JPH0353139A - Pressure cell for differential pressure transmitter - Google Patents
Pressure cell for differential pressure transmitterInfo
- Publication number
- JPH0353139A JPH0353139A JP18734989A JP18734989A JPH0353139A JP H0353139 A JPH0353139 A JP H0353139A JP 18734989 A JP18734989 A JP 18734989A JP 18734989 A JP18734989 A JP 18734989A JP H0353139 A JPH0353139 A JP H0353139A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- differential pressure
- welded
- semiconductor sensor
- housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 29
- 239000007788 liquid Substances 0.000 claims abstract description 14
- 230000003068 static effect Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
Landscapes
- Pressure Sensors (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、差圧伝送器において、特に高い差圧を検出す
るのに有効な高差圧伝送器に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a differential pressure transmitter, particularly a high differential pressure transmitter that is effective for detecting high differential pressures.
従来の差圧伝送器は、概略第3図に示すような構成を有
していた61はシリコンダイアフラムにゲージ抵抗を拡
散形成してなる半導体センサ、14は半導体センサから
の信号を外部へ取出すためのハーメチツクシール部、1
5は過大差圧から半導体センサを保護する役目をはたす
センタダイアフラム、4aは、高圧側シールダイアフラ
ム、4bは低圧側シールダイアフラム,5は封入液、6
は本体である.ここで、従来の差圧伝送路は、高い静圧
下で発生するわずかな差圧を測定するため静圧変動に対
して影響を受けないようになっている。例えば、受圧部
本体の変形による静圧変動の影響が受けにくい構造で、
静圧による本体の変形が半導体センサに伝わらないよう
なセンサの支持構造とし、等価的に半導体センサを封入
液中に浮かべる構造となっている.また,過大差圧の印
加に対しては,その影響を少なくすると共に、半導体セ
ンサを保護する必要があるので、センタダイアフラムと
シールダイアフラムの3枚ダイアプラム構造とし,これ
らの体積剛性率を最適に選ぶことで、上記の点を解決し
ている.この構造では通常の測定範囲で各ダイアフラム
は本体に接触せずに半導体センサヘ正しく圧力を伝える
が、過大差圧が加わると、シールダイアフラムは本体波
形に密着して止まり、内部の圧力上昇を抑えることがで
きる.このとき,センタダイアフラムは本体とは接触せ
ず、変形も弾性領域内で、ある一定の差圧以上は発生し
ないようになっている。また、本体剛性率もシールダイ
アプラムに比べて十分大きくとっているため、過大差圧
の解放時、シールダイアフラムに変形が残っていても半
導体センサに影響を与えない.
〔発明が解決しようとする課題〕
上記した従来の差圧伝送器において、高い差圧を測定す
るためにはセンタダイアフラムの剛性とセンサ部の耐圧
を上げることが必要であった.しかし,センタダイアプ
ラムの剛性を上げることは、ダイアフラムの板厚が厚く
なるので、必要な強度を持った溶接が困難であった.さ
らに、内部に封入する液量を必要な量まで少なくするこ
とはできないので、耐圧の高いセンサ部を作ることは実
現不可能であった.
本発明の目的は,高い差圧の測定が可能な高差圧伝送器
を提供することにある.
〔課題を解決するための手段〕
上記目的を達成するために、高い差圧を2枚のシールダ
イアフラムで受け、この差圧を直接センサに伝達する受
圧部構造において,過大差圧印加時に、センサ周辺の溶
接部に力が加わらない構造として耐圧向上をはかること
により、高差圧の測定を可能としたものである.
〔作用〕
過大差圧印加時にシールダイアフラムの受ける圧力は、
封入液を介して直接半導体センサ及び半導体センサを収
納するハウジングに伝わる。A conventional differential pressure transmitter has a configuration as schematically shown in FIG. 3. Reference numeral 61 indicates a semiconductor sensor formed by diffusing a gauge resistor into a silicon diaphragm, and reference numeral 14 indicates a semiconductor sensor for extracting a signal from the semiconductor sensor to the outside. hermetic seal part, 1
5 is a center diaphragm that serves to protect the semiconductor sensor from excessive differential pressure; 4a is a high-pressure side seal diaphragm; 4b is a low-pressure side seal diaphragm; 5 is a sealed liquid; 6
is the body. Here, conventional differential pressure transmission lines measure small differential pressures that occur under high static pressure, so they are not affected by static pressure fluctuations. For example, it has a structure that is less susceptible to static pressure fluctuations due to deformation of the pressure receiving part body,
The sensor support structure is such that deformation of the main body due to static pressure is not transmitted to the semiconductor sensor, and the semiconductor sensor is equivalently structured to float in the filled liquid. In addition, when excessive differential pressure is applied, it is necessary to reduce the influence and protect the semiconductor sensor, so a three-diaphragm structure consisting of a center diaphragm and a seal diaphragm is used, and the volumetric rigidity of these is selected optimally. This solves the above point. With this structure, each diaphragm correctly transmits pressure to the semiconductor sensor without contacting the main body in the normal measurement range, but when an excessive differential pressure is applied, the seal diaphragm stops in close contact with the main body waveform, suppressing the increase in internal pressure. Can be done. At this time, the center diaphragm does not come into contact with the main body, deformation is within the elastic range, and pressure differential above a certain level is not generated. In addition, the rigidity of the main body is sufficiently larger than that of the seal diaphragm, so even if the seal diaphragm remains deformed when excessive differential pressure is released, it will not affect the semiconductor sensor. [Problem to be solved by the invention] In the conventional differential pressure transmitter described above, in order to measure a high differential pressure, it was necessary to increase the rigidity of the center diaphragm and the pressure resistance of the sensor section. However, increasing the rigidity of the center diaphragm increases the thickness of the diaphragm, making it difficult to weld it with the necessary strength. Furthermore, since it is not possible to reduce the amount of liquid sealed inside to the required amount, it has been impossible to create a sensor part with high pressure resistance. An object of the present invention is to provide a high differential pressure transmitter that can measure high differential pressures. [Means for Solving the Problems] In order to achieve the above object, in a pressure receiving part structure in which a high differential pressure is received by two seal diaphragms and this differential pressure is directly transmitted to a sensor, when an excessive differential pressure is applied, the sensor The structure has a structure that does not apply force to the surrounding welds, making it possible to measure high differential pressures by improving pressure resistance. [Function] The pressure that the seal diaphragm receives when an excessive differential pressure is applied is:
It is transmitted directly to the semiconductor sensor and the housing that houses the semiconductor sensor via the sealed liquid.
半導体センサは、測定差圧に対して10倍以上の耐圧を
持つので、測定差圧数十kgf/alの時に必要な耐圧
150kgf/cdに対しては,それ自身で十分な耐圧
を有している。Semiconductor sensors have a withstand pressure that is 10 times higher than the measured differential pressure, so they themselves have sufficient withstand pressure of 150 kgf/cd, which is required when the measured differential pressure is several tens of kgf/al. There is.
一方、半導体センサを収納するハウジングは、上面部が
受圧部本体に接し、下面部が受圧部本体に固定される部
材に接しているので、過大差圧印加時に生じる力はセン
サ周辺の溶接部に加わらず、受圧部本体と部材が支える
構造としたので、受圧部の耐圧が向上している.
〔実施例〕
以下、本発明の実施例を第1図により説明する。On the other hand, the housing that houses the semiconductor sensor has its upper surface in contact with the pressure receiver body and its lower surface in contact with the member fixed to the pressure receiver body, so the force generated when an excessive differential pressure is applied is applied to the welds around the sensor. The pressure receiving part is supported by the main body of the pressure receiving part and other members, so the pressure resistance of the pressure receiving part is improved. [Example] Hereinafter, an example of the present invention will be described with reference to FIG.
第1図には、高差圧伝送器の内部構造図を示す。FIG. 1 shows an internal structural diagram of a high differential pressure transmitter.
受圧部構造は、高差圧測定のため高圧側シールダイアフ
ラム4aと低圧側シールダイアフラム4bによる2枚ダ
イアプラム構造としてあり、高圧側,低圧側に導入され
た圧力は,シールダイアフラムを封入液5を介して半導
体センサ1の両面へ伝達され,その圧力差(差圧)が電
気信号に変換される.
受圧部は,腐食性流体や−40℃〜120℃の流体温度
にも安定に動作しなければならないので、半導体センサ
lは,安定性に実績のあるシリコンオイル等の・液中に
封入し,全溶接構造で外部雰囲気と完全に隔離する.ま
た、内部には他に有機溶剤を全く使用しないので,高温
状態などの厳しい環境下でも部品の劣化がなく、信頼性
の高い,長期安定性に優れた構造になる。The pressure receiving part structure has a two-diaphragm structure consisting of a high pressure side seal diaphragm 4a and a low pressure side seal diaphragm 4b to measure high differential pressure.The pressure introduced to the high pressure side and low pressure side passes through the seal diaphragm through the sealed liquid 5. is transmitted to both sides of the semiconductor sensor 1, and the pressure difference (differential pressure) is converted into an electrical signal. The pressure receiving part must operate stably even with corrosive fluids and fluid temperatures between -40°C and 120°C, so the semiconductor sensor l is sealed in a liquid such as silicone oil, which has a proven track record of stability. The fully welded structure completely isolates it from the outside atmosphere. In addition, since no other organic solvents are used inside, there is no deterioration of parts even under harsh environments such as high temperatures, resulting in a highly reliable structure with excellent long-term stability.
ここで、半導体センサlは、差圧を受ける起歪体をシリ
コン単結晶で作り、これにゲージ抵抗を拡散形威したも
ので、差圧によって発生する応力に対して、抵抗値がピ
エゾ抵抗効果により変化し出力を得るようになっている
。また、この出力は、半導体センサを収納するハウジン
グ8に設けられたハーメチックシール端子9との間をボ
ンデイングワイヤl1と配線基板12により接続し中継
基板13を経て外部へ取り出すようにしてある。この半
導体センサ1は、中空円筒状の台座2と中空の金属台3
により固定され、これを半導体センサを収納するハウジ
ング8にはめ込むことでg部で支持され、f部で溶接す
ることで等価的に液中に浮くような構成になっていて、
受圧部本体の変形による影響を受けにくい構造であるこ
とは,3枚ダイアフラム構造の場合と同じである。Here, in the semiconductor sensor l, a strain-generating body that receives a differential pressure is made of silicon single crystal, and a gauge resistor is diffused into this, and the resistance value is affected by the piezoresistance effect against the stress generated by the differential pressure. The output is obtained by changing the output. Further, this output is connected to a hermetic seal terminal 9 provided in a housing 8 that houses the semiconductor sensor by a bonding wire l1 and a wiring board 12, and is taken out to the outside via a relay board 13. This semiconductor sensor 1 consists of a hollow cylindrical base 2 and a hollow metal base 3.
By fitting this into the housing 8 that houses the semiconductor sensor, it is supported at the g section, and by welding at the f section, it has a structure that equivalently floats in the liquid.
As with the three-diaphragm structure, this structure is not easily affected by deformation of the pressure-receiving part body.
さらに,半導体センサを収納するハウジング8の上面部
は高圧側受圧部本体6へはめ込まれ、a部で接すること
により支持されb部で溶接される。Furthermore, the upper surface part of the housing 8 that accommodates the semiconductor sensor is fitted into the high-pressure side pressure-receiving part main body 6, supported by contacting at part a, and welded at part b.
半導体センサを収納するハウジング8の下面部は部材1
0を介してC部で支持され、d部,e部で溶接される.
差圧印加時は、半導体センサを収納するハウジング8と
部材10に発生する軸方向の力をa部,C部の支持部で
受け,溶接部b部,d部には応力が発生しない構造にな
っている.また溶接部e部溶接深さを深くしているので
、過大差圧に対して十分な強度を持たせている。高圧側
受圧部本体6には、封入液量を必要な量まで少なくする
ため低圧側受圧部本体7を接合し受圧部を形成する.
上記した実施例において、封入液量を必要な量まで少な
くするため受圧部本体を高圧側受圧部本体と低圧側受圧
部本体の2つに分けたが、第2図のように,受圧部本体
工6を単体で構成することも可能である。この場合、構
造が簡単になり,部品数も少なくなる。さらに、コスト
の低減と信頼性の向上がはかれる。The lower surface of the housing 8 that houses the semiconductor sensor is a member 1.
It is supported at part C through 0 and welded at parts d and e.
When differential pressure is applied, the axial force generated in the housing 8 housing the semiconductor sensor and the member 10 is received by the support parts a and C, and no stress is generated in the weld parts b and d. It has become. Furthermore, since the welding depth of the welded part e is made deep, it has sufficient strength against excessive differential pressure. A low pressure side pressure receiving section main body 7 is joined to the high pressure side pressure receiving section main body 6 to form a pressure receiving section in order to reduce the amount of sealed liquid to the required amount. In the above embodiment, in order to reduce the amount of sealed liquid to the required amount, the pressure receiving part main body was divided into two parts, the high pressure side pressure receiving part main body and the low pressure side pressure receiving part main body. It is also possible to configure the unit 6 by itself. In this case, the structure is simplified and the number of parts is reduced. Furthermore, cost reduction and reliability improvement are achieved.
本発明によれば、支持部a部,C部を設けることでセン
サ周辺の溶接部に加わる応力を低減でき,差圧をシール
ダイアフラムから封入液を介して直接半導体センサに伝
達される構造によって、高差圧を測定する差圧伝送器用
受圧部を実現できる.また,受圧部本体を単体で構或す
ることで,構造が簡単になり部品数も少なくなる。さら
に、コストの低減と信頼性の向上がはかれる。According to the present invention, the stress applied to the welded part around the sensor can be reduced by providing the support parts a and C, and the structure allows the differential pressure to be directly transmitted from the seal diaphragm to the semiconductor sensor via the sealed liquid. It is possible to realize a pressure receiver for a differential pressure transmitter that measures high differential pressures. Furthermore, by configuring the pressure receiving section main body as a single unit, the structure is simplified and the number of parts is reduced. Furthermore, cost reduction and reliability improvement are achieved.
本発明によれば、支持部a部,C部を設けることでセン
サ周辺の溶接部に加わる応力を低減でき、差圧をシール
ダイアフラムから封入液を介して直接半導体センサに伝
達される構造によって,高差圧を測定する差圧伝送用受
圧部を構成できる.また、受圧部本体を単体で構成する
ことで、構造が簡単になり部品数も少なくなる.さらに
、コストの低減と信頼性の向上がはかれる。According to the present invention, the stress applied to the welded portion around the sensor can be reduced by providing the support portions a and C, and the structure allows differential pressure to be directly transmitted from the seal diaphragm to the semiconductor sensor via the sealed liquid. A pressure receiver for differential pressure transmission can be configured to measure high differential pressures. In addition, by configuring the pressure receiver body as a single unit, the structure is simplified and the number of parts is reduced. Furthermore, cost reduction and reliability improvement are achieved.
第1図は本発明の一実施例の高差圧伝送器の受圧部構造
を示す縦断面図、第2図は本発明のその他の実施例の高
差圧伝送器の受圧部構造を示す縦断面図、第3図は差圧
伝送器の従来例を示す縦断面図である.
1・・・半導体センサ.4a・・・高圧側シールダイア
フラム、4b・・・低圧側シールダイアフラム、5・・
・封入液、8・・・ハーメチックシール金具、15・・
・セン第
1
図
第
2
図
第
3
図FIG. 1 is a longitudinal cross-sectional view showing the structure of the pressure receiving part of a high differential pressure transmitter according to an embodiment of the present invention, and FIG. 2 is a longitudinal cross-sectional view showing the structure of the pressure receiving part of a high differential pressure transmitter according to another embodiment of the present invention. 3 is a vertical sectional view showing a conventional example of a differential pressure transmitter. 1...Semiconductor sensor. 4a...High pressure side seal diaphragm, 4b...Low pressure side seal diaphragm, 5...
・Filled liquid, 8... Hermetic seal fitting, 15...
・Sen Figure 1 Figure 2 Figure 3
Claims (1)
ールダイアフラムと低圧側シールダイアフラムを有し、
その圧力差が、封入液を介して直接半導体センサに伝え
られる構造であって、半導体センサを収納するハウジン
グの上面部が受圧部本体に接し、下面部が受圧部本体に
固定される部材に接する構造をもつことを特徴とする差
圧伝送器用受圧部。1. A differential pressure transmitter using a semiconductor sensor has a high pressure side seal diaphragm and a low pressure side seal diaphragm,
The pressure difference is directly transmitted to the semiconductor sensor via the sealed liquid, and the upper surface of the housing housing the semiconductor sensor is in contact with the pressure receiver body, and the lower surface is in contact with a member fixed to the pressure receiver body. A pressure receiving part for a differential pressure transmitter characterized by having a structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18734989A JPH0353139A (en) | 1989-07-21 | 1989-07-21 | Pressure cell for differential pressure transmitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18734989A JPH0353139A (en) | 1989-07-21 | 1989-07-21 | Pressure cell for differential pressure transmitter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0353139A true JPH0353139A (en) | 1991-03-07 |
Family
ID=16204440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18734989A Pending JPH0353139A (en) | 1989-07-21 | 1989-07-21 | Pressure cell for differential pressure transmitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0353139A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010129609A (en) * | 2008-11-25 | 2010-06-10 | Panasonic Electric Works Co Ltd | Interposer |
-
1989
- 1989-07-21 JP JP18734989A patent/JPH0353139A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010129609A (en) * | 2008-11-25 | 2010-06-10 | Panasonic Electric Works Co Ltd | Interposer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6550337B1 (en) | Isolation technique for pressure sensing structure | |
EP2189773B1 (en) | Design of wet/wet differential pressure sensor based on microelectronic packaging process | |
US5184107A (en) | Piezoresistive pressure transducer with a conductive elastomeric seal | |
JP4044307B2 (en) | Pressure sensor | |
EP3128305B1 (en) | A hermetic pressure sensor | |
US6330829B1 (en) | Oil-filled pressure transducer | |
US20050087020A1 (en) | Pressure sensor device and cell thereof | |
EP3538857B1 (en) | Differential pressure sensor and fabrication | |
US7698951B2 (en) | Pressure-sensor apparatus | |
CN102472680A (en) | Relative pressure sensor | |
JP2800083B2 (en) | Pressure transducer assembly and method of manufacturing the same | |
JPS63289432A (en) | Method of assembling pressure sensor and pressure sensor | |
US5034848A (en) | Low pressure sensor | |
JPS61209333A (en) | High pressure transducer and assembly method | |
JPH0353139A (en) | Pressure cell for differential pressure transmitter | |
JP2007327976A (en) | Pressure sensor | |
JPH02141635A (en) | Structure for attaching semiconductor type pressure sensor for high pressure | |
JPH11132885A (en) | Pressure detector | |
US7073400B2 (en) | Sensor for measuring pressure in a sealed volume | |
JPH11132887A (en) | Pressure sensor | |
JPH0411141Y2 (en) | ||
JPH08166305A (en) | Semiconductor pressure gage | |
JPH0654270B2 (en) | Pressure measuring instrument | |
JPS5850300Y2 (en) | pressure transmitter | |
RU2082953C1 (en) | Tensometric pressure module |