JPH0347904A - Manufacture of strip-state porous metal plate - Google Patents
Manufacture of strip-state porous metal plateInfo
- Publication number
- JPH0347904A JPH0347904A JP18049789A JP18049789A JPH0347904A JP H0347904 A JPH0347904 A JP H0347904A JP 18049789 A JP18049789 A JP 18049789A JP 18049789 A JP18049789 A JP 18049789A JP H0347904 A JPH0347904 A JP H0347904A
- Authority
- JP
- Japan
- Prior art keywords
- strip
- powder
- particle size
- metal plate
- porous metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002184 metal Substances 0.000 title claims abstract description 73
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 73
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000000843 powder Substances 0.000 claims abstract description 67
- 239000002245 particle Substances 0.000 claims abstract description 35
- 238000005245 sintering Methods 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 15
- 238000001816 cooling Methods 0.000 claims abstract description 11
- 238000009826 distribution Methods 0.000 claims abstract description 11
- 230000001590 oxidative effect Effects 0.000 claims abstract description 9
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000011800 void material Substances 0.000 abstract 2
- 239000006096 absorbing agent Substances 0.000 abstract 1
- 230000002844 continuous effect Effects 0.000 abstract 1
- 230000035699 permeability Effects 0.000 abstract 1
- 239000000047 product Substances 0.000 description 24
- 238000009703 powder rolling Methods 0.000 description 12
- 239000011148 porous material Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 239000011358 absorbing material Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000001272 pressureless sintering Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、金属フィルターや吸音材等に用いられる多孔
質金属板の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a porous metal plate used for metal filters, sound absorbing materials, and the like.
従来より、金属粉末、金属繊維1発泡金属等を用いた種
々の多孔質金属材料が金属フィルタ金属触媒担持基材、
吸音材、軸受等に利用されているが これらの中でも金
属粉末を焼結したものがもっとも広く用いられている。Conventionally, various porous metal materials using metal powder, metal fibers, metal foam, etc. have been used as metal filters, metal catalyst supporting substrates,
It is used for sound-absorbing materials, bearings, etc. Among these, sintered metal powder is the most widely used.
金属粉末を焼結して多孔質材を製造する方法としては、
粉末を型成形したのちハツチ的に焼結して製品とする方
法が一般的である。型成形の方法には、金属粉末を型に
充填したまま加圧せずに焼結する無加圧焼結法、金属粉
末をプレスで加圧して成形体としたのち焼結する方法、
金属粉末にパイングーを添加してスラリー状にして成形
し、これを焼結する方法などがある。As a method for manufacturing porous materials by sintering metal powder,
A common method is to form the powder into a mold and then sinter it into a product. Mold forming methods include a pressureless sintering method in which metal powder is filled in a mold and sintered without applying pressure, a method in which metal powder is pressurized with a press to form a compact, and then sintered.
There is a method of adding pine goo to metal powder, forming it into a slurry, and sintering this.
多孔質金属材料のうち板状体の製品を得るにはプレスに
より板状の成形体にしてから焼結するのが最も普通の方
法であったが、この方法ではプレス荷重が大きくなるた
めに製造設備が大型化したり、製品の大きさに制限が生
じるといった問題があった。またプレスおよび焼結がバ
ッチ方式であるので、生産効率が悪く、均一製品を製造
するという品質管理の面でも負担が大きく、ライン方式
で大量生産するには問題があった。そして、この方法で
は最終製品形状に近い物品に成形できるという利点はあ
るものの、型成形では薄いものを成形し難いという本来
的な欠点を有するので、得られる多孔質材も比較的厚い
ものに限定されるという問題も含まれていた。The most common method for obtaining plate-shaped products of porous metal materials was to press them into plate-shaped compacts and then sinter them. There were problems such as the equipment becoming larger and the size of the product being limited. In addition, since pressing and sintering are done in a batch process, production efficiency is low and quality control to produce uniform products is a heavy burden, which poses problems in mass production using a line process. Although this method has the advantage of being able to mold into articles close to the shape of the final product, it has the inherent drawback that it is difficult to mold thin objects using molding, so the porous material obtained is limited to relatively thick objects. It also included the issue of being exposed.
一方、無加圧焼結の方法では金属粉末の接触点が少ない
ために焼結後の強度が低く、有機多孔質材に比べて強度
が高いという金属材の有利性が発揮できなくなるといっ
た問題があり、さらにバインダーを用いた方法では不純
物の混入による材質の劣化が生じたり、脱脂等が必要な
ために製造工程が複雑になるといった問題などがあった
。On the other hand, the pressureless sintering method has the problem that the strength after sintering is low because there are few contact points of the metal powder, and the advantage of metal materials, which are higher strength than organic porous materials, cannot be demonstrated. In addition, methods using binders have problems such as deterioration of the material due to contamination with impurities and the need for degreasing, which complicates the manufacturing process.
本発明は、このような問題を解決することを目的として
なされたものである。The present invention has been made with the aim of solving such problems.
本発明者らは、粉末圧延により金属粉末を連続した帯状
の成形体として圧粉成形する方法を採用しても、所定の
粒径並びに粒度分布を適正にして所定の空隙率をもつよ
うに圧延するならば、連続通板できるような自己支持強
度をもつ帯状体を得ることができ、焼結炉で連続焼結し
てストリップ状の多孔質金属コイルを製造できることを
見い出した。すなわち本発明は、所定の間隙を開けて対
向配置された互いに反対方向に回転する双ロール間に金
属粉末を連続供給してロール間隙に相当する厚みを有し
且つ空隙率が10〜50%の帯状成形体とし、引続きこ
の帯状成形体を非酸化性雰囲気に維持された連続焼結炉
に連続通板して焼結し冷却することを特徴とする帯状多
孔質金属板の製造方法を提供するものである。そのさい
双ロールに供給する金属粉末としては、平均粒径が2
0〜300μmの範囲内の或る値を有し、その或る値の
1/2がら3/2までの粒径範囲に全粉末の90%以上
が属する粒度分布を有するものを使用するのがよい。The inventors of the present invention have found that even if a method is adopted in which metal powder is compacted into a continuous band-shaped compact by powder rolling, it is possible to roll the metal powder so that the predetermined particle size and particle size distribution are appropriate and have a predetermined porosity. We have discovered that if we do this, we can obtain a strip with a self-supporting strength that allows for continuous threading, and that we can produce a strip-shaped porous metal coil by continuous sintering in a sintering furnace. That is, the present invention continuously supplies metal powder between two rolls that rotate in opposite directions and are arranged facing each other with a predetermined gap between them, so that the metal powder has a thickness corresponding to the gap between the rolls and a porosity of 10 to 50%. To provide a method for producing a strip-shaped porous metal plate, which comprises forming a strip-shaped compact, and subsequently passing the strip-shaped compact through a continuous sintering furnace maintained in a non-oxidizing atmosphere to sinter and cool it. It is something. At that time, the metal powder to be fed to the twin rolls should have an average particle size of 2
It is best to use a powder that has a certain value within the range of 0 to 300 μm and has a particle size distribution in which 90% or more of the total powder falls within the particle size range from 1/2 to 3/2 of that certain value. good.
第1図に本発明法を実施する設備の概要を示した。1は
粉末圧延機、2は連続焼結炉であり、その中を通板する
帯状材料の入口側から所定距離をもった加熱帯域3が形
成され、それに続いて冷却帯域4が形成されている。5
は巻取機を示す。図示の例では、双ロール式粉末圧延機
は所定の間隙を開けて対向配置された互いに反対方向に
回転する水平軸をもつ双ロール6a、6bからなり、こ
の双ロール6a、6bの間隙に金属粉末をホッパー7か
ら連続供給する。そのさい、所定の値に設定されたロー
ル間隙に圧延速度と金属粉末の供給量を適正に制御する
ことによって、ロールの最狭陰部からロール間隙に相当
する厚みを有し且つ空隙率が10〜50%の連続した帯
状成形体8が製造される。この帯状成形体8は引続き焼
結炉2に連続通板され。FIG. 1 shows an outline of the equipment for carrying out the method of the present invention. 1 is a powder rolling mill, 2 is a continuous sintering furnace, in which a heating zone 3 is formed at a predetermined distance from the inlet side of the strip-shaped material passing through it, and a cooling zone 4 is formed next to it. . 5
indicates a winder. In the illustrated example, the twin-roll powder rolling mill consists of twin rolls 6a and 6b that are arranged opposite to each other with a predetermined gap and have horizontal axes that rotate in opposite directions. Powder is continuously fed from the hopper 7. At that time, by appropriately controlling the rolling speed and the amount of metal powder supplied to the roll gap set to a predetermined value, the roll has a thickness corresponding to the roll gap from the narrowest part of the roll and a porosity of 10 to 10. A 50% continuous strip shaped body 8 is produced. This strip-shaped compact 8 is then continuously passed through the sintering furnace 2.
加熱帯域3を通過する間に焼結が完了し1次いで冷却帯
域4で連続冷却されて炉外に出て多孔質の製品ストリッ
プとなり3巻取機に巻き取られる。Sintering is completed while passing through the heating zone 3, and then it is continuously cooled in the cooling zone 4 and exits the furnace to become a porous product strip that is wound up on three winders.
本発明によれば、このような設備によって9例えば気体
透過性の多孔質金属薄板を連続的に製造することができ
る。そのさい、粉末圧延機ではプレス成形のような型と
金属粉末間での摩擦がないので少ないエネルギーで効率
良く圧粉成形することができ、またバインダー等の成形
助剤を用いなくても板厚0.5mm程度の薄いものにも
比較的容易に圧粉成形できるし、基本的には長さに制限
無く連続的に帯状の成形体を製造することができる。According to the invention, such an installation makes it possible to continuously produce, for example, gas-permeable porous metal sheets. At that time, powder rolling machines do not have friction between the mold and metal powder as in press forming, so powder compacting can be performed efficiently with less energy, and the plate thickness can be increased without using forming aids such as binders. It can be compacted relatively easily into a product as thin as 0.5 mm, and strip-shaped molded products can basically be manufactured continuously without any length limitations.
本発明の実施に際し、使用する金属粉末の種類はとくに
限定されるものでないが、適した粉末の一つとして、安
価で比較的成形性のよい水アトマイズ粉があげられる。In carrying out the present invention, the type of metal powder used is not particularly limited, but one suitable powder is water atomized powder, which is inexpensive and has relatively good moldability.
金属の種類も特に限定されないが1本発明法は大量生産
性に優れていることから、綱や銅合金等の汎用金属の場
合にその有利性が発揮され2例えば耐食性を必要とする
場合にはステンレス鋼の粉末などが用いられる。Although the type of metal is not particularly limited, 1. The method of the present invention is excellent in mass productivity, so its advantages are demonstrated in the case of general-purpose metals such as steel and copper alloys. 2. For example, in cases where corrosion resistance is required, Stainless steel powder is used.
粉末の粒径は、製品多孔質金属板の製品における空隙の
大きさを左右すると共に自己支持強度を有する帯状成形
品を得るうえからも重要であり適正に選定することが必
要である。本発明者らが行った試験結果によれば2平均
粒径が20〜300μmの範囲内の或る値を有し、その
或る値の1/2から3/2までの粒径範囲に全粉末の9
0%以上が属するような粒度分布を有することが必要で
あることがわかった。平均粒径が20μm未満のような
微細粉末の場合には、粉末の流動性が低下し、タップ密
度が低下する等の理由により圧延による成形が困難にな
ることのほか、製品板の多孔質性を特徴づける空隙があ
まり微細になって多孔W ’FAとしての特性が失われ
たり、金属粉末の製造コストが高くなる等の問題も生し
る。一方、平均粒径が300μmを超える場合には、成
形性が低下して圧延によって自己支持強度をもつ帯状圧
粉成形体を造ることが困難となるほか、造れたとしても
焼結後の強度が低下するといった問題が生じる。The particle size of the powder determines the size of the voids in the porous metal plate product, and is also important for obtaining a strip-shaped molded product with self-supporting strength, so it is necessary to select it appropriately. According to the test results conducted by the present inventors, the 2-average particle size has a certain value within the range of 20 to 300 μm, and the entire particle size range is from 1/2 to 3/2 of that certain value. powder 9
It has been found that it is necessary to have a particle size distribution to which 0% or more belongs. In the case of fine powders with an average particle size of less than 20 μm, the fluidity of the powder decreases and the tap density decreases, making it difficult to form by rolling, as well as the porosity of the product plate. Problems also arise, such as the voids that characterize the W'FA becoming so fine that it loses its properties as a porous W'FA, and the manufacturing cost of the metal powder increases. On the other hand, if the average particle size exceeds 300 μm, the formability decreases, making it difficult to create a strip-shaped powder compact with self-supporting strength by rolling, and even if it can be created, the strength after sintering will decrease. The problem arises that the
他方、金属粉末の粒径分布は、粉末圧延における成形性
並びに製品多孔質金属板の品質に影響するので適正に調
整する必要がある。平均粒径に比べて著しく微細な粉末
や粗大な粉末が混在すると粉末圧延時に薄い帯状成形品
の所々に強度むらが生したり、空隙率の分布も偏ったり
して成形性が劣化するばかりではなく、得られる多孔質
金属板の空隙径の分布にもむらが生ずる。例えば本発明
によって得られた多孔質金属板を金属フィルターとして
用いる場合、金属フィルターの等級を決めるうえで、あ
る程度空隙が揃っていることが必要であり、これによっ
て濾過で漉しとる物質の大きさを決めることができるこ
とになる。このような成形性並びに品質面で問題のない
金属粉末の粒径分布としては9本発明者らの多くの試験
の結果平均粒径の1/2〜3/2の粒径の金属粉末が占
める割合が90%以上であるのが望ましいことがわかっ
た。すなわち、平均粒径は前記の如<20〜300μm
の範囲内の或る値をもつ粉末を使用し、その粉末の平均
粒径の1/2から3/2までの粒径範囲に全粉末の90
%以上が属する粒度分布をもつものを使用するのである
。例えば平均粒径が20〜30μmの微細な範囲にある
場合でも、これよりも著しく微細な粉末や粗大な粉末の
占める割合が大きいと、空隙径が過小となったり、成形
性が劣化することになる。このようなことから平均粒径
からあまり外れた微粉あるいは粗粉の混入は避けること
が必要である。なお、金属粉末の種類によっては前記の
粒径並びに粒度分布の範囲でも成形性が特に劣るような
金属粉末を用いる場合には成形助剤としてのバインダー
を予め混合するなどして成形性を高める処理を行ったの
ち2本発明による方法で多孔質焼結金属板を製造するこ
ともできる。On the other hand, the particle size distribution of the metal powder must be appropriately adjusted since it affects the formability in powder rolling and the quality of the product porous metal plate. If powders that are significantly finer or coarser than the average particle size are mixed, the strength of the thin strip-shaped molded product will be uneven in some places during powder rolling, and the porosity distribution will be biased, resulting in poor formability. Moreover, the distribution of the pore diameters of the obtained porous metal plate also becomes uneven. For example, when using the porous metal plate obtained by the present invention as a metal filter, in determining the grade of the metal filter, it is necessary that the pores be uniform to a certain extent, and this allows the size of the material to be filtered out to be determined. You will be able to decide. The particle size distribution of such metal powder that does not have problems in terms of formability and quality is based on the results of numerous tests conducted by the present inventors. It has been found that it is desirable that the ratio is 90% or more. That is, the average particle size is <20 to 300 μm as described above.
Using a powder with a certain value within the range of
% or more is used. For example, even if the average particle size is in the fine range of 20 to 30 μm, if the proportion of powder that is significantly finer or coarser than this is large, the pore size may become too small or the moldability may deteriorate. Become. For this reason, it is necessary to avoid mixing in fine powder or coarse powder that deviates too much from the average particle size. Note that, depending on the type of metal powder, when using a metal powder that has particularly poor formability even within the particle size and particle size distribution ranges mentioned above, treatment to improve the formability by pre-mixing a binder as a forming aid, etc. It is also possible to produce a porous sintered metal plate by the method according to the present invention.
粉末圧延機では、かような金属粉末を使用して空隙率が
10〜50%の帯状成形体を連続的に製造する。この空
隙率の制御は粉末圧延機でのロールギャップ、ロールの
回転速度、粉末供給速度を使用する金属粉末に応して適
正に制御して行う。帯状成形体の空隙率は、焼結製品の
空隙率にほぼ等しくなる。このため、圧延成形時の空隙
率は製品の要求特性に応して前記の範囲の或る値となる
ように決める。帯状形成体の空隙率が10%未満の場合
には空隙の絶対量が少ないばかりでな(、内部の空隙が
表面まで通していない、所謂クローズドボアの状態にな
って焼結後の製品は透過性の多孔質という特性が失われ
る (例えばフィルター等に使用できない)ばかりでは
なく、双ロール式粉末圧延機のロールギャップへの粉末
の送り込み量を強制的に増強することが必要となり1
このため定常運転に特別の考慮を払う必要があり、安定
して多孔質の均一製品を製造することが困難となる。In a powder rolling mill, such a metal powder is used to continuously produce a strip-shaped compact having a porosity of 10 to 50%. The porosity is controlled by appropriately controlling the roll gap in the powder rolling mill, the rotational speed of the rolls, and the powder supply speed depending on the metal powder used. The porosity of the strip-shaped compact is approximately equal to the porosity of the sintered product. Therefore, the porosity during rolling is determined to a certain value within the above range depending on the required characteristics of the product. If the porosity of the band-shaped body is less than 10%, the absolute amount of voids is small (inner voids do not penetrate to the surface, so-called closed bore state, and the product after sintering does not pass through. Not only does it lose its porous property (for example, it cannot be used for filters, etc.), but it is also necessary to forcibly increase the amount of powder fed into the roll gap of a twin-roll powder rolling mill.
Therefore, special consideration must be given to steady-state operation, making it difficult to stably produce porous and uniform products.
方、帯状成形体の空隙率が50%を超える高空隙率の場
合には、帯状成形体の強度が著しく低下し自己支持でき
るような帯状体とすることが困難となり、帯状成形体を
安定して連続焼結炉に連続通板することができなくなる
。このため圧粉成形における空隙率は10〜50%の範
囲とすることが望ましい。On the other hand, if the porosity of the strip-shaped compact exceeds 50%, the strength of the strip-shaped compact decreases significantly, making it difficult to form a strip that can self-support, making it difficult to stabilize the strip-shaped compact. Therefore, it becomes impossible to continuously pass the sheet through the continuous sintering furnace. For this reason, it is desirable that the porosity in compacting is in the range of 10 to 50%.
このようにして圧延成形された帯状成形体は。The strip-shaped molded product rolled in this way is as follows.
引続きその流れを維持したまま連続焼結炉に連続的に導
かれるのであるが、この焼結炉では非酸化性雰囲気下で
の加熱および冷却が行われる。一般に圧粉成形品は大気
中などの酸化性雰囲気下で加熱されると酸化が生じ、金
属粉末界面での金属原子の拡散による金属粉末同士の接
合現象である焼結が生じ難くなるばかりか、製品表面に
スケールが生成して商品価値が失われる。このため、焼
結炉内における加熱中および冷却中の雰囲気はH2やC
Oを含む還元性ガス、あるいはAr等の不活性ガス等を
用いて非酸化性雰囲気に保つ必要がある。焼結炉内の加
熱帯域では上記のごとく金属粉末同士が圧粉成形により
接触した部分で接合が生じるような温度を選ぶ必要があ
る。この温度は金属粉末の種類や粉末圧延条件によって
も異なるが例えば鋼の場合は800’C以上、銅系合金
の場合は500″C程度以上の加熱温度とする必要があ
る。本発明では帯状成形品を焼結炉に連続流れとして通
板する連続焼結を行う関係上、焼結時間はハ・7チ焼結
の場合よりも比較的短時間となるので、充分な焼結ひい
ては充分な製品強度を得るためには通常のバッチ焼結の
場合に比べて加熱保持温度を高めにすることが望ましい
。加熱帯域で焼結されたあとは冷却されるのであるが、
この冷却も炉内で行うのがよい。冷却のさいにも酸化が
進行するので加熱時と同様にスケールの発生等が起きる
からである。したがって、酸化が著しく進行しない低温
までは非酸化性雰囲気中で炉冷する必要がある。While maintaining this flow, it is continuously guided to a continuous sintering furnace, where it is heated and cooled in a non-oxidizing atmosphere. In general, when compacted products are heated in an oxidizing atmosphere such as the air, oxidation occurs, which not only makes it difficult for sintering to occur, which is a bonding phenomenon between metal powders due to the diffusion of metal atoms at the metal powder interface, Scale forms on the product surface and the product value is lost. Therefore, the atmosphere during heating and cooling in the sintering furnace is H2 and C.
It is necessary to maintain a non-oxidizing atmosphere using a reducing gas containing O or an inert gas such as Ar. As mentioned above, in the heating zone in the sintering furnace, it is necessary to select a temperature that will cause bonding at the portions where the metal powders come into contact with each other during powder compaction. This temperature varies depending on the type of metal powder and the powder rolling conditions, but for example, in the case of steel, it is necessary to set the heating temperature to 800'C or higher, and in the case of copper alloy, it is necessary to set the heating temperature to about 500'C or higher. Due to the continuous sintering in which the product is passed through the sintering furnace in a continuous flow, the sintering time is relatively shorter than in the case of H/7T sintering, so that sufficient sintering and therefore sufficient product can be achieved. In order to obtain strength, it is desirable to set the heating and holding temperature higher than in the case of normal batch sintering.After sintering in the heating zone, it is cooled,
This cooling is also preferably performed in the furnace. This is because oxidation progresses even during cooling, and scale formation, etc., occurs in the same way as during heating. Therefore, it is necessary to cool the furnace in a non-oxidizing atmosphere to a low temperature at which oxidation does not significantly proceed.
連続焼結炉から出た帯状焼結体は、剪断等により板状に
切断するこ七もできるが1巻取機を用いることによりコ
イル状の金属帯にすることができる。コイル状にするこ
とにより、その後の形状修正のためのスキンパス圧延や
トリミング、さらにはジャリングや打ち抜き加工等の二
次加工においても9通常の金属帯と同様な方法で処理で
きるため、効率的な製造が可能である。The strip-shaped sintered body discharged from the continuous sintering furnace can be cut into plates by shearing or the like, but it can also be made into coil-shaped metal strips by using a winder. By making it into a coil, it can be processed in the same way as regular metal strips, including skin pass rolling and trimming for subsequent shape correction, as well as secondary processing such as jarring and punching.9 This makes manufacturing efficient. is possible.
〔実施例1〕
JIS規格の5US304Lの組成を有するステンレス
鋼金属粉末を用いて多孔質焼結金属板を製造した。[Example 1] A porous sintered metal plate was manufactured using stainless steel metal powder having a composition of 5US304L according to the JIS standard.
用いた粉末はいずれも水アトマイズ粉末であり分級によ
り平均粒径および粒径分布を調整した。All of the powders used were water atomized powders, and the average particle size and particle size distribution were adjusted by classification.
1
2
なおバインダーは添加していない。粉末圧延にはロール
径400mmの圧延機を用い、空隙率を8〜60%1板
厚を0.5〜2.0mm、板幅を180mmとして圧粉
成形し、帯状成形体を得た。この連続した帯状成形体を
直接連続焼結炉に通板して焼結した。加熱帯および冷却
帯の雰囲気はアンモニア分解ガスとし、加熱帯における
加熱条件は1200“Cで5分および6分間保持の条件
とした。また連続焼結炉出口における温度が150″C
になるように冷却帯での冷却を行った。冷却後の焼結体
は内部508mmのコイルに巻取った。1 2 No binder was added. A rolling mill with a roll diameter of 400 mm was used for powder rolling, and the powder was compacted with a porosity of 8 to 60%, a plate thickness of 0.5 to 2.0 mm, and a plate width of 180 mm to obtain a strip-shaped compact. This continuous strip-shaped compact was directly passed through a continuous sintering furnace and sintered. The atmosphere in the heating zone and the cooling zone was ammonia decomposition gas, and the heating conditions in the heating zone were 1200"C and held for 5 minutes and 6 minutes. Also, the temperature at the outlet of the continuous sintering furnace was 150"C.
Cooling was performed in a cooling zone so that The cooled sintered body was wound into a coil with an internal diameter of 508 mm.
これらのコイルにより採取したサンプルについて、空隙
径や空気を通したときの圧力損失を測定した。その結果
を第1表に示した。また断面観察した例を第1図および
第2図に示した。The pore diameter and pressure loss when air was passed through the samples collected using these coils were measured. The results are shown in Table 1. Examples of cross-sectional observations are shown in FIGS. 1 and 2.
14
第1表から明らかなように、粉末の平均粒径が300μ
mを超える比較例1.平均粒径は300μm以下である
が300μmを超える粒径の粉末が10%以上である比
較例2.および圧粉成形の空隙率が50%を越える比較
例4においては、いずれも成形体の強度が小さいため、
成形体を安定して連続焼結炉に導くことができず、焼結
体を得ることができなかった。その他の比較例いではコ
イルとしての焼結体は得られたが、圧粉成形の空隙率が
10%未満の比較例3.および平均粒径は20μm以上
であるが20μm未満の粒径の粉末が10%以上である
比較例5では、空隙が少ないか、または空隙の大きさが
小さいため、空気を通じたときの圧力損失が著しく大き
く、多孔質材としての機能に制限を受けるものであった
。14 As is clear from Table 1, the average particle size of the powder is 300μ
Comparative example 1 exceeding m. Comparative Example 2, in which the average particle size is 300 μm or less, but 10% or more of the powder has a particle size exceeding 300 μm. and Comparative Example 4 in which the porosity of powder molding exceeds 50%, the strength of the molded body is low in both cases.
The molded body could not be stably introduced into the continuous sintering furnace, and a sintered body could not be obtained. In other comparative examples, a sintered body as a coil was obtained, but in Comparative Example 3, the porosity of powder compacting was less than 10%. In Comparative Example 5, in which the average particle size is 20 μm or more, but the powder with a particle size of less than 20 μm accounts for 10% or more, there are few voids or the size of the voids is small, so the pressure loss when passing through air is It was extremely large, and its function as a porous material was limited.
これに対して本発明例1〜6では、その代表的な断面組
織を第2図(本発明例1の多孔質焼結金属板)および第
3図(本発明例4の多孔質焼結金属板)に示すように、
10〜18μmの平均空隙径を有する多孔質焼結金属板
が得られ、また通気も十分可能であった。したがって、
フィルター素材や触媒担体基板として好適な多孔質金属
板が得られた。On the other hand, in Examples 1 to 6 of the present invention, typical cross-sectional structures are shown in Fig. 2 (porous sintered metal plate of Inventive example 1) and Fig. 3 (porous sintered metal plate of Inventive example 4). As shown in the board),
A porous sintered metal plate having an average pore diameter of 10 to 18 μm was obtained, and sufficient ventilation was possible. therefore,
A porous metal plate suitable as a filter material or catalyst carrier substrate was obtained.
〔実施例2〕
実施例1で製造した本発明例1および4のコイルより、
JI56号の引張試験片を切削加工により切りだして試
験を行った。また、これらとは別に比較例として、従来
のプレス成形とバッチ焼結で焼結板を製造した。これに
用いた金属粉末は実施例1で用いたものと同じ5US3
04Lの水アトマイズ粉末であり、平均粒径は125μ
mである。製造にあたっては幅15mm、長さ100m
mの矩形の金型を用いてプレス荷重60 tonで板厚
2.0mm、空隙率32%の成形体とし、この成形体に
1150°C−60分間のハツチ焼結を施した。この矩
形焼結板よりJIS6号引張試験片を切りだして試験し
た。また、空隙径や通気時の圧力損失も測定した。その
結果を第2表に示した。[Example 2] From the coils of Examples 1 and 4 of the present invention manufactured in Example 1,
A tensile test piece of JI No. 56 was cut out by cutting and tested. In addition, as a comparative example, a sintered plate was manufactured using conventional press molding and batch sintering. The metal powder used for this was the same 5US3 as used in Example 1.
04L water atomized powder, average particle size is 125μ
It is m. For manufacturing, the width is 15mm and the length is 100m.
A molded body having a plate thickness of 2.0 mm and a porosity of 32% was made using a press load of 60 tons using a rectangular mold of size 2.0 mm, and this molded body was subjected to hatch sintering at 1150° C. for 60 minutes. A JIS No. 6 tensile test piece was cut out from this rectangular sintered plate and tested. The pore diameter and pressure loss during ventilation were also measured. The results are shown in Table 2.
第2表
第2表に見られるように1本発明例はいずれも従来のバ
ッチ的に製造された多孔質焼結金属板の比較例と、同等
以上の強度を有するとともに1通気特性においても遜色
が無く、多孔質金属板として十分適用できるものである
ことが判る。As shown in Table 2, all of the examples of the present invention have strength equal to or higher than the comparative examples of porous sintered metal plates manufactured in a conventional batch manner, and they are also inferior in ventilation characteristics. It can be seen that there is no porosity and that the material can be sufficiently applied as a porous metal plate.
以上詳述したように本発明によれば、気体透過性を有す
る多孔質金属ストリップが連続生産できる。したがって
従来のバッチ的な方法に比べて量産性が著しく改善され
ると共に製品の均質性においても優れる。またコイル状
の製品が得られることにより比較的広い面積を必要とす
る用途への適用が容易となり、且つ加工も通常の金属帯
と同様な方法が使用できるようになることから、その用
途を著しく拡大することができ、フィルター素材や触媒
担体基板、さらには吸音材などの分野に安価で高品質の
材料を提供することができる。As described in detail above, according to the present invention, a gas permeable porous metal strip can be continuously produced. Therefore, compared to conventional batch-type methods, mass productivity is significantly improved, and product homogeneity is also excellent. In addition, by obtaining a coiled product, it is easy to apply it to applications that require a relatively large area, and it can be processed using the same method as ordinary metal strips, which significantly expands the application. It can be expanded to provide inexpensive, high-quality materials for fields such as filter materials, catalyst carrier substrates, and even sound-absorbing materials.
第1図は3本発明法を実施する設備の例を示した略断面
系統図、第2図および第3図は本発明法により製造した
多孔質金属板の組織を示す写真であり、第2図は実施例
1で得られた金属板、第3図は実施例4で得られた金属
板の金属顕微鏡写真である。
1・・粉末圧延機、 2・・連続焼結炉。
3・・加熱帯域 4・・冷却帯域
5・・巻取機、 6a、6b ・・双ロール。
7・・ホッパー、 8・・帯状成形体。
7
8FIG. 1 is a schematic cross-sectional system diagram showing an example of equipment for carrying out the method of the present invention, and FIGS. 2 and 3 are photographs showing the structure of a porous metal plate manufactured by the method of the present invention. The figure is a metallurgical microscope photograph of the metal plate obtained in Example 1, and FIG. 3 is a metallurgical microscope photograph of the metal plate obtained in Example 4. 1. Powder rolling mill, 2. Continuous sintering furnace. 3... Heating zone 4... Cooling zone 5... Winder, 6a, 6b... Twin rolls. 7. Hopper, 8. Band-shaped molded body. 7 8
Claims (4)
向に回転する双ロール間に金属粉末を連続供給してロー
ル間隙に相当する厚みを有し且つ空隙率が10〜50%
の帯状成形体とし、引続きこの帯状成形体を非酸化性雰
囲気に維持された連続焼結炉に連続通板して焼結し冷却
することを特徴とする帯状多孔質金属板の製造方法。(1) Metal powder is continuously supplied between two rolls that rotate in opposite directions and are arranged facing each other with a predetermined gap, so that the metal powder has a thickness corresponding to the gap between the rolls and a porosity of 10 to 50%.
1. A method for producing a strip-shaped porous metal plate, the method comprising: forming a strip-shaped compact, and subsequently passing the strip-shaped compact through a continuous sintering furnace maintained in a non-oxidizing atmosphere to sinter and cool the strip.
〜300μmの範囲内の或る値を有し、その或る値の1
/2から3/2までの粒径範囲に全粉末の90%以上が
属する粒度分布を有する請求項1に記載の帯状多孔質金
属板の製造方法。(2) The metal powder supplied to the twin rolls has an average particle size of 20
~300 μm, and 1 of that value
2. The method for producing a strip-shaped porous metal plate according to claim 1, having a particle size distribution in which 90% or more of the total powder falls within a particle size range of /2 to 3/2.
帯域も非酸化性雰囲気に維持される請求項1または2に
記載の帯状多孔質金属板の製造方法。(3) The method for producing a strip-shaped porous metal plate according to claim 1 or 2, wherein the continuous sintering furnace comprises a heating zone and a cooling zone, and both zones are maintained in a non-oxidizing atmosphere.
、2または3に記載の帯状多孔質金属板の製造方法。(4) Claim 1, wherein the metal powder is stainless steel powder.
, 2 or 3. The method for manufacturing a strip-shaped porous metal plate according to .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18049789A JPH0347904A (en) | 1989-07-14 | 1989-07-14 | Manufacture of strip-state porous metal plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18049789A JPH0347904A (en) | 1989-07-14 | 1989-07-14 | Manufacture of strip-state porous metal plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0347904A true JPH0347904A (en) | 1991-02-28 |
Family
ID=16084280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18049789A Pending JPH0347904A (en) | 1989-07-14 | 1989-07-14 | Manufacture of strip-state porous metal plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0347904A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5600940B2 (en) * | 2007-12-04 | 2014-10-08 | 新神戸電機株式会社 | Lead battery |
-
1989
- 1989-07-14 JP JP18049789A patent/JPH0347904A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5600940B2 (en) * | 2007-12-04 | 2014-10-08 | 新神戸電機株式会社 | Lead battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5592686A (en) | Porous metal structures and processes for their production | |
US6444049B1 (en) | Method for producing high silicon steel, and silicon steel | |
CN106077665B (en) | A kind of method of Metal screen cloth wound sintering pressure processing and manufacturing structural metallic materials | |
US3150444A (en) | Method of producing alloy steel | |
JP2002503764A (en) | Aluminide sheet manufacturing method by thermomechanical processing of aluminide powder | |
US2746741A (en) | Apparatus for the production of wrought metal shapes from metal powder | |
Matsuura et al. | Microstructure and mechanical properties of NiAl intermetallic compound synthesized by reactive sintering under pressure | |
WO2011150854A9 (en) | Method for manufacturing resonant poles, resonant poles and cavity filters | |
US20070202001A1 (en) | Method Of Manufacturing Of A Sintered Metal Fiber Medium | |
US3839026A (en) | PROCESS FOR THE PRODUCTION OF METAL STRIP FROM Fe POWDER | |
US3331684A (en) | Method of forming porous aluminum strip | |
JPH0347904A (en) | Manufacture of strip-state porous metal plate | |
US3975193A (en) | Powder metallurgy process for producing stainless steel stock | |
US3150974A (en) | Process for roll compacting finely divided metal and metal coated particles | |
CN107034375A (en) | A kind of method that utilization hydride powder prepares high-compactness titanium article | |
US5350107A (en) | Iron aluminide alloy coatings and joints, and methods of forming | |
US2889224A (en) | Manufacture of metal strip from metal powder | |
JP2002194475A (en) | THIN SHEET OF Fe-Co BASED ALLOY AND ITS PRODUCTION METHOD | |
US3502446A (en) | Production of powder,strip and other metal products from refined molten metal | |
US3328166A (en) | Process for producing shaped thin articles from metal powder | |
IL22399A (en) | Production of metal products from refined molten metal | |
Worn | The continuous production of strip by the direct-rolling process | |
JPS613865A (en) | Titanium nitride dispersed enhancement body | |
JP2005324153A (en) | Titanium sintered filter and production method of the same | |
JPH032335A (en) | Manufacture of titanium powder or titanium alloy powder sintered product |