterification reaction.
Even if the process is carried out up to 100%, good quality hard butter cannot be obtained from glyceride f unless the low melting point part is removed. This is because, in addition to shortening the reaction time, the effect of improving the yield by reusing the separated low melting point portion is achieved. Conventionally, when glycerides are separated into high, medium, and low melting point components, the low melting point portion contains few active ingredients as hard butter such as 2-unsaturated and 1,3-disaturated, or has a quality similar to diglyceride. It was never used again as a raw material for hard butter due to the presence of many inhibitory substances.
In this invention, the property of being unsaturated at the 2nd position is actively utilized in hard butter, and since a product with a low glyceride content can be obtained, cyclic use is less likely to be hindered. Prior to hydrogenating the fatty acid ester or the fatty acid e, the hydrogenation catalyst may be purified to remove catalyst poisons, if necessary. The degree of hydrogenation is most preferably carried out to a so-called extremely hard state; however, the unsaturated portion of the fatty acid at the site where the transesterification of the recovered fatty acid ester or fatty acid e is carried out (the degree of unsaturation is It is preferable that at least 40% of the iodine value (expressed in terms of iodine value) be saturated by hydrogenation. The greater the degree of hydrogenation here, the greater are the effects of improving quality, increasing yield, reducing the amount of fatty acid ester or fatty acid b used relative to glyceride a, and shortening the transesterification reaction time. Another preferred embodiment of the present invention is to separate an ester of a fatty acid having 16 or less carbon atoms or a fraction of a fatty acid having 16 or less carbon atoms that can be separated from triglycerides from the reactant d, fatty acid ester or fatty acid e, or hydrogenated product g. However, a step of removing this from the system is also carried out, but this embodiment can be carried out in one step with separating the fatty acid ester or fatty acid e and the glyceride f from the reactant d (rectification). In this embodiment, the fatty acids bonded to the site of interesterification in mixture c are mainly composed of C 18 fatty acids and C 16 fatty acids, and moreover, considering the fatty acid composition that should be in the target hard butter, C 16 fatty acids are When trying to lower the content, the effects of curing the fatty acid ester or fatty acid e component, i.e., increasing the absorption rate, reducing the amount of fatty acid ester or fatty acid b used relative to glyceride a, and shortening the transesterification reaction time. It has the effect of increasing the effect. In today's world SOS
(2-oleodystearin)-rich resources.
Resources rich in POPs are more abundant and cheaper, so in order to obtain hard butter rich in POPs (2-oleo-1,3-palmitostearin), it is better to use resources rich in POPs than to use resources rich in SOS. In the production of highly pure SOS or POP, which can be used as a physical property improver such as adjusting the melting point of cocoa butter or hard butter, it is more advantageous to produce expensive SOS. d, fatty acid ester or fatty acid e, or hydrogenated product g, it is often useful to utilize this embodiment of removing C 16 or less fractions. In this invention, the ratio of fatty acid ester or fatty acid to glyceride in mixture c is usually 1:
One of the effects of the present invention is that the amount of fatty acid source consumed relative to the consumed glyceride can be used in an extremely small amount when viewed in the entire repeated production system. This invention will be explained below with reference to Examples. Example 1 Commercially available Rhizopus japonicus lipase
Disperse and dissolve 1.5 parts in 5 parts of cold water, add 2.5 parts of diatomaceous earth, mix, and dry under reduced pressure at 20°C to obtain a moisture content of 1.8%.
diatomaceous earth enzyme was obtained. On the other hand, 100 parts of medium melting point part of palm (IV35) and 100 parts of methyl stearate (purity 90%, IV0.5) were mixed and dried under reduced pressure to obtain a reaction substrate with a water content of 0.01%.
For 200 parts of this reaction substrate, add 10 parts of the diatomaceous earth enzyme mentioned above.
After stirring at 45℃ for 4 days to prevent moisture absorption, the enzyme agent was removed, and further rectification was performed to divide the triglyceride classification (hereinafter referred to as TG classification), C 16 classification (C 16 90% purity), and C 18 Classification ( C18 90% purity)
The C18 fraction is cured (hydrogenated).
After bringing it below IV1, another fresh methyl stearate was added to make up the same amount as the first, and again mixed 1:1 with fresh palm mid-melting part, and the above production system was repeated. The triglyceride fraction obtained each time was subjected to solvent fractionation to remove the high melting point portion to obtain hard butter. As a comparison, an identical production system was also repeated without curing the recovered C 18 section. The IV of the recovered methyl ester is shown below.

【表】 毎回得た本例のハードバターはいずれもカカオ
バターに類似した油脂となり、チヨコレートテス
トに於いても良好な結果が得られたが、比較例の
ハードバターは5回目になると、高融点部を除い
ただけでは融点が低く(30.7℃、本例の方は33.5
℃)低融点部を除いて(すなわち収率を低下させ
て)始めてカカオバターに良く類似した油脂とな
つた。 なお、5回繰返しに用いたと同量のパーム中融
点部(500部)を一度で反応を行わせる為には500
部のステアリン酸メチルが必要であるのに対し
て、反応後のC18メチルエステル区分を回収、硬
化して循環使用する本例は操作によるロスを含め
ても約260部で充分であつた。 5回繰返し後の本例ハードバターの性質は、融
点33.5℃、IV35で脂肪酸組成は次の通りであつ
た。
[Table] The hard butter of this example obtained every time had a fat similar to cocoa butter, and good results were obtained in the thiokolate test, but the hard butter of the comparative example had a high melting point at the fifth time. The melting point is low (30.7℃, 33.5℃ in this example)
°C), the low melting point portion was removed (ie, the yield was reduced), and the result was an oil that closely resembled cocoa butter. In addition, in order to carry out the reaction at once, the same amount of palm medium melting point part (500 parts) used for 5 repetitions is 500 parts.
of methyl stearate, whereas in this example, in which the C 18 methyl ester fraction after the reaction was recovered, cured, and recycled, about 260 parts was sufficient even including operational losses. The properties of the hard butter of this example after 5 repetitions were as follows: melting point: 33.5°C, IV: 35; fatty acid composition:

【表】 実施例 2 酵素として市販のリゾープス・ニベウスのリパ
ーゼ及び、担体としてパーライトを用いてパーラ
イト酵素とすること、並びにステアリン酸メチル
のかわりにステアリン酸を用い、69℃で4日間反
応させ、更に脂肪酸区分の分離にシリカゲルカラ
ムを用いた他は、実施例1と同様の製造系を繰返
し毎回カカオバターに類似した油脂を安定して得
られた。 実施例 3 市販のリゾープス・ジヤポニカス(菌体内酵
素)のリパーゼを減圧乾燥して水分1.5%とした。 一方パーム中融点部(IV34)35部、サル脂液
体側分別油(IV67)65部及び脂肪酸メチルエス
テル(ステアリン酸60%、パルミチン酸40%)
200部を混合し、この反応基質300部に前述の酵素
9部を加え45℃で7日間密閉下で撹拌した。反応
物は回収後、蒸留でメチルエステルを分離し、こ
れを硬化してから、再度分離回収したトリグリセ
リド区分と混合して、再び酵素反応を繰返した。
基質液を回収し、メチルエチルを除去後、溶剤分
別により高融点部を除いて得たハードバターは脂
肪酸組成及び融点においてカカオバターに似た油
脂であつた。回収されたメチルエステルは硬化す
ることにより、該製造系の反復に供することがで
きた。 実施例 4 市販のスイ臓リパーゼ5grを、ブロムシアナイ
トでシアン化したポリビニルアルコール2gr及び
0.1Mリン酸バツフアー(PH7.5)50mlと共に一夜
冷蔵した後、回収し、減圧乾燥してポリビニルア
ルコール固定化酵素を得た(水分1.7%)。一方オ
リーブ油100部とステアリン酸エチル100部を減圧
乾燥して反応基質を得た(水分0.015%)。この反
応基質にポリビニルアルコール固定化酵素7.5部
を加え45℃で3日間撹拌を行つた後、基質と回収
し蒸留によりエチルエステル区分とトリグリセリ
ド区分に分けた。回収したエチルエステル区分は
硬化した後、分離したトリグリセリド区分と再度
混合し、酵素反応を繰返した。反応後基質を回収
し、蒸留によりエチルエステルを回収した。さら
に同様の硬化、混合、酵素反応、回収を反復し、
得られたトリグリセリド区分は更に溶剤分別によ
り、固体側と液体側にわけ固体側は融点36.5℃
IV36、脂肪酸組成は下の如くであり、これはパ
ーム中融点部と1:1で混合することにより、カ
カオバター代用脂としてすぐれたものであつた。 C16 C18 C181 C182 C20 10.5 49.2 38.1 1.2 0.3 実施例 5 市販のリゾープス・デレマーのリパーゼ1部と
硅藻土2部を混合し、更に冷水適当量を撹拌しな
がら散布して粒状とし、これを15℃で減圧乾燥し
て水分1.5%の硅藻土酵素を得た。別に精製サフ
ラワー油(ハイオレイツク)100部とステアリン
酸メチル(93%純度)100部を減圧加熱乾燥して
反応基質(水分0.01%)を作成し、これに前の硅
藻土酵素10部を加え密閉下45℃で5日間撹拌して
後、基質油を回収した。更に蒸留でメチルエステ
ルを除いた後、トリグリセリド区分は溶剤で分別
を行ない、固体側と液体側に別けた。 この液体側60部は同じ精製サフラワー油を加え
て100部とし、更に分離したメチルエステルを極
度硬化して、不足分のメチルエステル(93%純
度)を加えて100部とし、これらを混合して、反
応基質として上記同様反応、蒸留、分別を繰り返
した。
[Table] Example 2 Using commercially available Rhizopus niveus lipase and pearlite as a carrier to make pearlite enzyme, using stearic acid instead of methyl stearate, reacting at 69°C for 4 days, and The same production system as in Example 1 was repeated, except that a silica gel column was used to separate the fatty acid fractions, and oils and fats similar to cocoa butter were stably obtained each time. Example 3 Commercially available lipase from Rhizopus japonicus (intracellular enzyme) was dried under reduced pressure to a moisture content of 1.5%. On the other hand, 35 parts of palm medium melting point part (IV34), 65 parts of sal fat liquid side fractionated oil (IV67) and fatty acid methyl ester (stearic acid 60%, palmitic acid 40%)
200 parts of the reaction substrate were mixed, and 9 parts of the above-mentioned enzyme were added to 300 parts of this reaction substrate, and the mixture was stirred at 45°C for 7 days under airtight conditions. After the reaction product was collected, the methyl ester was separated by distillation, and after being cured, it was mixed with the separated and collected triglyceride fraction, and the enzymatic reaction was repeated again.
After recovering the substrate liquid and removing methyl ethyl, the hard butter obtained by removing the high melting point portion by solvent fractionation was an oil similar to cocoa butter in fatty acid composition and melting point. The recovered methyl ester could be cured and subjected to repetition of the production system. Example 4 5gr of commercially available watermelon lipase was mixed with 2gr of polyvinyl alcohol cyanated with bromcyanite and
After being refrigerated overnight with 50 ml of 0.1M phosphate buffer (PH7.5), it was recovered and dried under reduced pressure to obtain a polyvinyl alcohol-immobilized enzyme (water content 1.7%). On the other hand, 100 parts of olive oil and 100 parts of ethyl stearate were dried under reduced pressure to obtain a reaction substrate (water content: 0.015%). After adding 7.5 parts of polyvinyl alcohol-immobilized enzyme to this reaction substrate and stirring at 45°C for 3 days, the substrate was recovered and separated into an ethyl ester fraction and a triglyceride fraction by distillation. After the recovered ethyl ester fraction was cured, it was mixed again with the separated triglyceride fraction and the enzymatic reaction was repeated. After the reaction, the substrate was recovered and the ethyl ester was recovered by distillation. Furthermore, the same curing, mixing, enzymatic reaction, and recovery are repeated,
The obtained triglyceride fraction is further separated into a solid side and a liquid side by solvent fractionation, and the solid side has a melting point of 36.5℃.
The fatty acid composition of IV36 was as shown below, and it was an excellent cocoa butter substitute when mixed with palm mid-melting point part at a ratio of 1:1. C 16 C 18 C 18 : 1 C 18 : 2 C 20 10.5 49.2 38.1 1.2 0.3 Example 5 1 part of commercially available Rhizopus delemer lipase and 2 parts of diatomaceous earth were mixed, and an appropriate amount of cold water was further sprayed with stirring. This was granulated and dried under reduced pressure at 15°C to obtain diatomaceous earth enzyme with a water content of 1.5%. Separately, 100 parts of purified safflower oil (high oleic acid) and 100 parts of methyl stearate (93% purity) were heated and dried under reduced pressure to create a reaction substrate (moisture 0.01%), and to this was added 10 parts of the diatomaceous earth enzyme. After stirring for 5 days at 45° C. under closed conditions, the substrate oil was recovered. After removing the methyl ester by distillation, the triglyceride fraction was separated into solid and liquid sides using a solvent. 60 parts of this liquid side is made up to 100 parts by adding the same purified safflower oil, and then the separated methyl ester is extremely hardened and the missing amount of methyl ester (93% purity) is added to make 100 parts, and these are mixed. Then, the reaction, distillation, and fractionation were repeated in the same manner as above as a reaction substrate.

【表】 この5回目のトリグリセリド区分の高融点部は
そのままでも利用出来るがより品質を上げる為
に、さらに高融点部及び、液体側を除いて得た中
融点部は下の如く、ハードバターとしてすぐれた
性質を持つていた(融点38.0℃、IV33)。このハ
ードバターはさらにパーム中融点部と等量混合し
たが、該混合物も良好なチヨコレート様ハードバ
ターであつた。
[Table] The high melting point part of this 5th triglyceride classification can be used as is, but in order to further improve the quality, the high melting point part and the middle melting point part obtained by removing the liquid side are used as hard butter as shown below. It had excellent properties (melting point 38.0℃, IV33). This hard butter was further mixed with the mid-melting point portion of palm in an equal amount, and the mixture was also a good thiokolate-like hard butter.

【表】 実施例 6 反応基質に対して毎回0.3重量%の水をさらに
加える他は実施例5と同様の操作を反復したとこ
ろ、反応物中のジグリセリド含量は、1回目で
10.3%、2回目で14.5%であつた。
[Table] Example 6 The same operation as in Example 5 was repeated except that 0.3% by weight of water was further added to the reaction substrate each time, and the diglyceride content in the reaction product was
10.3%, and 14.5% the second time.

Claims (1)

【特許請求の範囲】 1 グリセリドa及びトリグリセリドと分離でき
る脂肪酸エステルまたは脂肪酸bとからなる混合
物cをトリグリセリドの1、3位をエステル交換
するが2位をエステル交換しない酵素を用いて選
択的にエステル交換した反応物dから、トリグリ
セリドと分離できる脂肪酸エステルまたは脂肪酸
eをグリセリドfと分離後水素添加し、これgを
混合物cの一部として使用する循環系の反応物d
からグリセリドを分離してハードバターを得るこ
とを特徴とする油脂の加工法。 2 グリセリドfの全部または低融点部をも混合
物cの一部として使用する循環系の反応物dから
グリセリドを分離しハードバターを得る特許請求
の範囲第1項記載の加工法。 3 反応物d、脂肪酸エステルもしくは脂肪酸
e、または脂肪酸エステルもしくは脂肪酸gか
ら、トリグリセリドと分離できる炭素数16以下の
脂肪酸のエステルまたは炭素数16以下の脂肪酸の
留分を分離し、これを系外に除去する特許請求の
範囲第1項記載の加工法。
[Scope of Claims] 1. A mixture c consisting of glyceride a and triglyceride and a separable fatty acid ester or fatty acid b is selectively esterified using an enzyme that transesterifies the 1st and 3rd positions of the triglyceride but does not transesterify the 2nd position. From the exchanged reactant d, fatty acid ester or fatty acid e that can be separated from triglyceride is separated from glyceride f and then hydrogenated, and this g is used as part of mixture c.
A method of processing fats and oils, which is characterized by separating glycerides from the oil to obtain hard butter. 2. The processing method according to claim 1, wherein hard butter is obtained by separating glyceride from reactant d in a circulating system in which all or a low melting point part of glyceride f is also used as part of mixture c. 3 Separate the ester of fatty acids with 16 or less carbon atoms or the fraction of fatty acids with 16 or less carbon atoms that can be separated from triglycerides from the reactant d, fatty acid ester or fatty acid e, or fatty acid ester or fatty acid g, and remove this from the system. The processing method according to claim 1, which removes.
JP6755580A 1980-05-20 1980-05-20 Process of oil and grease Granted JPS56163196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6755580A JPS56163196A (en) 1980-05-20 1980-05-20 Process of oil and grease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6755580A JPS56163196A (en) 1980-05-20 1980-05-20 Process of oil and grease

Publications (2)

Publication Number Publication Date
JPS56163196A JPS56163196A (en) 1981-12-15
JPH0369516B2 true JPH0369516B2 (en) 1991-11-01

Family

ID=13348318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6755580A Granted JPS56163196A (en) 1980-05-20 1980-05-20 Process of oil and grease

Country Status (1)

Country Link
JP (1) JPS56163196A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031680A1 (en) 2007-09-07 2009-03-12 The Nisshin Oillio Group, Ltd. Method for separation of 1,3-disaturated-2-unsaturated triglyceride
WO2009031679A1 (en) 2007-09-07 2009-03-12 The Nisshin Oillio Group, Ltd. Method of producing hard butter
WO2010110260A1 (en) 2009-03-25 2010-09-30 不二製油株式会社 Method for producing hard butter composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783718B2 (en) * 1986-05-21 1995-09-13 日清製油株式会社 Process for producing 1,3-distearo-2-olein
JP2715633B2 (en) * 1990-07-17 1998-02-18 鐘淵化学工業株式会社 Fat bloom resistance improver, hard butter containing the same, and chocolates using them.
JP5008229B2 (en) * 2000-08-11 2012-08-22 株式会社Adeka Plastic oil composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031680A1 (en) 2007-09-07 2009-03-12 The Nisshin Oillio Group, Ltd. Method for separation of 1,3-disaturated-2-unsaturated triglyceride
WO2009031679A1 (en) 2007-09-07 2009-03-12 The Nisshin Oillio Group, Ltd. Method of producing hard butter
EP2388307A1 (en) 2007-09-07 2011-11-23 The Nisshin OilliO Group, Ltd. Fractionation method of 1,3-disaturated-2-unsaturated triglyceride
EP2388306A1 (en) 2007-09-07 2011-11-23 The Nisshin OilliO Group, Ltd. Fractionation method of 1,3-disaturated-2-unsaturated triglyceride
EP2399977A1 (en) 2007-09-07 2011-12-28 The Nisshin OilliO Group, Ltd. Fractionation method of 1,3-disaturated-2-unsaturated triglyceride
US8980346B2 (en) 2007-09-07 2015-03-17 The Nisshin Oillio Group, Ltd. Process for preparing hard butter
WO2010110260A1 (en) 2009-03-25 2010-09-30 不二製油株式会社 Method for producing hard butter composition

Also Published As

Publication number Publication date
JPS56163196A (en) 1981-12-15

Similar Documents

Publication Publication Date Title
US4268527A (en) Method for producing cacao butter substitute
US5219744A (en) Process for modifying fats and oils
JP2761293B2 (en) Method for producing human milk fat substitute
JP5216277B2 (en) Method for producing edible fats and oils
JPS6214743A (en) Hard stock, fat blend containing hard stock and its production
US6090598A (en) Enzymatic process for interesterification of fats and oils using distillation
JPS6344892A (en) Ester exchange reaction of fats and oils
US5061498A (en) Method for reforming fats and oils with enzymes
US4985358A (en) Method for processing glyceride fats and oils
US4420560A (en) Method for modification of fats and oils
JPH0369516B2 (en)
EP0079986A1 (en) Method for the modification of fats and oils
JPH0716425B2 (en) Transesterification method for fats and oils
JP4335306B2 (en) Oil transesterification method
Huyghebaert et al. Fat products using chemical and enzymatic interesterification
US5183675A (en) Process for producing salad oil
JPS61179299A (en) Recovery of hard butter from vegetable fat
JP3932788B2 (en) Method for transesterification of fats and oils
JP4945838B2 (en) Oil and fat manufacturing method
JPS62228290A (en) Substitute fat for cacao butter
EP0417823A2 (en) Transesterification
EP0328230A2 (en) Method for the modification of fats and oils
JPS61149084A (en) Method of activating enzyme
JP4168933B2 (en) Process for producing processed glycerides
EP0519542A1 (en) Combined fractionation, refining and interesterification process