JPH0351051B2 - - Google Patents
Info
- Publication number
- JPH0351051B2 JPH0351051B2 JP56149612A JP14961281A JPH0351051B2 JP H0351051 B2 JPH0351051 B2 JP H0351051B2 JP 56149612 A JP56149612 A JP 56149612A JP 14961281 A JP14961281 A JP 14961281A JP H0351051 B2 JPH0351051 B2 JP H0351051B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- field
- particles
- magnetic field
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002245 particle Substances 0.000 claims description 29
- 230000005672 electromagnetic field Effects 0.000 claims description 13
- 230000005684 electric field Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/28—Static spectrometers
- H01J49/284—Static spectrometers using electrostatic and magnetic sectors with simple focusing, e.g. with parallel fields such as Aston spectrometer
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electron Tubes For Measurement (AREA)
Description
【発明の詳細な説明】
本発明は粒子数、エネルギー分布が時間的に変
動する荷電粒子の質量分析器に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a charged particle mass spectrometer in which the number of particles and energy distribution vary over time.
荷電粒子の質量や、エネルギーの分析は、通
常、電場、磁場中に粒子を入射させ、その偏向さ
れる割合が質量やエネルギーによつて異なること
を利用してなされる。 The mass and energy of charged particles are usually analyzed by introducing the particles into an electric or magnetic field and using the fact that the rate at which they are deflected differs depending on their mass and energy.
ビームの状態が時間的に変化しない場合には、
市販されている質量分析器で用いられているよう
に、電場、磁場を時間的に変動させて質量スペク
トルやエネルギスペクトルの分析を行うことがで
きる。しかし、放電プラズマ等から放出される粒
子のように時間的に変動するビームの場合にはこ
のような方法を用いることができない。本発明
は、質量が異なる粒子が混在し、時間的に粒子数
やエネルギー分布が変動する荷電粒子ビームなエ
ネルギースペクトルの同時測定を行うことができ
る分析器に関する。 If the beam condition does not change over time,
As used in commercially available mass spectrometers, it is possible to analyze mass spectra and energy spectra by temporally varying electric and magnetic fields. However, such a method cannot be used in the case of a beam that fluctuates over time, such as particles emitted from discharge plasma or the like. The present invention relates to an analyzer capable of simultaneously measuring the energy spectrum of a charged particle beam in which particles of different masses coexist and the number of particles and energy distribution vary over time.
第1図、第2図、および第3図は、従来から用
いられている、若しくは提案されている分析器の
例である。 1, 2, and 3 are examples of conventionally used or proposed analyzers.
第1図、第2図は、180度偏向型の分析器で、
電磁場が、同一領域に重畳して印加されている。
同図では、H+やD+のような、荷電数が同じで、
質量数の異なる二種類の粒子ビームが入射した場
合を代表として示している。真空容器1の中に収
められた静電偏向板2によつて電場を、電磁石3
によつて磁場を発生させている。同図ではその方
向は同じである。また、同図では、真空容器自身
が電磁石のヨークを兼ねた場合を示している。電
磁場は、電極板面積、磁極板面積で規定される領
域4に存在している。この領域に入射されたH+
とD+の混合ビーム5は、ラーヌー半径の差異に
従つて運動量の分析が電磁場と直角方向に、また
電磁による偏向差によつて質量の分析が電磁場方
向になされる。 Figures 1 and 2 show a 180 degree deflection type analyzer.
Electromagnetic fields are applied to the same area in a superimposed manner.
In the same figure, cells with the same number of charges, such as H + and D + ,
The case where two types of particle beams with different mass numbers are incident is shown as a representative example. An electrostatic deflection plate 2 housed in a vacuum container 1 applies an electric field to an electromagnet 3.
A magnetic field is generated by In the figure, the directions are the same. The figure also shows a case where the vacuum vessel itself also serves as the yoke of the electromagnet. The electromagnetic field exists in a region 4 defined by the area of the electrode plate and the area of the magnetic pole plate. H + incident on this region
In the mixed beam 5 of D + and D + , the momentum is analyzed in the direction perpendicular to the electromagnetic field according to the difference in the Ranu radii, and the mass is analyzed in the direction of the electromagnetic field due to the electromagnetic deflection difference.
さて、このような構成においては、質量弁別も
電磁極板間で行わせようとするため、必然的に電
磁極間隙を大きくとる必要がでてくる。そのため
電磁石には大きな起磁力が求められ電磁石には大
きな起磁力が求められ電磁石は大型化する。ま
た、極板間隔が広がることにより、フリンジ場な
ど極板端部での電磁場の乱れの効果が大きくな
る。この効果が大きいことは、現実的には、荷電
粒子軌道の解析を複雑にし、分析器の設計を難し
くする。 Now, in such a configuration, since mass discrimination is also attempted to be performed between the electromagnetic pole plates, it is inevitably necessary to provide a large gap between the electromagnetic poles. Therefore, an electromagnet is required to have a large magnetomotive force, and an electromagnet is required to have a large magnetomotive force, and the electromagnet becomes large. In addition, as the distance between the electrode plates increases, the effect of disturbance of the electromagnetic field at the edge of the electrode plate, such as a fringe field, increases. In reality, this large effect complicates the analysis of charged particle trajectories and makes it difficult to design an analyzer.
一方、第3図の例は、磁石を小型化したいとし
て考えられている方式である。即ち、電極を磁極
間からとりだすことにより磁極間隙を狭くし、更
に磁場によるビームの偏向角を小さくすることに
より磁石の小型化を図ろうとするものである。た
しかにこの方法は原理的にはすぐれた方法といえ
る。即ち、上述の効果の他に、電磁石のレンズ効
果を利用して、ビームの集束点に粒子検出器をお
けば、運動量分解能も向上できる。しかしながら
この方式は、実際の設計、製作を考えると現実的
でない。その理由は、磁場が、磁極板端部で不連
続的に変化するのではなく、端部近傍では必ず場
の乱れが存在する。それに対して、第3図の方式
は、まさに、この乱れの多い領域を利用して分析
しようとするもので、荷電粒子のふるまいを適格
に把握することは甚だ困難であり、集束点を利用
して分解能をあげるという試みには多くの困難が
ある。 On the other hand, the example shown in FIG. 3 is a method that has been considered in order to reduce the size of the magnet. That is, an attempt is made to reduce the size of the magnet by narrowing the gap between the magnetic poles by taking out the electrodes from between the magnetic poles and by reducing the deflection angle of the beam due to the magnetic field. This method can certainly be said to be an excellent method in principle. That is, in addition to the above-mentioned effects, if a particle detector is placed at the focal point of the beam by utilizing the lens effect of the electromagnet, the momentum resolution can also be improved. However, this method is not practical when considering actual design and manufacturing. The reason is that the magnetic field does not change discontinuously at the ends of the magnetic pole plate, but there is always field disturbance near the ends. On the other hand, the method shown in Figure 3 attempts to conduct analysis using this highly disordered region, and it is extremely difficult to accurately grasp the behavior of charged particles, so it is difficult to accurately grasp the behavior of charged particles. There are many difficulties in trying to increase the resolution.
本発明は、このような点に鑑みてなされたもの
で、磁場による偏向角を180度にえらび、磁場に
よる偏向後に電場領域を通過させて質量弁別を行
うものである。第4図にその構成を示す。図で
は、H+とD+のように二種類のビームの分析例を
示している。この方式は、第1図、第2図の方式
と、第3図の方式の利点を兼ねそなえた方式とい
える。つまり、電極板を磁極板の外にだすことに
より磁極間隙をせまくして、磁石を小型化すると
ともに、磁場の乱れ領域を少くしている。加え
て、磁場偏向角を180度と大きくとることにより、
磁極端部の場の乱れの粒子ビーム軌道への影響を
小さくできる。 The present invention has been made in view of these points, and it selects a deflection angle by a magnetic field of 180 degrees, and after being deflected by the magnetic field, passes through an electric field region to perform mass discrimination. Figure 4 shows its configuration. The figure shows an example of analysis of two types of beams, H + and D + . This method can be said to have the advantages of the methods shown in FIGS. 1 and 2 and the method shown in FIG. 3. In other words, by extending the electrode plate outside the magnetic pole plate, the gap between the magnetic poles is narrowed, thereby making the magnet smaller and reducing the area in which the magnetic field is disturbed. In addition, by increasing the magnetic field deflection angle to 180 degrees,
The influence of field disturbance at the magnetic pole tip on the particle beam trajectory can be reduced.
また、電場、磁場のフリツジ場の相乗効果に対
しては、磁極間隙を小さくして、電磁場領域を別
個にすることで、第1,2図におけるようなフリ
ンジ場のかさなりによるイオン軌道への影響を小
さくしている。 In addition, for the synergistic effect of the fringe field of the electric field and magnetic field, by reducing the magnetic pole gap and separating the electromagnetic field regions, the influence on the ion trajectory due to the large fringe field as shown in Figures 1 and 2 can be reduced. is made smaller.
以上は、第1,2,3図の別の欠点を補うもの
であるが、当該方式によつても、各方式における
利点は保存されている。例えば、第1図、第4図
ではいずれも、磁場偏向角は180度であり、磁場
に対しては、垂直入出射する。これは、工作・組
立・調整を簡単にする。また、電磁場を別個にす
ることは、第1図に比して第3、第4図のよう
に、組立を容易にするほか、電場による偏向法に
自由度を与えることになる。例えば、第4図のよ
うに、電極板を適当な形状にすることにより、電
磁場方向への粒子の偏位距離を選択することがで
き、粒子検出器を一直線上に並べることなどが可
能である。 Although the above method compensates for the other drawbacks of FIGS. 1, 2, and 3, the advantages of each method are preserved. For example, in both FIGS. 1 and 4, the magnetic field deflection angle is 180 degrees, and the magnetic field enters and exits perpendicularly. This simplifies work, assembly, and adjustment. Further, by making the electromagnetic field separate, as shown in FIGS. 3 and 4 compared to FIG. 1, not only does assembly become easier, but also a degree of freedom is given to the deflection method using the electric field. For example, as shown in Figure 4, by making the electrode plate into an appropriate shape, it is possible to select the deflection distance of the particles in the direction of the electromagnetic field, and it is possible to arrange the particle detectors in a straight line. .
以上述べたように、本発明は、電磁場領域を分
離し、磁場偏向角を180度とすることにより、従
来の分析方式の長所を生かしつつ、設計製作を簡
単にすることができる。 As described above, by separating the electromagnetic field region and setting the magnetic field deflection angle to 180 degrees, the present invention can simplify the design and manufacture while taking advantage of the advantages of the conventional analysis method.
上述した実施例では粒子の種類は二種類とした
が、二種類にこだわることはなく多種類に拡大で
きる。また、分析器の小型化のために電磁石と真
空容器は一体としたが、これも、二つを分離し、
磁石を第5図のように外置形としてもさしつかえ
ないことはいうまでもない。 In the above-described embodiment, there are two types of particles, but the number of types of particles is not limited to two and can be expanded to many types. In addition, in order to make the analyzer more compact, the electromagnet and the vacuum container were integrated, but in this case, the two were separated and
It goes without saying that the magnet may also be of external type as shown in Figure 5.
第1図は、従来例の電磁場を重畳させる方式の
上面断面図、第2図はその側面断面図、第3図は
磁場偏向角を小さくし、電磁場を分離した方式を
示している側面断面図、第4図は本発明の実施例
を示す上面断面図、第5図は第4図の側面断面
図、第6図は本発明の他の実施例をしめす上面断
面図である。
1……真空容器(電磁石ヨークを兼ねる。)、2
……静電偏向板、3……電磁石磁極板、4……電
場領域、5……荷電粒子ビーム、6……コリメー
タ、7……出射点、8……粒子検出器、9……コ
イル、10……磁場領域、11……真空容器、1
2……電磁石。
Fig. 1 is a top sectional view of a conventional method in which electromagnetic fields are superimposed, Fig. 2 is a side sectional view thereof, and Fig. 3 is a side sectional view showing a method in which the magnetic field deflection angle is reduced and the electromagnetic fields are separated. , FIG. 4 is a top sectional view showing an embodiment of the present invention, FIG. 5 is a side sectional view of FIG. 4, and FIG. 6 is a top sectional view showing another embodiment of the invention. 1...Vacuum container (also serves as an electromagnetic yoke), 2
... Electrostatic deflection plate, 3 ... Electromagnetic pole plate, 4 ... Electric field region, 5 ... Charged particle beam, 6 ... Collimator, 7 ... Output point, 8 ... Particle detector, 9 ... Coil, 10...Magnetic field region, 11...Vacuum container, 1
2...Electromagnet.
Claims (1)
複数種類の荷電粒子を電磁場中に入射させ、前記
電磁場による偏向作用によつて前記荷電粒子の質
量とエネルギを分析する荷電粒子質量エネルギー
分析器において、前記磁場によつて、入射した前
記荷電粒子を180度偏向させた後、前記磁場と同
一若しくは逆方向の向きを持つ前記電場を通過さ
せ、前記粒子の質量とエネルギーの分析を同時に
行う粒子検出器に入射させて成ることを特徴とす
る荷電粒子質量エネルギー分析器。1. In a charged particle mass energy analyzer that injects multiple types of charged particles whose number and energy distribution vary over time into an electromagnetic field and analyzes the mass and energy of the charged particles by the deflection action of the electromagnetic field, A particle detector that simultaneously analyzes the mass and energy of the particles by deflecting the incident charged particles by 180 degrees by the magnetic field, and then passing the electric field having the same or opposite direction to the magnetic field. A charged particle mass energy analyzer characterized in that it is made of a charged particle that is incident on a charged particle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56149612A JPS5853147A (en) | 1981-09-24 | 1981-09-24 | Charged-particle mass energy analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56149612A JPS5853147A (en) | 1981-09-24 | 1981-09-24 | Charged-particle mass energy analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5853147A JPS5853147A (en) | 1983-03-29 |
JPH0351051B2 true JPH0351051B2 (en) | 1991-08-05 |
Family
ID=15479007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56149612A Granted JPS5853147A (en) | 1981-09-24 | 1981-09-24 | Charged-particle mass energy analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5853147A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55159557A (en) * | 1979-05-31 | 1980-12-11 | Jeol Ltd | Mass analyzer |
-
1981
- 1981-09-24 JP JP56149612A patent/JPS5853147A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55159557A (en) * | 1979-05-31 | 1980-12-11 | Jeol Ltd | Mass analyzer |
Also Published As
Publication number | Publication date |
---|---|
JPS5853147A (en) | 1983-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5464985A (en) | Non-linear field reflectron | |
US20020125420A1 (en) | Extended bradbury-nielson gate | |
WO2006130149A2 (en) | Mass spectrometer and methods of increasing dispersion between ion beams | |
GB1145107A (en) | Ion beam microanalyser | |
JPH0346747A (en) | Ion mirror device for flying timetype mass analyser | |
US4672204A (en) | Mass spectrometers | |
EP0777260B1 (en) | Mass spectrometer | |
Liebl | Design of a combined ion and electron microprobe apparatus | |
JPS5836464B2 (en) | sekisouchi | |
US4952803A (en) | Mass Spectrometry/mass spectrometry instrument having a double focusing mass analyzer | |
JP3392345B2 (en) | Time-of-flight mass spectrometer | |
Jennings et al. | [2] Mass analyzers | |
AU2017220662B2 (en) | Extraction system for charged secondary particles for use in a mass spectrometer or other charged particle device | |
EP0456516B1 (en) | Ion buncher | |
JPH0351051B2 (en) | ||
US3387131A (en) | Dual orbit mass spectrometer for analyzing ions in the mass range of 1 to 100 | |
SU957318A1 (en) | Quadruple mass spectrometer | |
US2845539A (en) | Mass spectrometry | |
AU2017220663B2 (en) | Extraction system for charged secondary particles for use in a mass spectrometer or other charged particle device | |
JP3096375B2 (en) | Hybrid tandem mass spectrometer | |
US3783278A (en) | Single magnet tandem mass spectrometer | |
JPH0572701B2 (en) | ||
SU1605288A1 (en) | Ion microprobe analyzer | |
JPH0230050A (en) | Mass spectrograph | |
JPH0624115B2 (en) | Double focusing mass spectrometer |