Nothing Special   »   [go: up one dir, main page]

JPH0346377A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH0346377A
JPH0346377A JP1182987A JP18298789A JPH0346377A JP H0346377 A JPH0346377 A JP H0346377A JP 1182987 A JP1182987 A JP 1182987A JP 18298789 A JP18298789 A JP 18298789A JP H0346377 A JPH0346377 A JP H0346377A
Authority
JP
Japan
Prior art keywords
layer
electric field
type
solar cell
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1182987A
Other languages
Japanese (ja)
Other versions
JP2692964B2 (en
Inventor
Masayuki Iwamoto
岩本 正幸
Koji Minami
浩二 南
Kaneo Watanabe
渡邉 金雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1182987A priority Critical patent/JP2692964B2/en
Publication of JPH0346377A publication Critical patent/JPH0346377A/en
Application granted granted Critical
Publication of JP2692964B2 publication Critical patent/JP2692964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To set an electric field substantially perpendicular to a light incident direction and to eliminate weakening of the electric field even if the length of an optical path is increased by burying an I-type amorphous silicon layer between pyramidal P-type polycrystalline layers by using the pyramidal layers. CONSTITUTION:A transparent conductive film 2 having strong oxygen etching resistance of SnO2 formed on a transparent insulting board 1 made of glass, etc., is provided. A pyramidal P-type polycrystalline layer 3 is selectively formed on the film 2, an I-type amorphous silicon layer 4, an N-type amorphous silicon layer 5 and a rear surface metal electrode 6 are sequentially laminated on the film 2 and the layer 3, and the layer 3 is buried. Thus, an optical path is increased in length, light absorption amount is increased, and an electric field becomes substantially perpendicular as compared with a light incident direction. Thus, even if the length of the optical path is increased, the electric field is not weakened, thereby improving characteristics of a solar cell.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、非晶質シリコンを用いた非晶質シリコン太陽
電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to an amorphous silicon solar cell using amorphous silicon.

(ロ)従来の技術 半導体接合を備える非晶質シリコン系の半導体層を光活
性層とする太陽電池は既に知られており、その基本構成
は透光性の基板上に、透光性受光面電極層、半導体光活
性層、背面電極層をこの順序に積層している。
(b) Conventional technology Solar cells are already known in which an amorphous silicon semiconductor layer with a semiconductor junction is used as a photoactive layer. An electrode layer, a semiconductor photoactive layer, and a back electrode layer are laminated in this order.

斯かる太陽電池の光電変換効率を向上せしめるべく、特
開昭58−57756号公報や特開昭61−21817
8号公報に開示されているように、光入射側の受光面電
極層の表面に0.1um以上2.5μm以下の凹凸を設
は粗面(テクスチェア)化し、入射光の光路長を長くす
ると共に光活性層中に封じ込める試みがある。
In order to improve the photoelectric conversion efficiency of such solar cells, Japanese Patent Laid-Open Nos. 58-57756 and 61-21817 have been proposed.
As disclosed in Publication No. 8, the surface of the light-receiving surface electrode layer on the light incident side is provided with irregularities of 0.1 μm or more and 2.5 μm or less to make the surface rough (textured) to lengthen the optical path length of the incident light. At the same time, there have been attempts to confine it in a photoactive layer.

(ハ)発明が解決しようとする課題 上述した装置においては、光活性層を薄く、光路を長く
することにより、高い効果が期待される。すなわち、光
活性層中の電界を強く、且つ吸収量を多くすることが重
要であり、できるだけ凹凸を大きくし、電界と入射方向
の角度を大きくすることが望ましい。このため、数μm
の角柱構造の透明電極が良好と考えられる。
(c) Problems to be Solved by the Invention In the above-described device, high effects are expected by making the photoactive layer thinner and lengthening the optical path. That is, it is important to make the electric field in the photoactive layer strong and to increase the amount of absorption, and it is desirable to make the unevenness as large as possible and to make the angle between the electric field and the incident direction large. For this reason, several μm
A transparent electrode with a prismatic structure is considered to be good.

しかし、上述のような、角柱構造にする場合。However, when creating a prismatic structure as described above.

特にp型層を構成する薄膜を均一に成長させることは困
難である。
In particular, it is difficult to uniformly grow the thin film constituting the p-type layer.

本発明は上述した問題点を解消し、受光面に大きな凹凸
を形成し、均一な薄膜形成の可能な太陽電池を提供する
ことをその課題とする。
An object of the present invention is to solve the above-mentioned problems and provide a solar cell in which large irregularities are formed on the light-receiving surface and a uniform thin film can be formed.

(ニ)課題を解決するための手段 本発明は、透明絶縁基板上に設けられた透明導電膜上に
、角柱状のp型−多結晶層を選択的に形成し、透明導電
膜及びp型多結晶層上に、i型非晶質シリコン層、n型
非晶質シリコン層、及び裏面金属電極を順次積層し、前
記p型多結晶層を埋設したことを特徴とする。
(d) Means for Solving the Problems The present invention selectively forms a prismatic p-type polycrystalline layer on a transparent conductive film provided on a transparent insulating substrate. It is characterized in that an i-type amorphous silicon layer, an n-type amorphous silicon layer, and a back metal electrode are sequentially laminated on the polycrystalline layer, and the p-type polycrystalline layer is embedded.

(ホ)作用 本発明による太陽電池は、角柱状のp型多結晶層を用い
その間にi型非晶質シリコン層を埋め込んでいる。従っ
て、電界は光の入射方向に比べほぼ直角となり、光路長
を長くしても電界は弱くならない。
(e) Function The solar cell according to the present invention uses a prismatic p-type polycrystalline layer and an i-type amorphous silicon layer is embedded therebetween. Therefore, the electric field is approximately perpendicular to the direction of incidence of light, and the electric field does not become weaker even if the optical path length is increased.

(へ)実施例 以下1本発明の一実施例を図面に従い説明する。(f) Example An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の太陽電池の構造を示す断面図である。FIG. 1 is a sectional view showing the structure of the solar cell of the present invention.

第1図においては、(1)はガラス等からなる透明絶縁
基板、 (2)は基板 (1)上に形成された5nOz
等の耐酸素エツチング性の強い透明導電膜で、この透明
導電膜 (2)は厚さ2000 A程度である。(3)
は透明導電膜 (2)上に選択的に形成された角柱状の
p型のシリコンカバーイト又は炭素等からなる透明p型
多結晶層である。この透明導電膜 (2)及びp型多結
晶層 (3)上に、プラズマCVD法等により厚さ80
00人程度のi型非晶質シリコン層(以下a−5iと略
す)(4)厚さ 300A程度のn型のa−5i層 (
5)が順次積層され、p型多結晶層(3)が埋め込まれ
る。そして、Ag、AI。
In Figure 1, (1) is a transparent insulating substrate made of glass or the like, and (2) is a 5nOz substrate formed on the substrate (1).
This transparent conductive film (2) has a thickness of about 2000 Å. (3)
is a transparent p-type polycrystalline layer made of prismatic p-type silicon coverite or carbon selectively formed on the transparent conductive film (2). On this transparent conductive film (2) and p-type polycrystalline layer (3), a film with a thickness of 80 mm was formed by plasma CVD or the like.
I-type amorphous silicon layer (hereinafter abbreviated as a-5i) (4) N-type a-5i layer with a thickness of about 300A (
5) are sequentially laminated, and a p-type polycrystalline layer (3) is embedded. And Ag, AI.

Ti等又はその多結晶層からなる裏面金属 (6)が蒸
着により形成される。
A backside metal (6) consisting of Ti or a polycrystalline layer thereof is formed by vapor deposition.

このように構成された本発明の太陽電池においては、p
型多結晶層 (3)の間にi型a−Si層(4)が埋め
込まれ、電界が光の入射方向に比べほぼ直角となり、光
路長を長くしても電界は弱くならない。
In the solar cell of the present invention configured in this way, p
An i-type a-Si layer (4) is embedded between the type polycrystalline layers (3), and the electric field is approximately perpendicular to the direction of light incidence, so that the electric field does not weaken even if the optical path length is lengthened.

次に本発明に係る太陽電池の製造方法の一例を第2図に
従い説明する。
Next, an example of a method for manufacturing a solar cell according to the present invention will be explained with reference to FIG.

まず、第2図(イ)に示すように、ガラス等からなる透
明絶縁基板 (11上にSnO□等の耐エツチング性の
強い厚さ2000人の透明導電膜 (2)をCVD法等
により形成する。その後、この透明導電膜(2)上にp
型シリコンカーバイド又は炭素等からなる透明のp型多
結晶層 (3)をCVD法により形成する。このp型多
結晶層(3)の厚さは101mである。
First, as shown in Figure 2 (a), a transparent conductive film (2) of 2000 mm thick with strong etching resistance such as SnO□ is formed on a transparent insulating substrate (11) made of glass etc. by CVD method etc. After that, p is applied on this transparent conductive film (2).
A transparent p-type polycrystalline layer (3) made of silicon carbide, carbon, or the like is formed by CVD. The thickness of this p-type polycrystalline layer (3) is 101 m.

次に、基板をドライエツチング装置中に移し、酸素プラ
ズマにより、p型多結晶層 (3)をエツチングする。
Next, the substrate is transferred into a dry etching apparatus, and the p-type polycrystalline layer (3) is etched using oxygen plasma.

このエツチングにより、多結晶層 (3)は上部と界面
からエツチングが進み、第2図(ロ)に示すように、透
明導電膜 (2)上に角柱状のp型多結晶層 (3)が
選択的に形成される。
As a result of this etching, the polycrystalline layer (3) is etched from the top and interface, and as shown in Figure 2 (b), a prismatic p-type polycrystalline layer (3) is formed on the transparent conductive film (2). selectively formed.

続いて、第2図(ハ)に示すように、光活性層である厚
さ8000^のi型a−3i層 (4)を形成し、この
i型a−Si層 (4)上に厚さ 300 Aのn型a
−3i層 (4)を形成する。その後、Ag、A1.又
はTi若しくはそれらの多層膜からなる裏面金属電極 
(6)を蒸着により形成し、本発明に係る太陽電池が形
成される。
Subsequently, as shown in FIG. 2(c), an i-type a-3i layer (4) with a thickness of 8000^, which is a photoactive layer, is formed, and a thick layer is formed on this i-type a-Si layer (4). 300 A n-type a
- Form a 3i layer (4). After that, Ag, A1. Or a back metal electrode made of Ti or a multilayer film thereof
(6) is formed by vapor deposition to form a solar cell according to the present invention.

以下に上述した製造方法の具体例を述べる。A specific example of the above-mentioned manufacturing method will be described below.

まず、透明導電膜 (2)として5nOz膜を形成する
。この反応条件としては、温度500℃、圧カフ00T
orrに保ち、原料ガスとして5nC14を用いて、C
VD法により形成する。
First, a 5nOz film is formed as a transparent conductive film (2). The reaction conditions include a temperature of 500°C and a pressure cuff of 00T.
orr and using 5nC14 as the raw material gas, C
Formed by VD method.

続いて、p型多結晶層 (3)として多結晶カーボン層
を形成する。この反応条件としては、温度650℃、圧
力 100Torrに保ち、原料・ガスとして、C1,
、Go、H2を用いて、マイクロ波CVD法により形成
する。この出力は 100W、ガス混合比はCH,・C
O□/H,= 1%に設定した。 そして、このp型多
結晶層 (3)のエツチングは、酸素プラズマエツチン
グにより行う、このエツチング条件は、温度20℃エツ
チングガスとして02を用い、高周波出力は50Wであ
る。
Subsequently, a polycrystalline carbon layer is formed as a p-type polycrystalline layer (3). The reaction conditions were to keep the temperature at 650°C and the pressure at 100 Torr, and to use C1,
, Go, and H2 by microwave CVD. This output is 100W, and the gas mixture ratio is CH,・C
O□/H, was set to 1%. The p-type polycrystalline layer (3) is etched by oxygen plasma etching. The etching conditions are as follows: 02 is used as the etching gas at a temperature of 20° C., and the high frequency output is 50 W.

i型a−3i層 (4)ノ形成条件は、温度200℃、
圧力0.3Torrに保ち、原料ガスとして流量101
05eのSiH4を用いて、プラスCVD法により形成
した。このときの高周波出力は30Wである。
The formation conditions for the i-type a-3i layer (4) are: temperature 200°C;
The pressure was maintained at 0.3 Torr, and the flow rate was 101 as the raw material gas.
It was formed by plus CVD using SiH4 of 05e. The high frequency output at this time is 30W.

n型a−3i層 (5)は、同じく温度200”C、圧
力0.3Torrに保ち、原料ガスとして流量1010
5eのSiH4,PH3を用いプラズマCVD法により
形成した。このときの高周波出力は30W 、  PH
3の混合比・1%とした。
The n-type a-3i layer (5) is also maintained at a temperature of 200"C and a pressure of 0.3 Torr, and the flow rate of the raw material gas is 1010".
It was formed by plasma CVD using SiH4 and PH3 of 5e. The high frequency output at this time is 30W, PH
The mixing ratio of 3 was set at 1%.

上述した条件により形成した本発明による太陽電池とn
型a−5i層を用いた従来の太陽電池の夫々の特性を測
定した。第3図は、本発明の太陽電池と従来の太陽電池
の太陽光(AMl、 51の下での出力電圧特性を示す
、また、第1表には、同じく本発明の太陽電池と従来の
太陽電池の緒特性を比較した結果を示す。
The solar cell according to the present invention formed under the above conditions and n
The characteristics of each conventional solar cell using a type a-5i layer were measured. Figure 3 shows the output voltage characteristics of the solar cell of the present invention and the conventional solar cell under sunlight (AMl, 51). The results of comparing battery characteristics are shown.

第  1  表 第3図および第1表より明らかなように、本発明の太陽
電池は、各特性において、従来の太陽電池に比して(g
れていることが分かる。
Table 1 As is clear from FIG. 3 and Table 1, the solar cell of the present invention has (g
It can be seen that

(ト)発明の詳細 な説明したように1本発明によれば、光路長が長くなり
、光の0及収量が大きくなると共に電界は光の入射方向
に比べほぼ直角となり光路長が長くなってち電界は弱く
ならず、太陽電池の特性が著しく向上する。
(G) Detailed Description of the Invention As described above, according to the present invention, the optical path length is increased, the zero output of the light is increased, and the electric field is approximately perpendicular to the incident direction of the light, resulting in an increased optical path length. In other words, the electric field does not become weaker, and the characteristics of the solar cell are significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の太陽電池の構造を示す断面図、第2図
は本発明の太陽電池の製造方法の一例を示す工程図、第
3図は本発明に係る太陽電池と従来の太陽電池の出力電
流電圧特性を示す特性図である。
FIG. 1 is a sectional view showing the structure of the solar cell of the present invention, FIG. 2 is a process diagram showing an example of the method for manufacturing the solar cell of the present invention, and FIG. 3 is a solar cell according to the present invention and a conventional solar cell. FIG. 3 is a characteristic diagram showing the output current-voltage characteristics of.

Claims (1)

【特許請求の範囲】[Claims] (1)透明絶縁基板上に設けられた透明導電膜上に、角
柱状のp型多結晶層を選択的に形成し、透明導電膜及び
p型多結晶層上に、i型非晶質シリコン層、n型非晶質
シリコン層、及び裏面金属電極を順次積層し、前記p型
多結晶層を埋設したことを特徴とする太陽電池。
(1) A prismatic p-type polycrystalline layer is selectively formed on a transparent conductive film provided on a transparent insulating substrate, and an i-type amorphous silicon layer is formed on the transparent conductive film and the p-type polycrystalline layer. 1. A solar cell characterized in that a layer, an n-type amorphous silicon layer, and a back metal electrode are sequentially laminated, and the p-type polycrystalline layer is embedded.
JP1182987A 1989-07-14 1989-07-14 Solar cell Expired - Fee Related JP2692964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182987A JP2692964B2 (en) 1989-07-14 1989-07-14 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182987A JP2692964B2 (en) 1989-07-14 1989-07-14 Solar cell

Publications (2)

Publication Number Publication Date
JPH0346377A true JPH0346377A (en) 1991-02-27
JP2692964B2 JP2692964B2 (en) 1997-12-17

Family

ID=16127782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182987A Expired - Fee Related JP2692964B2 (en) 1989-07-14 1989-07-14 Solar cell

Country Status (1)

Country Link
JP (1) JP2692964B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297428A (en) * 1994-04-28 1995-11-10 Hitachi Ltd Thin film solar battery and its manufacture
US5549763A (en) * 1993-07-26 1996-08-27 Sanyo Electric Co., Ltd. Photovoltaic device
JP2008053730A (en) * 2006-08-25 2008-03-06 General Electric Co <Ge> Single conformal junction nano-wire photovoltaic device
JP2008053731A (en) * 2006-08-25 2008-03-06 General Electric Co <Ge> Nano-wire in thin film silicon solar cell
JP2008182226A (en) * 2007-01-11 2008-08-07 General Electric Co <Ge> Multilayered film-nanowire composite, bifacial, and tandem solar cells
JP2010258449A (en) * 2009-04-27 2010-11-11 Sharp Corp Multijunction photovoltaic structure having three-dimensional subcell, and method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101000051B1 (en) 2008-01-09 2010-12-10 엘지전자 주식회사 Thin-Film Type Solar Cell and Manufacturing Method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549763A (en) * 1993-07-26 1996-08-27 Sanyo Electric Co., Ltd. Photovoltaic device
JPH07297428A (en) * 1994-04-28 1995-11-10 Hitachi Ltd Thin film solar battery and its manufacture
JP2008053730A (en) * 2006-08-25 2008-03-06 General Electric Co <Ge> Single conformal junction nano-wire photovoltaic device
JP2008053731A (en) * 2006-08-25 2008-03-06 General Electric Co <Ge> Nano-wire in thin film silicon solar cell
EP1892768A3 (en) * 2006-08-25 2015-12-09 General Electric Company Nanowires in thin-film silicon solar cells
JP2008182226A (en) * 2007-01-11 2008-08-07 General Electric Co <Ge> Multilayered film-nanowire composite, bifacial, and tandem solar cells
EP1944811A3 (en) * 2007-01-11 2013-10-02 General Electric Company Multilayered film-nanowire composite, bifacial, and tandem solar cells
JP2010258449A (en) * 2009-04-27 2010-11-11 Sharp Corp Multijunction photovoltaic structure having three-dimensional subcell, and method thereof

Also Published As

Publication number Publication date
JP2692964B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JP3490964B2 (en) Photovoltaic device
JPH05243596A (en) Manufacture of laminated type solar cell
JP2001189478A (en) Semiconductor element and manufacturing method therefor
JPH0370183A (en) Photovoltaic element
JP3702240B2 (en) Semiconductor device and manufacturing method thereof
US5456764A (en) Solar cell and a method for the manufacture thereof
JPH0346377A (en) Solar cell
JP2009117463A (en) Thin-film photoelectric conversion device
JPH0122991B2 (en)
Jeong et al. Preparation of born-doped a-SiC: H thin films by ICP-CVD method and to the application of large-area heterojunction solar cells
JP2744680B2 (en) Manufacturing method of thin film solar cell
JPS62209871A (en) Manufacture of photovoltaic device
JP2545066B2 (en) Semiconductor device
JPH0282655A (en) Manufacture of photovolatic device
JPH0685291A (en) Semiconductor device and its manufacture
JP2004296550A (en) Photovoltaic element and its fabricating process
JP4247947B2 (en) Manufacturing method of semiconductor thin film photoelectric conversion device
JPS5997514A (en) Manufacture of amorphous silicon film
JP2644901B2 (en) Method for manufacturing pin type amorphous silicon solar cell
JP2001203374A (en) Amorphous thin film solar cell and its manufacturing method
JP3358164B2 (en) Method for manufacturing photovoltaic device
JPS5955081A (en) Photoelectric conversion semiconductor device
JPS6095977A (en) Photovoltaic device
JPH05275726A (en) Photoelectric conversion device
JPH10144942A (en) Amorphous semiconductor solar cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees