Nothing Special   »   [go: up one dir, main page]

JPH0333064A - Powder composition for producing carbon/silicon carbide composite material, production of carbon/silicon carbide composite material and carbon/silicon carbide composite material - Google Patents

Powder composition for producing carbon/silicon carbide composite material, production of carbon/silicon carbide composite material and carbon/silicon carbide composite material

Info

Publication number
JPH0333064A
JPH0333064A JP1164360A JP16436089A JPH0333064A JP H0333064 A JPH0333064 A JP H0333064A JP 1164360 A JP1164360 A JP 1164360A JP 16436089 A JP16436089 A JP 16436089A JP H0333064 A JPH0333064 A JP H0333064A
Authority
JP
Japan
Prior art keywords
silicon carbide
composite material
carbon
powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1164360A
Other languages
Japanese (ja)
Inventor
Yoshiteru Nakagawa
喜照 中川
Satoru Nakatani
悟 中谷
Shoichi Tsuchiya
詔一 土屋
Hirohisa Miura
三浦 宏久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Toyota Motor Corp
Original Assignee
Osaka Gas Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Toyota Motor Corp filed Critical Osaka Gas Co Ltd
Priority to JP1164360A priority Critical patent/JPH0333064A/en
Publication of JPH0333064A publication Critical patent/JPH0333064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve moldability and sinterability and to improve density, bending strength, etc., by compounding >=1 kinds of sintering assistant powders selected from a group of boron (compd.) with a mixture composed of the fine particles of a self- sinterable spheroidal carbonaceous material and SiC powder. CONSTITUTION:The mixture (C) is obtd. by compounding 5 to 30 pts.wt. fine particles (A) of the self-sinterable spheroidal carbonaceous material which are mesocarbon microbeads of <=20mum average grain size contg. >=5wt.% binder component (beta-resin) made from a coal tar as a raw material and 95 to 70 pts.wt. SiC powder (B) having <=1mum average grain size. The powder compsn. (D) for producing the C/SiC composite material is then produced by mixing 100 pts.wt. component C and 0.5 to 5 pts.wt. sintering assistant powders of <=1mum average size selected from metal B, B4C, etc., for 30 minutes to one hour by a dry process. The component D is subjected to a pressurized molding and is temporally calcined in an nonoxidative atmosphere, following which the molding is subjected to regular calcination for 0.2 to 3 hours at 1900 to 2400 deg.C in a gaseous N2 atmosphere, by which the C/SiC composite material having >=20kgf/mm<2> bending strength is produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、炭素−炭化ケイ素複合材料製造用の組成物お
よびこれを使用して得られる炭素−炭化ケイ素複合材料
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a composition for producing a carbon-silicon carbide composite material and a carbon-silicon carbide composite material obtained using the composition.

従来技術とその問題点 炭素材料とセラミックスとからなる複合材料の製造方法
は種々提案されており、その中でもセラミックスとして
炭化ケイ素を使用するものが多い。
Prior Art and its Problems Various methods have been proposed for producing composite materials made of carbon materials and ceramics, among which many use silicon carbide as the ceramic.

炭化ケイ素は、難焼結性のセラミックスであり、少量の
ホウ素と炭素の存在が焼結を促進することが知られてい
るが、その一方または双方が過剰である場合には、かえ
って焼結が阻害されて、低強度の素材しか得られなくな
る。従って、多量の炭素質分(例えば10重量%以上)
を含有し、機械的強度の大きい炭素−炭化ケイ素焼結体
を得ることは、通常困難である。即ち、得られている炭
素−炭化ケイ素焼結体は、炭化ケイ素主体または炭素質
主体のものであって、その用途も、摺動材料にほぼ限ら
れている。
Silicon carbide is a ceramic that is difficult to sinter, and it is known that the presence of small amounts of boron and carbon promotes sintering, but if one or both are in excess, sintering may be accelerated. As a result, only low-strength materials can be obtained. Therefore, a large amount of carbonaceous content (for example, 10% by weight or more)
It is usually difficult to obtain a carbon-silicon carbide sintered body containing carbon and having high mechanical strength. That is, the obtained carbon-silicon carbide sintered body is mainly composed of silicon carbide or carbonaceous material, and its use is almost limited to sliding materials.

従来から、炭化ケイ素中に黒鉛を分散させた複合材料を
製造する方法は、提案されている(例えば、特開昭59
−131577号公報)。しかしながら、ここに開示さ
れた方法は、バインダー(フェノール樹脂など)、炭素
粉末および分散媒を混練するものであり、プロセスが複
雑で、処理に長時間を必要とするにもかかわらず、炭素
粉末が分散し難いという問題点がある。
Conventionally, methods for manufacturing composite materials in which graphite is dispersed in silicon carbide have been proposed (for example, Japanese Patent Application Laid-Open No.
-131577). However, the method disclosed herein involves kneading a binder (such as a phenolic resin), carbon powder, and a dispersion medium, and although the process is complicated and requires a long time, the carbon powder is The problem is that it is difficult to disperse.

また、炭素粉末を均一に分散させるために、生コークス
粉末と炭化ケイ素とを混合磨砕する方法が提案されてい
る(特開昭59−213674号公報)。しかしながら
、この方法においても、長時間の混合磨砕(実施例では
、5時間)を行なう必要があり、実用性に欠ける。さら
に、得られる炭素−炭化ケイ素焼結体の■げ強度が11
kg f / mm 2程度と低い点においても、実用
的に問題がある。
Furthermore, in order to uniformly disperse carbon powder, a method has been proposed in which raw coke powder and silicon carbide are mixed and ground (Japanese Patent Laid-Open No. 59-213674). However, even in this method, it is necessary to carry out mixing and grinding for a long time (5 hours in the example), and it lacks practicality. Furthermore, the bending strength of the obtained carbon-silicon carbide sintered body is 11
There is also a practical problem in that it is as low as about kg f/mm2.

バルクメソフェーズ粉末を使用して、バインダーを使用
することなく、炭素−炭化ケイ素焼結体を製造する方法
も提案されているが(特開昭61−275166号公報
)、これも曲げ強度が低い(実施例において、14 、
 2 kgf/ff1m2程度)ことが難点である。
A method of producing a carbon-silicon carbide sintered body using bulk mesophase powder without using a binder has also been proposed (Japanese Patent Application Laid-Open No. 61-275166), but this also has low bending strength ( In the examples, 14,
2 kgf/ff1m2) is a difficult point.

問題点を解決するための手段 本発明者は、上記の如き技術の現状に鑑みて研究を重ね
た結果、表面が粘結成分(β−レジン)で覆われており
且つ粒径が均一であるという特性を備えた自己焼結性を
有する球状炭素質微粒子(例えば、メソカーボンマイク
ロビーズ;以下MCMBという)を炭素原料として使用
する場合には、炭素−炭化ケイ素焼結体の製造における
従来技術の問題点が実施的に解消乃至大巾に軽減される
ことを見出した。
Means for Solving the Problems As a result of repeated research in view of the current state of the technology as described above, the present inventor found that the surface is covered with a viscous component (β-resin) and the particle size is uniform. When using spherical carbonaceous fine particles (e.g., mesocarbon microbeads; hereinafter referred to as MCMB) having self-sintering properties as a carbon raw material, conventional techniques for producing carbon-silicon carbide sintered bodies are used. It has been found that the problems can be practically eliminated or greatly reduced.

即ち、本発明は、下記の炭素−炭化ケイ素複合材料製造
用粉末組成物および炭素−炭化ケイ素複合材料の製造方
法を提供するものである:■炭素−炭化ケイ素複合材料
製造用の組成物であって、 (a)自己焼結性の球状炭素質微粒子5〜30重量部と
(b)炭化ケイ素粉末95〜70重量部との合計100
重量部に対し(c)ホウ素およびそれらの化合物からな
る群から選ばれた少なくとも一種の焼結助剤粉体0.5
〜5重量部を配合した粉末組成物。
That is, the present invention provides the following powder composition for producing a carbon-silicon carbide composite material and a method for producing a carbon-silicon carbide composite material: ■ A composition for producing a carbon-silicon carbide composite material. A total of 100 parts of (a) 5 to 30 parts by weight of self-sintering spherical carbonaceous fine particles and (b) 95 to 70 parts by weight of silicon carbide powder.
(c) 0.5 of at least one sintering aid powder selected from the group consisting of boron and compounds thereof, based on part by weight;
A powder composition containing ~5 parts by weight.

■上記項■に記載の炭素−炭化ケイ素複合材料製造用の
組成物において、 (a)自己焼結性の球状炭素質微粒子が、コールタール
を原料とする平均粒径20 tt m以下のメソカーボ
ンマイクロビーズであり、(b)炭化ケイ素粉末が、平
均粒径1μm以下であり、(c)焼結助剤粉体が、平均
粒径1μm以下の炭化ホウ素である粉末組成物。
■ In the composition for producing a carbon-silicon carbide composite material described in the above item ■, (a) the self-sintering spherical carbonaceous fine particles are mesocarbons made from coal tar and having an average particle size of 20 tt m or less; A powder composition which is microbeads, (b) silicon carbide powder having an average particle size of 1 μm or less, and (c) sintering aid powder comprising boron carbide having an average particle size of 1 μm or less.

■(a)自己焼結性の球状炭素質微粒子5〜30重量部
と(b)炭化ケイ素粉末95〜70重量部との合計10
0重量部に対し(c)ホウ素およびそれらの化合物から
なる群から選ばれた少なくとも一種の焼結助剤粉体0.
5〜5重量部を配合した粉末組成物を成形し、不活性雰
囲気中で焼成することを特徴とする炭素−炭化ケイ素複
合材料の製造方法。
■(a) 5 to 30 parts by weight of self-sintering spherical carbonaceous fine particles and (b) 95 to 70 parts by weight of silicon carbide powder, total 10
(c) at least one sintering aid powder selected from the group consisting of boron and compounds thereof;
A method for producing a carbon-silicon carbide composite material, which comprises molding a powder composition containing 5 to 5 parts by weight and firing it in an inert atmosphere.

■(a)自己焼結性の球状炭素質微粒子5〜30重量部
と(b)炭化ケイ素粉末95〜70重量部との合計10
0重量部に対し(c)ホウ素およびその化合物からなる
群から選ばれた少なくとも一種の焼結助剤粉体0.5〜
5重量部を配合した粉末組成物を成形し、焼成してなる
炭素−炭化ケイ素複合材料。
■(a) 5 to 30 parts by weight of self-sintering spherical carbonaceous fine particles and (b) 95 to 70 parts by weight of silicon carbide powder, total 10
(c) at least one sintering aid powder selected from the group consisting of boron and its compounds, based on 0 parts by weight
A carbon-silicon carbide composite material obtained by molding and firing a powder composition containing 5 parts by weight.

■曲げ強度が20kgf/mu2以上である上記項■に
記載の炭素−炭化ケイ素複合材料。
(2) The carbon-silicon carbide composite material according to item (2) above, which has a bending strength of 20 kgf/mu2 or more.

本発明で使用する球状炭素質微粒子は、その表面がバイ
ンダーとしての作用を有する粘結成分(β−レジン)に
より覆われていて、その結果自己焼結性を有する限り、
その由来を特に問わず、コールタール、コールタールピ
ッチ、石油ピッチなどを原料として製造されたものが挙
げられる。
As long as the surface of the spherical carbonaceous fine particles used in the present invention is covered with a viscous component (β-resin) that acts as a binder, and as a result has self-sintering properties,
Regardless of its origin, examples include those manufactured using coal tar, coal tar pitch, petroleum pitch, etc. as raw materials.

球状炭素質微粒子の平均粒径は、20μm以下の範囲内
にあることが好ましい。平均粒径が、20μmを上回る
場合には、焼結体の黒鉛粒子が大きくなり、強度が低下
するので、好ましくない。各挿の炭素質微粒子の中でも
、コールタール系のMCMBは、炭化収率が石油系のも
のよりも高く、真球に近く、粒径が揃っているので、焼
結体の組織が均一となり、その機械的強度もより高めら
れるので、より好ましい。すなわち、焼結体中では、S
iC中に分散している黒鉛(これは、MCMBから生成
する)が球状であるため、黒鉛−5iC界面での応力は
、均等にかかり、その結果その強度が高められるのであ
る。また、MCBCは、炭化収率がフェノール樹脂など
に比して著しく高く(80%以上)、気孔の発生が少な
く、高密度の焼結体を形成するなどの点でも、好ましい
。MCMBとしては、成形性の点で、粘結成分(β−レ
ジン)を5%以上含むものが好ましく、粘結成分を10
%以上含むものが特に好ましい。
The average particle diameter of the spherical carbonaceous fine particles is preferably within a range of 20 μm or less. If the average particle size exceeds 20 μm, the graphite particles of the sintered body become large and the strength decreases, which is not preferable. Among the various types of carbonaceous particles, coal tar-based MCMB has a higher carbonization yield than petroleum-based MCMB, is close to a perfect sphere, and has a uniform particle size, so the structure of the sintered body is uniform. It is more preferable because its mechanical strength is further enhanced. That is, in the sintered body, S
Because the graphite dispersed in iC (which is produced from MCMB) is spherical, the stress at the graphite-5iC interface is evenly distributed, thereby increasing its strength. MCBC is also preferable because it has a significantly higher carbonization yield (80% or more) than phenol resins, generates fewer pores, and forms a high-density sintered body. From the viewpoint of moldability, MCMB preferably contains 5% or more of a viscous component (β-resin);
% or more is particularly preferred.

炭化ケイ素粉末の平均粒径は、1μm以下であることが
好ましい。1μmを上回る場合には、焼結が速やかに進
行せず、また、焼結が十分に進行する以前に異常粒成長
が生じ易くなる。
The average particle size of the silicon carbide powder is preferably 1 μm or less. When it exceeds 1 μm, sintering does not proceed quickly and abnormal grain growth tends to occur before sintering sufficiently proceeds.

炭化ケイ素は、共有結合性の難焼結性セラミックス材料
であるので、本発明においては、焼結助剤として、ホウ
素およびそれらの化合物の粉末の少なくとも一種を俳用
する。ホウ素およびその化合物としては、金属B、B4
 C,BN、Ti B2、WB、NiB、CoBなどが
例示され、84Cが特に好ましい。焼結助剤の平均粒径
は、1μm以下であることが好ましい。1μmを上回る
場合には、焼結助剤として有効に機能し難くなり、また
、炭化ケイ素が粉末中に分散しなくなるので、不適当で
ある。
Since silicon carbide is a covalently bonded ceramic material that is difficult to sinter, in the present invention, at least one of powders of boron and compounds thereof is used as a sintering aid. Boron and its compounds include metal B, B4
Examples include C, BN, TiB2, WB, NiB, and CoB, with 84C being particularly preferred. The average particle size of the sintering aid is preferably 1 μm or less. If it exceeds 1 μm, it is not suitable because it becomes difficult to function effectively as a sintering aid and silicon carbide is not dispersed in the powder.

焼結助剤としてホウ素またはその化合物を使用する場合
には、炭素質微粒子の黒鉛化をも促進するので、得られ
る焼結体の摺動特性が特に向上する。この際、焼結体中
には、ホウ素炭化物およびホウ素窒化物も生成するが、
これらも摺動特性の改善に寄与する。
When boron or a compound thereof is used as a sintering aid, it also promotes graphitization of carbonaceous fine particles, so that the sliding properties of the obtained sintered body are particularly improved. At this time, boron carbide and boron nitride are also generated in the sintered body, but
These also contribute to improving sliding characteristics.

本発明組成物においては、MCMB  5〜30重量部
と炭化ケイ素粉末95〜70重量部との合計100重量
部に焼結助剤粉末を0. 5〜5重量部程度配合するこ
とが好ましい。
In the composition of the present invention, sintering aid powder is added to a total of 100 parts by weight of 5 to 30 parts by weight of MCMB and 95 to 70 parts by weight of silicon carbide powder. It is preferable to mix about 5 to 5 parts by weight.

本発明の炭素−炭化ケイ素複合材料製造用の組成物は、
上記の球状炭素質微粒子、炭化ケイ素粉末および焼結助
剤粉末を短時間(量の多少にもよるが、30分乃至1時
間程度)乾式混合するだけで容易に調製出来る。即ち、
バインダーを使用する場合、炭素源として生コークスを
使用する場合などに比して、短時間内に均一な粉末組成
物が得られる。
The composition for producing carbon-silicon carbide composite material of the present invention is
It can be easily prepared by dry mixing the above-mentioned spherical carbonaceous fine particles, silicon carbide powder, and sintering aid powder for a short time (about 30 minutes to 1 hour, depending on the amount). That is,
When a binder is used, a uniform powder composition can be obtained in a shorter time than when raw coke is used as a carbon source.

本発明による組成物を使用して炭素−炭化ケイ素複合材
料を製造するには、該組成物を加圧成形し、成形体を不
活性雰囲気中で焼結すれば良い。
In order to produce a carbon-silicon carbide composite material using the composition according to the invention, the composition may be pressure molded and the molded body sintered in an inert atmosphere.

成形および焼結は、常法に従って行なえば良く、その条
件などは特に限定されない。成形は、例えば、常温で(
或いは必要ならば加熱下に)5〜30kgf/ll1m
2程度の圧力で行なう。成形用の装置としても、ラバー
プレス、CIP、HIPなどの任意のものを使用するこ
とができる。また、焼結は、例えば、窒素、アルゴン、
ヘリウムなどの不活性ガス雰囲気中常圧で(或いは必要
ならば加圧下に)600〜1400℃程度の温度で0.
5〜2時間程度仮焼した後、1900〜2400℃程度
の温度で0.2〜3時間程度本焼を行なう。これらの成
形および焼結条件は、組成物の構成、製品の形状、製品
に要求される性能などに応じて、適宜選択乃至修正され
るべきものであり、勿論上記の範囲に限定されるもので
はない。
Molding and sintering may be carried out according to conventional methods, and the conditions are not particularly limited. For example, molding can be done at room temperature (
(or under heating if necessary) 5-30kgf/ll1m
Do this with about 2 degrees of pressure. As a molding device, any device such as a rubber press, CIP, HIP, etc. can be used. In addition, sintering can be performed using, for example, nitrogen, argon,
0.0 at a temperature of about 600 to 1400°C at normal pressure (or under pressure if necessary) in an inert gas atmosphere such as helium.
After calcination for about 5 to 2 hours, main firing is performed at a temperature of about 1900 to 2400° C. for about 0.2 to 3 hours. These molding and sintering conditions should be selected or modified as appropriate depending on the composition of the composition, the shape of the product, the performance required of the product, etc., and are of course not limited to the above ranges. do not have.

本発明において、非酸化性雰囲気ガスとしてN2を使用
する場合には、84Cの少なくとも50%がBNに変化
する。このものを摺動材に使用したとしても、その特性
を阻害するものではない。そして、該複合材料は、通常
理論密度の80%以上のかさ密度および15kgf/m
m2以上の曲げ強度を有しており、さらには、理論密度
の90%以上のかさ密度および20kgf/mm2以上
の曲げ強度を何するものも得られる。
In the present invention, when N2 is used as the non-oxidizing atmospheric gas, at least 50% of 84C is converted to BN. Even if this material is used as a sliding material, its properties will not be impaired. The composite material usually has a bulk density of 80% or more of the theoretical density and 15 kgf/m
It has a bending strength of m2 or more, and furthermore, a bulk density of 90% or more of the theoretical density and a bending strength of 20 kgf/mm2 or more can be obtained.

本発明による炭素−炭化ケイ素複合材料は、軸受、メカ
ニカルシール、モールドなどの機械部品;バルブ、熱交
換器部品;るつぼ、電極、発熱体(遠赤外線ヒーター)
;その他構造材料、摺動材などとして、有用である。
The carbon-silicon carbide composite material according to the present invention can be used for mechanical parts such as bearings, mechanical seals, and molds; valves, heat exchanger parts; crucibles, electrodes, and heating elements (far-infrared heaters).
; Useful as other structural materials, sliding materials, etc.

発明の効果 本発明によれば、粒径の揃っており、粘結成分により被
覆されている球状の炭素質微粒子を炭素源として使用す
るので、フェノール樹脂などのバインダーを別途に配合
することなく、短時間の混合により、均一な粉末組成物
を調製することが出来る。
Effects of the Invention According to the present invention, since spherical carbonaceous fine particles with uniform particle size and coated with a cohesive component are used as a carbon source, a binder such as a phenol resin is not separately blended. A uniform powder composition can be prepared by mixing for a short time.

また、本発明の組成物は、成形性および焼結性に優れて
いる。
Furthermore, the composition of the present invention has excellent moldability and sinterability.

従って、この様な組成物を使用して得られる本発明の炭
素−炭化ケイ素複合材料は、組織が均一で、密度が高く
、■げ強度などの各種の機械的特性に優れている。
Therefore, the carbon-silicon carbide composite material of the present invention obtained using such a composition has a uniform structure, high density, and excellent various mechanical properties such as bending strength.

更に、本発明による複合材料では、炭化ケイ素中に球状
の黒鉛粒子が分散した構造となっているので、靭性およ
び摩擦特性にも優れている。
Furthermore, since the composite material according to the present invention has a structure in which spherical graphite particles are dispersed in silicon carbide, it also has excellent toughness and friction properties.

実施例 以下に実施例および比較例を示し、本発明の特徴とする
ところをより一層明確にする。
EXAMPLES Examples and comparative examples are shown below to further clarify the features of the present invention.

実施例 第1表に示す割合(重量%)で(I)MCMB、(n)
平均粒径0.3μmのβ−3iCまたは(III)平均
粒径0.5μmのa−8iC,および(IV)平均粒径
0. 5μmのB4Cをらいかい機で30分間混合して
、本発明の組成物を得た。
(I) MCMB, (n) in the proportions (wt%) shown in Table 1 of Examples
β-3iC with an average particle size of 0.3 μm or (III) a-8iC with an average particle size of 0.5 μm, and (IV) β-3iC with an average particle size of 0.5 μm. The composition of the present invention was obtained by mixing 5 μm of B4C in a sieve machine for 30 minutes.

第1表 (I)  (II) (m)  (IV)粒径  量 
  量   量   量 (μm) (%)(%)(%)(%) No。
Table 1 (I) (II) (m) (IV) Particle size Quantity
Amount Amount Amount (μm) (%) (%) (%) (%) No.

1     6   30    69     0 
   12    6   20    79    
 0    13    6   10    89 
    0    14    6   30    
 0     B9    15    6   20
     0    79    16    6  
 10     0    89    17   2
030    69     0    182020
7901 9   20   10    89     0  
  1次いで、得られた組成物を20kg/mn+2の
加圧下に成形し、直径40mm+x長さ15mmの大き
さに成形した。
1 6 30 69 0
12 6 20 79
0 13 6 10 89
0 14 6 30
0 B9 15 6 20
0 79 16 6
10 0 89 17 2
030 69 0 182020
7901 9 20 10 89 0
1. Next, the obtained composition was molded under a pressure of 20 kg/mn+2 to a size of 40 mm in diameter and 15 mm in length.

得られた成形体を窒素雰囲気中常圧で150℃/時間の
昇温速度で1000℃まで加熱し、同温度で1時間仮焼
した。
The obtained molded body was heated to 1000° C. at a temperature increase rate of 150° C./hour under normal pressure in a nitrogen atmosphere, and calcined at the same temperature for 1 hour.

次いで、得られた成形仮焼物を常圧で(A)2200℃
で2時間または(B) 2400℃で2時間本焼して、
炭素−炭化ケイ素複合材料を得た。
Next, the obtained shaped calcined product was heated to (A) 2200°C under normal pressure.
or (B) 2 hours at 2400℃,
A carbon-silicon carbide composite material was obtained.

各焼結条件で得られた複合材料の曲げ強度と理論密度に
対するかさ密度の比(%)を第2表に示す。試験片は、
上記で得た複合材料から直方体形状(8anX 8an
X 30mm)に切り出して製造した。
Table 2 shows the bending strength of the composite materials obtained under each sintering condition and the ratio (%) of the bulk density to the theoretical density. The test piece is
The composite material obtained above has a rectangular parallelepiped shape (8anX 8an
x 30 mm).

また、曲げ強度は、支点間距離20a+m、クロスヘツ
ドスピード0.5mm/分の条件で3点助げ強度試験法
により求めた。
Further, the bending strength was determined by a three-point support strength test method under the conditions of a distance between fulcrums of 20 a+m and a crosshead speed of 0.5 mm/min.

第2表 曲げ強度     かさ密度 (kgf/mm2)     (g/cm3)(A) 
   (B)   (A)    (B)No、   
14.2   19.5  2.105  2.2B4
1  19.6   24.7  2.330  2.
53B2  30.5   33.3  2.549 
 2.8283       21.3       
2.34B5       30.4       2
.8476       35.6       2.
9027   −   14.2       2.1
428   −   18.1       2.18
49       21.7       2.653
実施例2 MCMBの量とB4Cの量とを秤々組合わせるとともに
、炭化ケイ素として粒径0.3μmのβ−3iCを配合
した組成物を使用して、2200”Cで2時間本焼して
、炭素−炭化ケイ素複合材料を得た。なお、成形時およ
び仮焼時の条件は、実施例1と同様とした。
Table 2 Bending strength Bulk density (kgf/mm2) (g/cm3) (A)
(B) (A) (B) No,
14.2 19.5 2.105 2.2B4
1 19.6 24.7 2.330 2.
53B2 30.5 33.3 2.549
2.8283 21.3
2.34B5 30.4 2
.. 8476 35.6 2.
9027-14.2 2.1
428-18.1 2.18
49 21.7 2.653
Example 2 A composition in which the amount of MCMB and the amount of B4C were proportionately combined, and β-3iC with a particle size of 0.3 μm as silicon carbide was used, and was fired at 2200"C for 2 hours. A carbon-silicon carbide composite material was obtained.The conditions during molding and calcination were the same as in Example 1.

結果は、第1図に示す通りである。第1図において、各
線に付した“vt%″で示される量は、組成物中のMC
MBの量を表わす。従って、炭化ケイ素の量(重量%)
は、“10100−MC量−84C量”である。
The results are shown in FIG. In FIG. 1, the amount indicated by "vt%" attached to each line is the amount of MC in the composition.
Represents the amount of MB. Therefore, the amount of silicon carbide (wt%)
is "10100-MC amount-84C amount".

実施例3 組成物を2400℃で2時間本焼する以外は実施例2と
同様にして、炭素−炭化ケイ素複合材料を得た。
Example 3 A carbon-silicon carbide composite material was obtained in the same manner as in Example 2, except that the composition was fired at 2400° C. for 2 hours.

結果は、第2図に示す通りである。第2図において、各
線に付した“vt%”で示される量は、組成物中のMC
MBの量を表わす。
The results are shown in FIG. In FIG. 2, the amount indicated by "vt%" attached to each line is the amount of MC in the composition.
Represents the amount of MB.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例2の各種組成物を成形し、仮焼し、2
200℃で2時間本焼して得られた焼結体において、M
CMBffiおよびB4Cmと肋げ強度との関係を示す
グラフである。 第2図は、実施例3の各種組成物を底形し、仮焼し、2
400℃で2時間本焼して得られた焼結体において、M
CMB量およびB4C量と曲げ強度との関係を示すグラ
フである。 (以 上) 第 図 2345 B4C木加量(wt%) 第 図 2345 B4C’vl;nof(wt%)
Figure 1 shows the results of molding and calcining various compositions of Example 2.
In the sintered body obtained by main firing at 200°C for 2 hours, M
It is a graph showing the relationship between CMBffi and B4Cm and rib strength. Figure 2 shows the bottom shapes of various compositions of Example 3, calcined, and 2
In the sintered body obtained by main firing at 400°C for 2 hours, M
It is a graph showing the relationship between the amount of CMB, the amount of B4C, and the bending strength. (And more) Fig. 2345 B4C wood weight (wt%) Fig. 2345 B4C'vl;nof (wt%)

Claims (5)

【特許請求の範囲】[Claims] (1)炭素−炭化ケイ素複合材料製造用の組成物であっ
て、 (a)自己焼結性の球状炭素質微粒子5〜30重量部と
(b)炭化ケイ素粉末95〜70重量部との合計100
重量部に対し(c)ホウ素およびそれらの化合物からな
る群から選ばれた少なくとも一種の焼結助剤粉体0.5
〜5重量部を配合した粉末組成物。
(1) A composition for producing a carbon-silicon carbide composite material, comprising (a) 5 to 30 parts by weight of self-sintering spherical carbonaceous fine particles and (b) 95 to 70 parts by weight of silicon carbide powder. 100
(c) 0.5 of at least one sintering aid powder selected from the group consisting of boron and compounds thereof, based on part by weight;
A powder composition containing ~5 parts by weight.
(2)請求項(1)に記載の炭素−炭化ケイ素複合材料
製造用の組成物において、 (a)自己焼結性の球状炭素質微粒子が、コールタール
を原料とする平均粒径20μm以下のメソカーボンマイ
クロビーズであり、(b)炭化ケイ素粉末が、平均粒径
1μm以下であり、(c)焼結助剤粉体が、平均粒径1
μm以下の炭化ホウ素である粉末組成物。
(2) In the composition for producing a carbon-silicon carbide composite material according to claim (1), (a) the self-sintering spherical carbonaceous particles are made from coal tar and have an average particle diameter of 20 μm or less. mesocarbon microbeads, (b) silicon carbide powder has an average particle size of 1 μm or less, and (c) sintering aid powder has an average particle size of 1 μm or less.
A powder composition which is boron carbide with a size of less than μm.
(3)(a)自己焼結性の球状炭素質微粒子5〜30重
量部と(b)炭化ケイ素粉末95〜70重量部との合計
100重量部に対し(c)ホウ素およびそれらの化合物
からなる群から選ばれた少なくとも一種の焼結助剤粉体
0.5〜5重量部を配合した粉末組成物を成形し、非酸
化性雰囲気中で焼成することを特徴とする炭素−炭化ケ
イ素複合材料の製造方法。
(3) consisting of (c) boron and its compounds for a total of 100 parts by weight of (a) 5 to 30 parts by weight of self-sintering spherical carbonaceous fine particles and (b) 95 to 70 parts by weight of silicon carbide powder. A carbon-silicon carbide composite material characterized in that a powder composition containing 0.5 to 5 parts by weight of at least one sintering aid powder selected from the group is molded and fired in a non-oxidizing atmosphere. manufacturing method.
(4)(a)自己焼結性の球状炭素質微粒子5〜30重
量部と(b)炭化ケイ素粉末95〜70重量部との合計
100重量部に対し(c)ホウ素およびその化合物から
なる群から選ばれた少なくとも一種の焼結助剤粉体0.
5〜5重量部を配合した粉末組成物を成形し、焼成して
なる炭素−炭化ケイ素複合材料。
(4) For a total of 100 parts by weight of (a) 5 to 30 parts by weight of self-sintering spherical carbonaceous fine particles and (b) 95 to 70 parts by weight of silicon carbide powder, (c) a group consisting of boron and its compounds. At least one sintering aid powder selected from 0.
A carbon-silicon carbide composite material obtained by molding and firing a powder composition containing 5 to 5 parts by weight.
(5)曲げ強度が20kgf/mm^2以上である請求
項4に記載の炭素−炭化ケイ素複合材料。
(5) The carbon-silicon carbide composite material according to claim 4, which has a bending strength of 20 kgf/mm^2 or more.
JP1164360A 1989-06-27 1989-06-27 Powder composition for producing carbon/silicon carbide composite material, production of carbon/silicon carbide composite material and carbon/silicon carbide composite material Pending JPH0333064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1164360A JPH0333064A (en) 1989-06-27 1989-06-27 Powder composition for producing carbon/silicon carbide composite material, production of carbon/silicon carbide composite material and carbon/silicon carbide composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1164360A JPH0333064A (en) 1989-06-27 1989-06-27 Powder composition for producing carbon/silicon carbide composite material, production of carbon/silicon carbide composite material and carbon/silicon carbide composite material

Publications (1)

Publication Number Publication Date
JPH0333064A true JPH0333064A (en) 1991-02-13

Family

ID=15791669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1164360A Pending JPH0333064A (en) 1989-06-27 1989-06-27 Powder composition for producing carbon/silicon carbide composite material, production of carbon/silicon carbide composite material and carbon/silicon carbide composite material

Country Status (1)

Country Link
JP (1) JPH0333064A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656213A (en) * 1991-06-27 1997-08-12 Kao Corporation Process for the production of carbon-filled ceramic composite material
JP2001139376A (en) * 1999-11-10 2001-05-22 Senshin Zairyo Riyo Gas Generator Kenkyusho:Kk Silicon carbide sintered compact, and mechanical seal and segment seal using the silicon carbide sintered compact
CN104844246A (en) * 2015-04-02 2015-08-19 盐城恒威汽车新材料科技有限公司 Cf/SiC composite material for use in automobile brake disc and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656213A (en) * 1991-06-27 1997-08-12 Kao Corporation Process for the production of carbon-filled ceramic composite material
DE4221318B4 (en) * 1991-06-27 2005-12-08 Kao Corp. Carbon filled ceramic composite material, process for its manufacture and its use
JP2001139376A (en) * 1999-11-10 2001-05-22 Senshin Zairyo Riyo Gas Generator Kenkyusho:Kk Silicon carbide sintered compact, and mechanical seal and segment seal using the silicon carbide sintered compact
CN104844246A (en) * 2015-04-02 2015-08-19 盐城恒威汽车新材料科技有限公司 Cf/SiC composite material for use in automobile brake disc and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP3755150B2 (en) High density self-sintered silicon carbide / carbon / graphite composite material and method for producing the same
US4525461A (en) Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
US6716800B2 (en) Composite body of silicon carbide and binderless carbon, process for producing such composite body, and article of manufacturing utilizing such composite body for tribological applications
JPS6228109B2 (en)
JPH09175865A (en) Production of alpha-type silicon carbide powder composition and its sintered compact
JPS5924751B2 (en) Sintered shaped body
JPS59102872A (en) Silicon carbide graphite composite sintered body and manufacture
JPH0769731A (en) High-strength, high-density conductive ceramic
US4023975A (en) Hot pressed silicon carbide containing beryllium carbide
CA1092615A (en) High density hot pressed thermal shock resistant silicon carbide
US5773733A (en) Alumina-aluminum nitride-nickel composites
US5326732A (en) Carbon-silicon carbide composite material and method for the preparation thereof
US4172109A (en) Pressureless sintering beryllium containing silicon carbide powder composition
JPS62275063A (en) Manufacture of silicon carbide-aluminum nitride sintered product
JPH0333064A (en) Powder composition for producing carbon/silicon carbide composite material, production of carbon/silicon carbide composite material and carbon/silicon carbide composite material
JPH0251864B2 (en)
JPS632913B2 (en)
US5045269A (en) Method for sintered shapes with controlled grain size
EP0375148B1 (en) Production of molded refractory shapes
JPH0337108A (en) Isotropic carbon material
JP3118557B2 (en) Method for growing graphite particles in carbon-based moldings
JPS58130165A (en) Silicon carbide sliding material
JPH0625038B2 (en) Method for manufacturing wear-resistant silicon carbide sintered body
JPH08119741A (en) Carbon-boron carbide sintered compact and carbon-boron carbide-silicon carbide sintered compact
JPH0687653A (en) Carbon-silicon carbide based composite material and production thereof