JPH03217138A - Transmission/reception system for operation state information of earth station using superposition modulation - Google Patents
Transmission/reception system for operation state information of earth station using superposition modulationInfo
- Publication number
- JPH03217138A JPH03217138A JP1192690A JP1192690A JPH03217138A JP H03217138 A JPH03217138 A JP H03217138A JP 1192690 A JP1192690 A JP 1192690A JP 1192690 A JP1192690 A JP 1192690A JP H03217138 A JPH03217138 A JP H03217138A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- earth station
- circuit
- output
- obtains
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 24
- 238000001514 detection method Methods 0.000 claims description 44
- 238000004891 communication Methods 0.000 claims description 26
- 230000008929 regeneration Effects 0.000 claims description 21
- 238000011069 regeneration method Methods 0.000 claims description 21
- 102100026758 Serine/threonine-protein kinase 16 Human genes 0.000 claims description 14
- 101710184778 Serine/threonine-protein kinase 16 Proteins 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 11
- 238000011084 recovery Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 2
- 230000001172 regenerating effect Effects 0.000 claims description 2
- 230000002238 attenuated effect Effects 0.000 claims 1
- 230000010363 phase shift Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、衛星通信システムにおいて、地球局の運用状
態情報を地球局間で送受信する方式に関するものである
。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for transmitting and receiving operation status information of earth stations between earth stations in a satellite communication system.
(従来の技術)
近年、通信衛星の大型化、ディジタル通信技術の発展、
通信用素子の発達により、衛星通信は国際通信手段とし
てはもちろん地域・国内通信手段として積極的に導入が
進められている。特に、小型アンテナを用いた多数の小
型地球局から構成される衛星通信システムは、通信回線
を迅速に構築することができるため、今後大いに導入さ
れる趨勢にある。このような場合において、システムの
効率的かつ高信頼の運用ならびに無人化運用によりシス
テムの経済化を図るため該小型地球局の運用状態を1つ
もしくは複数のシステム監視用地球局において一元的に
監視する方式が検討・実用化されている。また、大型地
球局が対向する小型地球局に対して、小型地球局からの
返送情報を参照して送信電力制御を精度よく行う方式も
ある。(Conventional technology) In recent years, communication satellites have become larger, digital communication technology has developed,
With the development of communication elements, satellite communication is being actively introduced not only as a means of international communication but also as a means of regional and domestic communication. In particular, satellite communication systems consisting of a large number of small earth stations using small antennas are likely to be widely introduced in the future because communication lines can be quickly constructed. In such cases, the operational status of the small earth station should be centrally monitored by one or more system monitoring earth stations in order to operate the system efficiently and reliably and to make the system economical through unmanned operation. A method to do this has been studied and put into practical use. There is also a method in which a large earth station accurately controls the transmission power of an opposing small earth station by referring to information returned from the small earth station.
以上のような、地球局間の運用状態情報の送受信におい
ては、通信チャネルもしくは制御チャネルを用いて相手
方地球局に送信していた。例えば、回線がTDMAで構
成される場合には、TDMA信号の前置信号部分(プリ
アンプル)の中に受信信号のビット誤り率、または受信
信号C/N等を挿入する方式がある。一方、連続信号の
場合には送信信号をフレーム化して、フレームの先頭部
分にビット誤り率、または受信信号品質を代表する受信
C/N情報を挿入する等の方式が行われている。In transmitting and receiving operational status information between earth stations as described above, communication channels or control channels are used to transmit the information to the other earth station. For example, when the line is configured using TDMA, there is a method of inserting the bit error rate of the received signal or the received signal C/N into the preamble of the TDMA signal. On the other hand, in the case of a continuous signal, a method is used in which the transmitted signal is framed and received C/N information representative of the bit error rate or received signal quality is inserted at the beginning of the frame.
なお本発明の重畳変調に関する発明については、同一出
願人により特許出願している(特願平1−99936
、H1.4.21 )。A patent application has been filed by the same applicant for the invention related to superimposed modulation of the present invention (Japanese Patent Application No. 1999-99936).
, H1.4.21).
(発明が解決しようとする課題)
本来情報を伝送する通信チャネルを用いて地球局の運用
状態情報を送受信する従来の方式では、本来情報の伝送
形式を変更して送信側では監視情報の内挿、受信側では
抽出作業が必要となり信号処理が複雑となり、かつその
為の付加回路が必要となり、装置が高価になる等の問題
がある。(Problem to be solved by the invention) In the conventional method of transmitting and receiving operational status information of an earth station using a communication channel that originally transmits information, the transmission format of the information is changed and the transmitting side interpolates monitoring information. On the receiving side, extraction work is required, which complicates signal processing, and requires additional circuitry for this purpose, resulting in an expensive device.
本発明は、各地球局での受信信号品質等の運用状態情報
を本来情報の伝送形式を変更せずに本来情報に重畳し、
中継地球局やシステム監視用地球局等の特定地球局に送
信し、該特定地球局において運用状態情報を検出する方
式を提供することを目的とする。The present invention superimposes operational status information such as received signal quality at each earth station on original information without changing the transmission format of the information,
The purpose of the present invention is to provide a method for transmitting information to a specific earth station such as a relay earth station or a system monitoring earth station, and detecting operational status information at the specific earth station.
(課題を解決するための手段)
本発明は、各地球局は、本来の情報で変調されている第
1の変調器出力の多相PSK (MPSK)を、さらに
受信信号品質等の運用状態情報でPSKの重畳変調を行
い、特定地球局に送信し、該特定地球局は、該重畳変調
波を受信し、該特定地球局の再生に用いられるMPSK
復調器から搬送波再生回路出力もしくは周波数誤差検出
回路出力を得て二次変調検出回路により前記各地球局の
運用状態情報を検出することに特徴がある。(Means for Solving the Problems) According to the present invention, each earth station receives polyphase PSK (MPSK) of the output of the first modulator modulated with original information, and further receives operational status information such as received signal quality. performs PSK superimposed modulation and transmits it to a specific earth station, and the specific earth station receives the superimposed modulated wave and modulates the MPSK signal used for reproduction of the specific earth station.
A feature is that the output of the carrier wave regeneration circuit or the output of the frequency error detection circuit is obtained from the demodulator, and the operational state information of each earth station is detected by the secondary modulation detection circuit.
(実施例1)
第1図は、本発明の一つの実施例となる中継地球局と多
《の小型地球局を含む通信方式を説明するための図であ
る。本実施例を説明することにより本発明の構成と作用
を合わせて説明する。(Embodiment 1) FIG. 1 is a diagram for explaining a communication system including a relay earth station and multiple small earth stations, which is one embodiment of the present invention. By describing this embodiment, the structure and operation of the present invention will be explained together.
第1図において、中継地球局2は、衛星1を介して、す
べての小型地球局3〜8の運用状態を監視する機能をも
有している。なお、地球局から衛星1の方向の回線を上
り回線、衛星1から地球局方向の回線を下り回線という
。また、各小型地球局間の通信は周波数分割方式で設定
されているものとする。In FIG. 1, relay earth station 2 also has the function of monitoring the operational status of all small earth stations 3 to 8 via satellite 1. Note that the line from the earth station to the satellite 1 is called an uplink, and the line from the satellite 1 to the earth station is called a downlink. It is also assumed that communication between each small earth station is set using a frequency division method.
この構成において、中継地球局2は衛星1を介して各小
型地球局3〜8からの複数の信号を受信し、これらを独
立に復調した後、(1)中継地球局に接続されているホ
ストコンピュータやデータベース等に復調データを伝送
する、もしくは(2)再変調して衛星1に送信する。中
継地球局2は各小型地球局との通信だけでなくモニタ局
としての機能も有しており、小型地球局の保守・運用の
目的で該地球局における運用状態を一元的に管理してい
る。In this configuration, the relay earth station 2 receives a plurality of signals from each of the small earth stations 3 to 8 via the satellite 1, demodulates these signals independently, and then (1) hosts connected to the relay earth station The demodulated data is transmitted to a computer, database, etc., or (2) it is re-modulated and transmitted to the satellite 1. The relay earth station 2 not only communicates with each small earth station but also functions as a monitor station, and centrally manages the operational status of the earth station for the purpose of maintenance and operation of the small earth station. .
以下、第1図の構成を例にして、一次変調がBPSK
( 2相ディジタル位相変調)、二次変調が±θ゜のP
SKを用いた重畳変調を例にとり本発明の動作を詳細に
説明する。なお本発明は、一次変l
1
調には、BPSKだけではなく、多相PSK (MPS
K)のすべてが利用可能である。Below, using the configuration in Figure 1 as an example, the primary modulation is BPSK.
(Two-phase digital phase modulation), P with secondary modulation of ±θ°
The operation of the present invention will be explained in detail by taking superimposed modulation using SK as an example. Note that the present invention uses not only BPSK but also polyphase PSK (MPS
K) are all available.
第2図は重畳変調波を小型地球局で発生させる回路構成
を示したものであり、10は音声、データ、ファクシミ
リ等の一次変調ディジタルべースバンド信号、11はB
PSK変調器、l2はその出力、l3は小型地球局にお
ける運用状態情報を表す二次変調ディジタルベースバン
ド信号、l4は、13の信号に応じて±θ゜の位相偏位
を発生させるためのPSK変調器であり、l5はその出
力、16は一つもしくは複数の運用状態情報をフレーム
化し二次変調信号を作成するための符号器である。13
の二次変調ディジタルベースバンド信号は、例えば該小
型地球局受信C/N (信号電力対雑音電力比)やビ
ット誤り率等の信号品質、送受信信号レベル、電源電圧
、動作温度等の運用状態情報であり、その伝送速度は1
0の一次変調ディジタルベースバンド信号よりもはるか
に低いものである。Figure 2 shows the circuit configuration for generating superimposed modulated waves at a small earth station, where 10 is a primary modulated digital baseband signal such as voice, data, facsimile, etc., and 11 is a B
PSK modulator, l2 is its output, l3 is a secondary modulation digital baseband signal representing operational status information in the small earth station, l4 is PSK for generating a phase deviation of ±θ° according to the signal of 13 It is a modulator, 15 is its output, and 16 is an encoder for framing one or more pieces of operational state information to create a secondary modulation signal. 13
The secondary modulated digital baseband signal includes, for example, signal quality such as the received C/N (signal power to noise power ratio) and bit error rate of the small earth station, operational status information such as transmitted and received signal level, power supply voltage, and operating temperature. , and its transmission speed is 1
0 primary modulation digital baseband signal.
第3図(a)〜(c)は、被変調波の位相ダイアグラム
な示したものである。第3図(a)はBPSK変調1
2
器11の出力12を、(b).(C)は二次変調ディジ
タルべースバンド信号13が″1″.″ONの場合のP
SK変調器l4の出力15をそれぞれ示している。すな
わち、PSK変調器l4においては、(0’ , 1
80’ )のBPSK波を、低速の二次変調ディジタル
ベースバンド信号13が″1″の場合(十〇’,180
°+θ″)のBPSK波、また該信号l3が”0”の場
合(一00,180°一00)のBPSK波に再度変調
する。そしてこのようにして二度(重畳)変調されたP
SK波l5が小型地球局から中継地球局2へ送信される
。FIGS. 3(a) to 3(c) are phase diagrams of modulated waves. 3(a) shows the output 12 of the BPSK modulator 1 2 , (b) . (C) shows that the secondary modulation digital baseband signal 13 is "1". "P in case of ON
The output 15 of the SK modulator l4 is shown respectively. That is, in PSK modulator l4, (0', 1
When the low-speed secondary modulation digital baseband signal 13 is "1"(10',180'), the BPSK wave of
When the signal l3 is “0”, the BPSK wave is modulated again into the BPSK wave of 100°+θ″) and the BPSK wave of 100°+θ″).Then, the P
The SK wave l5 is transmitted from the small earth station to the relay earth station 2.
第4図は、小型地球局から送信されたPSK波l5の二
次変調信号を復調するための構成例を示したものである
。40は重畳変調波の入力信号を表し、41は入力信号
の帯域外の雑音を除去するための帯域フィルタ、42は
同期検波に必要となる基準搬送波を作るための搬送波再
生回路、43は該再生回路から得られる基準搬送波、4
4は入力信号の搬送波周波数オフセット量を検出する周
波数誤差検出回路、45は周波数誤差検出回路44の出
力、46は一次変調信号に対する位相検波回路、47は
タイミング再生回路、48は信号判定回路、49は信号
判定回路48の出力であり、50は位相同期回路(PL
L)等で構成される二次変調信号に対する位相判別回路
である。FIG. 4 shows an example of a configuration for demodulating the secondary modulation signal of the PSK wave 15 transmitted from the small earth station. 40 represents an input signal of a superimposed modulated wave, 41 is a bandpass filter for removing noise outside the band of the input signal, 42 is a carrier regeneration circuit for creating a reference carrier wave required for synchronous detection, and 43 is the regeneration circuit. Reference carrier obtained from the circuit, 4
4 is a frequency error detection circuit for detecting the carrier frequency offset amount of the input signal; 45 is the output of the frequency error detection circuit 44; 46 is a phase detection circuit for the primary modulation signal; 47 is a timing recovery circuit; 48 is a signal determination circuit; 49 is the output of the signal determination circuit 48, and 50 is the phase locked circuit (PL).
This is a phase discrimination circuit for a secondary modulation signal composed of L) and the like.
第4図では、第3図(b) , (c)に示したような
重畳変調波が第4図の入力信号40となり、周波数誤差
検出回路44では小型地球局の運用状態情報”1”、”
0”を示す第3図(b) , (c)に応じて周波数誤
差△f (=θ/2πT)およびー△f (=−θ/2
πT)に比例する出力45を搬送波再生回路42に対し
て出す。ここでTは二次変調速度である。搬送波再生回
路42は、周波数誤差検出回路の出力45により制御を
受けて搬送周波数fO+△f,fO一△fの基準搬送波
をその出力43として位相検波回路46へ出力する。す
なわち入力信号40の搬送波が、定常的な周波数fOに
対して+△fだけオフセットした場合、オフセット量に
比例した誤差成分が45に現れる共に、搬送波再生回路
42により搬送周波数fO+△fの基準搬送波が43に
出力され、該出力43は分岐され、一方は一次変調用の
位相検波回路46、他方は二次変調用の位相判別回路5
0の入力となる。位相判別回路50の出力51は二次変
調による位相偏位に比例したもの、すなわち、二次変調
ディジタルベースバンド信号である小型地球局運用状態
情報である。In FIG. 4, the superimposed modulated waves shown in FIGS. 3(b) and 3(c) become the input signal 40 in FIG. ”
Frequency errors △f (=θ/2πT) and −△f (=−θ/2
An output 45 proportional to πT) is output to the carrier regeneration circuit 42. Here T is the secondary modulation rate. The carrier wave regeneration circuit 42 is controlled by the output 45 of the frequency error detection circuit and outputs the reference carrier wave of the carrier frequency fO+Δf and fO−Δf to the phase detection circuit 46 as its output 43. In other words, when the carrier wave of the input signal 40 is offset by +△f with respect to the steady frequency fO, an error component proportional to the offset amount appears in 45, and the carrier wave regeneration circuit 42 generates a reference carrier wave of the carrier frequency fO+△f. is output to 43, and the output 43 is branched, one being a phase detection circuit 46 for primary modulation and the other being a phase discrimination circuit 5 for secondary modulation.
The input will be 0. The output 51 of the phase discrimination circuit 50 is proportional to the phase deviation due to secondary modulation, that is, small earth station operational status information which is a secondary modulated digital baseband signal.
第5図は、第3図に示した二次変調信号を復調するため
の他の構成例であり、40〜49は第4図と同様である
。52は極性判別回路を示している。周波数誤差検出回
路44の出力45は、±△fに応じた出力を有するため
、この極性を極性判別回路レベル検出器52が検出する
ことにより小型地球局運用状態情報5lが出力される。FIG. 5 shows another configuration example for demodulating the secondary modulation signal shown in FIG. 3, and 40 to 49 are the same as those in FIG. 4. 52 indicates a polarity discrimination circuit. Since the output 45 of the frequency error detection circuit 44 has an output corresponding to ±Δf, the polarity discrimination circuit level detector 52 detects this polarity, thereby outputting the small earth station operation status information 5l.
以上、中継地球局と小型地球局間通信における地球局監
視の1例について述べたが、中継地球局を介した小型地
球局間通信においても同様な考え方は適用でくることは
云うまでもない。An example of earth station monitoring in communication between a relay earth station and a small earth station has been described above, but it goes without saying that the same concept can be applied to communication between small earth stations via a relay earth station.
また、第1図では、(1)中継地球局2と小型地球局3
、4、5、(2)中継地球局2と小型地球局6、7、8
、および(3)小型地球局3、4、5と小型地球局6、
7、8との間の通信例を示したも1
5
のであるが、各小型地球局群内においても中継地球局を
介して通信可能であり、さらに中継地球局が2つの衛星
に接続できるアンテナ設備を有する場合には2つの衛星
を介して広範囲な小型地球局間通信が実現でき、本発明
は当然、これらの方式についても適用できることは云う
までもない。In addition, in Figure 1, (1) relay earth station 2 and small earth station 3
, 4, 5, (2) Relay earth station 2 and small earth station 6, 7, 8
, and (3) small earth stations 3, 4, 5 and small earth station 6,
1 5 shows an example of communication between satellites 7 and 8, but it is also possible to communicate within each small earth station group via a relay earth station, and the relay earth station also has an antenna that can connect to two satellites. If the equipment is available, wide range communication between small earth stations can be realized via two satellites, and it goes without saying that the present invention can also be applied to these systems.
(実施例2)
第6図は、小型地球局100 . 101と大型地球局
103間で通信回線を構成した場合の本発明の実施例で
ある。一次変調方式にはBPSKを用いている。(Embodiment 2) FIG. 6 shows a small earth station 100. This is an embodiment of the present invention in which a communication line is configured between 101 and a large earth station 103. BPSK is used as the primary modulation method.
第7図は、第6図の大型地球局103における信号の変
調部と復調部を示す。変調部は、110、111のBP
SK変調器と送信レベルを可変するための108 、1
09の可変減衰器からなる。復調部は、104 、10
5のBPSK復調器、106 、107の二次変調成分
を検出するための二次変調検出回路からなる。二次変調
回路106 、107の出力は復号化回路112に入力
されフレーム構成により多重化されていた運用状態信号
が分離され、受信C/N , BER、1
6
機器び状態信号等が独立にモニター信号として出力され
る。また、一部の信号は113の制御回路に入力され、
制御回路出力により可変減衰器108、109が制御さ
れ、送信出力が設定される。この実施例におけるBPS
κ復調器104 、105と二次変調検出回路106
、107からなる構成は、第4図と第5図で示した構成
と同等である。FIG. 7 shows a signal modulation section and a demodulation section in the large earth station 103 of FIG. The modulation section has BPs of 110 and 111.
108,1 for varying the SK modulator and transmission level
It consists of 09 variable attenuators. The demodulator includes 104 and 10
It consists of a BPSK demodulator 5 and a secondary modulation detection circuit 106 and 107 for detecting secondary modulation components. The outputs of the secondary modulation circuits 106 and 107 are input to the decoding circuit 112, where the operational status signals multiplexed according to the frame structure are separated, and the received C/N, BER, 16 equipment status signals, etc. are independently monitored. Output as a signal. Also, some signals are input to the control circuit 113,
The variable attenuators 108 and 109 are controlled by the control circuit output, and the transmission output is set. BPS in this example
κ demodulators 104 and 105 and secondary modulation detection circuit 106
, 107 is equivalent to the structure shown in FIGS. 4 and 5.
(実施例3)
第1図の構成において、中継地球局が小型地球局から受
信した重畳変調された搬送波から運用状態情報を抽出し
、その中の必要情報を用いて、小型地球局の受信レベル
を降雨等環境の変化に係わらずほぼ一定とするように中
継地球局の該小型地球局向けの送信出力を制御する場合
の中継地球局の構成を第8図により説明する。(Example 3) In the configuration shown in Fig. 1, the relay earth station extracts operational status information from the superimposed modulated carrier wave received from the small earth station, and uses the necessary information therein to determine the reception level of the small earth station. The configuration of a relay earth station in the case where the transmission output of the relay earth station for the small earth station is controlled so that the transmission output of the relay earth station is kept almost constant regardless of changes in the environment such as rainfall will be explained with reference to FIG.
第8図は、中継地球局における送信電力制御に関する装
置のブロック図である。ここでは、第1図に対応させて
、中継地球局2は、小型地球局3、4、5と小型地球局
6、7、8の中継を行う場合を想定している。ここで、
20〜22. 20゜〜22゜は小型地球局3〜8から
受信したそれぞれのチャネルの入力信号、23〜25,
23゜〜25゛は第4図および第5図で示した位相検
出回路50あるいはレベル検出回路52等の小型地球局
の二次変調信号を検出する二次変調検出回路、26〜2
8, 26゜〜28゜は該地球局の一次変調信号に対す
るBPSK復調器、29〜31, 29゜〜31゛はP
SK変調器、32〜34,32゛〜34゛は可変減衰器
、35〜37, 35゜〜37゜はそれぞれのチャネル
の出力、38は可変減衰器の制御回路、56、56゜は
二次変調信号を復元するための復号化回路であり、送信
側でフレーム化された一つまたは複数の運用状態情報を
フレームを解除し独立に出力する機能を有する。ここで
BPSK復調器26〜28、26゜〜28゜と二次変調
検出回路23〜25、23゛〜25からなる構成は、第
4図と第5図で示した構成と同等である。二次変調検出
回路23〜25、23゜〜25の出力53〜55、53
゜〜55゜は復号化回路56、56゜により、復号され
、送信電力制御に係る情報のみを取り出し、制御回路3
8に入力する。制御回路38は、予め設定されている信
号品質の基準値と前記小型地球局受信信号品質情報の差
を用いて可変減衰器32゛〜34゜、32〜34の減衰
量を前記の差が減じるように制御する。FIG. 8 is a block diagram of a device related to transmission power control at a relay earth station. Here, in correspondence with FIG. 1, it is assumed that the relay earth station 2 relays between the small earth stations 3, 4, and 5 and the small earth stations 6, 7, and 8. here,
20-22. 20° to 22° are input signals of respective channels received from small earth stations 3 to 8, 23 to 25,
23° to 25° are secondary modulation detection circuits for detecting the secondary modulation signal of a small earth station, such as the phase detection circuit 50 or the level detection circuit 52 shown in FIGS. 4 and 5; 26 to 2
8, 26° to 28° is a BPSK demodulator for the primary modulation signal of the earth station, 29 to 31, 29° to 31° is a P
SK modulator, 32-34, 32゛-34゛ are variable attenuators, 35-37, 35゜-37゜ are the outputs of each channel, 38 is the control circuit of the variable attenuator, 56, 56゜ is the secondary This is a decoding circuit for restoring a modulated signal, and has the function of deframing one or more pieces of operational status information that was framed on the transmitting side and outputting it independently. Here, the structure consisting of BPSK demodulators 26-28, 26°-28° and secondary modulation detection circuits 23-25, 23°-25 is equivalent to the structure shown in FIGS. 4 and 5. Outputs 53-55, 53 of secondary modulation detection circuits 23-25, 23°-25
° ~ 55 ° is decoded by decoding circuits 56 and 56 °, extracts only information related to transmission power control, and sends it to the control circuit 3.
Enter 8. The control circuit 38 uses the difference between a preset signal quality reference value and the small earth station received signal quality information to reduce the amount of attenuation of the variable attenuators 32° to 34° and 32 to 34 by the difference. Control as follows.
なお、入力信号20〜22、20’〜22゜中の一次変
調のディジタルベースバンド信号はBPSK復調器26
〜28、26゜〜28゜で復調され、変調器29〜31
、29゜〜31’で再度変調され、可変減衰器32〜3
4、32゜〜34′、送信器(図示せず)、衛星1を経
て、第1図の小型地球局3〜8に送信される。In addition, the digital baseband signal of the primary modulation among the input signals 20 to 22, 20' to 22 degrees is sent to the BPSK demodulator 26.
~28, demodulated at 26°~28°, modulators 29~31
, 29° to 31', and variable attenuators 32 to 3
4, 32° to 34', a transmitter (not shown), and the satellite 1, and are transmitted to the small earth stations 3 to 8 in FIG.
この第8図の構成の中継地球局を適用すれば次のような
構成の送信電力制御方式が実施できる。By applying the relay earth station having the configuration shown in FIG. 8, a transmission power control system having the following configuration can be implemented.
小型地球局間衛星通信に該通信を中継する中継地球局を
介在させ、該中継地球局が、小型地球局からの信号を衛
星を介して受信し信号再生処理を施した後、該信号を衛
星を介して相手小型地球局に伝送する衛星通信システム
に適用する送信電力制御方式にIおいて、該小型地球局
のそれぞれは、衛星からの下り回線の信号を利用して該
信号の信号品質を測定し、該測定結果から作成した受信
信号品質情報を用いてMPSK変調器で本来情報信号に
1
9
より変調された搬送波をさらにPSK変調器で重畳変調
し、該小型地球局は該重畳変調波を送信し、該中継地球
局は、該重畳変調波を受信し、該中継地球局の再生中継
に用いられるMPSK復調器の搬送波再生回路出力もし
くは周波数誤差検出回路出力を得て、二次変調検出回路
により該小型地球局の受信信号品質情報を検出し、該信
号品質情報に従って信号品質が予め設定した基準値にな
るように該小型地球局に対する送信出力を予め設定され
た値の範囲内で制御する。A relay earth station that relays the communication is interposed in the satellite communication between small earth stations, and the relay earth station receives the signal from the small earth station via the satellite, performs signal reproduction processing, and then transmits the signal to the satellite. In a transmission power control method applied to a satellite communication system that transmits data to a partner small earth station via a Using the received signal quality information created from the measurement results, the carrier wave, which was originally modulated by 1 9 into an information signal, is further superimposed and modulated by the PSK modulator using the MPSK modulator, and the small earth station receives the superimposed modulated wave. The relay earth station receives the superimposed modulated wave, obtains the carrier wave regeneration circuit output or the frequency error detection circuit output of the MPSK demodulator used for regenerative relay of the relay earth station, and performs secondary modulation detection. A circuit detects received signal quality information of the small earth station, and according to the signal quality information, controls the transmission output to the small earth station within a preset value range so that the signal quality reaches a preset reference value. do.
(発明の効果)
本発明は、地球局設備への機能追加が極めて簡単で、か
つ従来方式に比べ運用状態情報を本来情報に挿入するた
めの操作を不要とする。例えば、既存の小型地球局に大
型地球局からの降雨減衰対策用の送信電力制御を必要と
した場合、小型地球局からの本来情報の信号形式を変え
ることなくかつ現用設備の改造を必要としないで変調器
出力の中間周波数段に本発明の状態情報を付加するため
の重畳変調回路を付けることにより、運用状態情2 0
報を容易に大型地球局に送信でき、かつ設備の保守、運
用、監視も極めて容易である。(Effects of the Invention) The present invention makes it extremely easy to add functions to earth station equipment, and eliminates the need for operations to insert operational status information into original information compared to conventional systems. For example, if an existing small earth station requires transmission power control to prevent rain attenuation from a large earth station, the signal format of the original information from the small earth station will not need to be changed and the current equipment will not need to be modified. By adding the superimposition modulation circuit of the present invention for adding the status information of the present invention to the intermediate frequency stage of the modulator output, operational status information can be easily transmitted to large earth stations, and equipment maintenance, operation, and Monitoring is also extremely easy.
第1図は中継地球局と小型地球局を含んだ衛星通信シス
テムの構成図、
第2図はBPSK−PSK重畳変調波の発生回路、第3
図は位相ベクトル図、
第4図は位相検波回路を用いた二次変調信号復調回路の
ブロック図、
第5図はレベル検出器を用いた二次変調信号の復調回路
のブロック図、
第6図は大型地球局と小型地球局を含んだ衛星通信シス
テムの構成図、
第7図は大型地球局における変調部と復調部のブロック
図、
第8図は中継地球局における送信電力制御回路のブロッ
ク図である。
1・・・衛星、 2・・・中継地球局、3〜8
・・・小型地球局、
10・・・一次変調ディジタルベースバンド信号、11
・・・BPSK変調器、 l2・・・BPSK変調器の
出力、13・・・二次変調ディジタルベースバンド信号
、14・・・PSK 変調器、 15・・・PSK
変調器の出力、l6・・・符号器、
20〜22および20゜〜22゜・・・中継地球局にお
ける入力信号、
23〜25および23゜〜25゜・・・二次変調信号に
対する二次変調検出回路、
26〜28オヨび26゜〜28゜・・・一次変調信号に
対するBPSK復調器、
29〜31および29゜〜31’−−−PSK変調器、
32〜34および32゜〜34′・・・可変減衰器、3
5〜37および35゜〜37゜・・・可変減衰器の出力
、38・・・制御回路、
40・・・重畳変調波の入力信号、
41・・・帯域フィルタ、
42・・・搬送波再生回路、
43・・・搬送波再生回路出力である基準搬送波、44
・・・周波数誤差検出回路、
45・・・周波数誤差検出回路出力、
46・・・位相検波回路、
47・・・タイミング再生回路、
48・・・信号判定回路、
49・・・信号判定回路の出力、
50・・・位相判別回路、5l・・・50の出力、52
・・・極性判別回路、56, 56゜・・・復号化回路
、100, 101・・・小型地球局、
103・・・大型地球局、 104, 105・・・B
PSK復調器、106, 107・・・二次変調検出回
路、108, 109・・・可変減衰器、
110, 111・・・BPSK変調器、112・・・
復号化回路、 113・・・制御回路。Figure 1 is a configuration diagram of a satellite communication system including a relay earth station and a small earth station. Figure 2 is a BPSK-PSK superimposed modulation wave generation circuit.
The figure is a phase vector diagram, Figure 4 is a block diagram of a secondary modulation signal demodulation circuit using a phase detection circuit, Figure 5 is a block diagram of a secondary modulation signal demodulation circuit using a level detector, and Figure 6 Figure 7 is a block diagram of the modulator and demodulator in the large earth station. Figure 8 is a block diagram of the transmission power control circuit in the relay earth station. It is. 1...Satellite, 2...Relay earth station, 3-8
...Small earth station, 10...Primary modulation digital baseband signal, 11
...BPSK modulator, l2...Output of BPSK modulator, 13...Secondary modulation digital baseband signal, 14...PSK modulator, 15...PSK
Output of the modulator, l6...encoder, 20-22 and 20°-22°...input signal at the relay earth station, 23-25 and 23°-25°...secondary for the secondary modulation signal Modulation detection circuit, 26 to 28 degrees and 26 degrees to 28 degrees... BPSK demodulator for primary modulation signals, 29 to 31 and 29 degrees to 31' --- PSK modulator,
32-34 and 32°-34'...variable attenuator, 3
5 to 37 and 35° to 37°... Output of variable attenuator, 38... Control circuit, 40... Input signal of superimposed modulated wave, 41... Bandpass filter, 42... Carrier wave regeneration circuit , 43...Reference carrier wave which is the output of the carrier wave regeneration circuit, 44
...Frequency error detection circuit, 45...Frequency error detection circuit output, 46...Phase detection circuit, 47...Timing regeneration circuit, 48...Signal judgment circuit, 49...Signal judgment circuit Output, 50... Phase discrimination circuit, 5l... Output of 50, 52
...Polarity determination circuit, 56, 56°...Decoding circuit, 100, 101...Small earth station, 103...Large earth station, 104, 105...B
PSK demodulator, 106, 107... Secondary modulation detection circuit, 108, 109... Variable attenuator, 110, 111... BPSK modulator, 112...
decoding circuit, 113... control circuit;
Claims (11)
以上が特定地球局として機能する衛星通信システムにお
いて、 該特定地球局以外の各地球局は、本来情報で変調されて
いる多相PSK(MPSK)を、さらに受信信号品質等
の運用状態情報でPSKにより重畳変調を行い、特定地
球局に送信し、 該特定地球局は、該重畳変調波を受信し、該特定地球局
の本来情報の再生に用いられるMPSK復調器の搬送波
再生回路出力もしくは周波数誤差検出回路出力を得て、
二次変調検出回路により該地球局の運用状態情報を検出
することを特徴とする、重畳変調を用いた地球局の運用
状態情報の送受信方式。(1) In a satellite communication system in which multiple earth stations and one or more of the earth stations function as specified earth stations, each earth station other than the specified earth station is originally The phase PSK (MPSK) is further subjected to superimposition modulation using PSK using operation status information such as received signal quality, and transmitted to a specific earth station, and the specific earth station receives the superimposed modulated wave, and Obtain the carrier wave regeneration circuit output or frequency error detection circuit output of the MPSK demodulator, which is originally used for information reproduction,
A system for transmitting and receiving operation status information of an earth station using superimposed modulation, characterized in that the operation status information of the earth station is detected by a secondary modulation detection circuit.
路からなることを特徴とする送信電力制御方式。(2) A transmission power control system, wherein the secondary modulation detection circuit according to claim 1 comprises a phase discrimination circuit.
路からなることを特徴とする送信電力制御方式。(3) A transmission power control system, wherein the secondary modulation detection circuit according to claim 1 comprises a polarity discrimination circuit.
球局を介在させ、該中継地球局が、小型地球局からの信
号を衛星を介して受信し信号再生処理を施した後、該信
号を衛星を介して相手小型地球局に伝送する衛星通信シ
ステムに適用する送信電力制御方式において、 該小型地球局のそれぞれは、衛星からの下り回線の信号
を利用して該信号の信号品質を測定し、該測定結果から
作成した受信信号品質情報を用いてMPSK変調器で本
来情報信号により変調された搬送波をさらにPSK変調
器で重畳変調し、該小型地球局は該重畳変調波を送信し
、 該中継地球局は、該重畳変調波を受信し、該中継地球局
の再生中継に用いられるMPSK復調器の搬送波再生回
路出力もしくは周波数誤差検出回路出力を得て、二次変
調検出回路により該小型地球局の受信信号品質情報を検
出し、該信号品質情報に従って信号品質が予め設定した
基準値になるように該小型地球局に対する送信出力を予
め設定された値の範囲内で制御することを特徴とする送
信電力制御方式。(4) A relay earth station that relays the communication is interposed in the satellite communication between small earth stations, and after the relay earth station receives the signal from the small earth station via the satellite and performs signal reproduction processing, In a transmission power control method applied to a satellite communication system that transmits a signal to a partner small earth station via a satellite, each of the small earth stations uses a downlink signal from the satellite to improve the signal quality of the signal. The small earth station transmits the superimposed modulated wave by using the received signal quality information created from the measurement results to superimpose the carrier wave originally modulated by the information signal using the MPSK modulator. , the relay earth station receives the superimposed modulated wave, obtains the carrier wave regeneration circuit output or the frequency error detection circuit output of the MPSK demodulator used for regenerative relay of the relay earth station, and detects the superimposed modulation wave using the secondary modulation detection circuit. Detecting received signal quality information of a small earth station, and controlling the transmission output to the small earth station within a preset value range so that the signal quality reaches a preset reference value according to the signal quality information. Characteristic transmission power control method.
路からなることを特徴とする送信電力制御方式。(5) A transmission power control system, wherein the secondary modulation detection circuit according to claim 4 comprises a phase discrimination circuit.
路からなることを特徴とする送信電力制御方式。(6) A transmission power control system, wherein the secondary modulation detection circuit according to claim 4 comprises a polarity discrimination circuit.
変調のディジタルベースバンド信号を復調するMPSK
復調器と、 該MPSK復調器より搬送波再生回路出力を得て二次変
調ディジタルベースバンド信号を出力する位相判別回路
と、 該位相判別回路より該二次変調ディジタルベースバンド
信号を得て二次変調ディジタルベースバンド信号の有す
る小型地球局受信信号品質情報を復元する復号化回路と
、 該復号化器より小型地球局受信信号品質情報を得て該情
報と予め設定されている信号品質の基準値の差を用いて
制御情報を発する制御回路と、該MPSK復調器で復調
された信号を再び変調するPSK変調器と 該変調器の出力信号を得て、該制御回路からの制御情報
に従い減衰を加える可変減衰器と、該可変減衰器の出力
信号を得て該出力信号を伝送する送信機とを少なくとも
有することを特徴とする中継地球局。(7) MPSK that obtains a superimposed modulated received signal and demodulates the primary modulated digital baseband signal of the received signal
a demodulator; a phase discrimination circuit that obtains a carrier wave regeneration circuit output from the MPSK demodulator and outputs a secondary modulation digital baseband signal; and a phase discrimination circuit that obtains the secondary modulation digital baseband signal from the phase discrimination circuit and performs secondary modulation. a decoding circuit for restoring small earth station received signal quality information contained in a digital baseband signal; a control circuit that generates control information using the difference; a PSK modulator that re-modulates the signal demodulated by the MPSK demodulator; and an output signal of the modulator that is obtained and attenuated in accordance with the control information from the control circuit. A relay earth station comprising at least a variable attenuator and a transmitter for obtaining an output signal of the variable attenuator and transmitting the output signal.
変調のディジタルベースバンド信号を復調するMPSK
復調器と、 該MPSK復調器より搬送波再生回路出力を得て二次変
調ディジタルベースバンド信号を出力する極性判別回路
と、 該極性判別回路より該二次変調ディジタルベースバンド
信号を得て二次変調ディジタルべースバンド信号の有す
る小型地球局受信信号品質情報を復元する復号化回路と 該復号化器より小型地球局受信信号品質情報を得て該情
報と予め設定されている信号品質の基準値の差を用いて
制御情報を発する制御回路と、該MPSK復調器で復調
された信号を再び変調するPSK変調器と、 該変調器の出力信号を得て、該制御回路からの制御情報
に従い減衰を加える可変減衰器と、該可変減衰器の出力
信号を得て該出力信号を伝送する送信機とを少なくとも
有することを特徴とする中継地球局。(8) MPSK that obtains a superimposed modulated received signal and demodulates the primary modulated digital baseband signal of the received signal
a demodulator; a polarity discrimination circuit that obtains a carrier wave regeneration circuit output from the MPSK demodulator and outputs a secondary modulation digital baseband signal; and a polarity discrimination circuit that obtains the secondary modulation digital baseband signal from the polarity discrimination circuit and performs secondary modulation. A decoding circuit that restores the small earth station received signal quality information contained in the digital baseband signal, and the small earth station received signal quality information obtained from the decoder, and the difference between the information and a preset signal quality reference value. a PSK modulator that re-modulates the signal demodulated by the MPSK demodulator; and a PSK modulator that obtains the output signal of the modulator and attenuates it in accordance with the control information from the control circuit. A relay earth station comprising at least a variable attenuator and a transmitter for obtaining an output signal of the variable attenuator and transmitting the output signal.
タルベースバンド信号を入力として多層PSK変調を行
う多相PSK変調器と、 一つもしくは複数の運用状態情報をフレーム化し二次変
調信号を作成する符号器と、 該多相変調器よりの出力を得て、該二次変調信号に応じ
て±θ゜の位相偏移を発生させるPSK変調器とからな
る重畳変調回路。(9) A polyphase PSK modulator that performs multilayer PSK modulation using a primary modulated digital baseband signal such as voice, data, facsimile, etc. as input, and a code that frames one or more operational status information and creates a secondary modulated signal. and a PSK modulator that receives an output from the multiphase modulator and generates a phase shift of ±θ° according to the secondary modulation signal.
外の雑音を除去するための帯域フィルタと、 該帯域フィルタの出力を得て、同期検波に必要となる基
準搬送波を作る搬送波再生回路と、該搬送波再生回路の
出力を得て、搬送波周波数オフセット量を検出し該搬送
波再生回路に出力するする周波数誤差検出回路と、 該帯域フィルタの出力を得て、該搬送波再生回路の出力
に従い位相検波を行う第1の位相検波回路と、 該帯域フィルタの出力を得て、タイミングを得るタイミ
ング再生回路と、 該位相検波回路の出力を得て、タイミング再生回路の出
力に従い信号判定を行う信号判定回路と、 該搬送波再生回路の出力を得て、二次変調信号を出力す
る位相判別回路とから少なくともなる重畳変調復調回路
。(10) A bandpass filter that inputs the superimposed modulated wave signal and removes noise outside the band of the input signal, and a carrier regeneration that obtains the output of the bandpass filter and creates a reference carrier wave required for synchronous detection. a frequency error detection circuit that obtains the output of the carrier wave regeneration circuit, detects a carrier wave frequency offset amount, and outputs it to the carrier wave regeneration circuit; a first phase detection circuit that performs phase detection; a timing recovery circuit that obtains the output of the bandpass filter and obtains timing; and a signal that obtains the output of the phase detection circuit and performs signal determination according to the output of the timing recovery circuit. A superposition modulation demodulation circuit comprising at least a determination circuit and a phase determination circuit that obtains the output of the carrier wave regeneration circuit and outputs a secondary modulation signal.
外の雑音を除去するための帯域フィルタと、 該帯域フィルタの出力を得て、同期検波に必要となる基
準搬送波を作る搬送波再生回路と、該搬送波再生回路の
出力を得て、搬送波周波数オフセット量を検出し該搬送
波再生回路に出力するする周波数誤差検出回路と、 該帯域フィルタの出力を得て、該搬送波再生回路の出力
に従い位相検波を行う位相検波回路と、該帯域フィルタ
の出力を得て、タイミングを得るタイミング再生回路と
、 該位相検波回路の出力を得て、タイミング再生回路の出
力に従い信号判定を行う信号判定回路と、 該周波数誤差検出回路の出力を得て、二次変調信号を出
力する極性判別回路とから少なくともなる重畳変調復調
回路。(11) A bandpass filter that inputs the superimposed modulated wave signal and removes noise outside the band of the input signal, and a carrier regeneration that obtains the output of the bandpass filter and creates a reference carrier wave required for synchronous detection. a frequency error detection circuit that obtains the output of the carrier wave regeneration circuit, detects a carrier wave frequency offset amount, and outputs it to the carrier wave regeneration circuit; A phase detection circuit that performs phase detection, a timing recovery circuit that obtains the output of the bandpass filter and obtains timing, and a signal judgment circuit that obtains the output of the phase detection circuit and makes a signal judgment according to the output of the timing recovery circuit. , and a polarity discrimination circuit that obtains the output of the frequency error detection circuit and outputs a secondary modulation signal.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1192690A JPH03217138A (en) | 1990-01-23 | 1990-01-23 | Transmission/reception system for operation state information of earth station using superposition modulation |
US07/511,681 US5066957A (en) | 1989-04-21 | 1990-04-20 | Hybrid modulation satellite communication system |
CA002015105A CA2015105C (en) | 1989-04-21 | 1990-04-20 | Hybrid modulation satellite communication system |
AU53727/90A AU619105B2 (en) | 1989-04-21 | 1990-04-20 | Hybrid modulation satellite communication system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1192690A JPH03217138A (en) | 1990-01-23 | 1990-01-23 | Transmission/reception system for operation state information of earth station using superposition modulation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03217138A true JPH03217138A (en) | 1991-09-24 |
Family
ID=11791287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1192690A Pending JPH03217138A (en) | 1989-04-21 | 1990-01-23 | Transmission/reception system for operation state information of earth station using superposition modulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03217138A (en) |
-
1990
- 1990-01-23 JP JP1192690A patent/JPH03217138A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2015105C (en) | Hybrid modulation satellite communication system | |
JP3478508B2 (en) | Wireless communication device | |
CA2025232C (en) | Carrier recovery system | |
US5727027A (en) | PSK signal demodulation method and apparatus | |
EP0556807B1 (en) | Carrier recovery device for mobile communications | |
JP2001177452A (en) | Diversity transmission/reception method and system | |
JPH03217138A (en) | Transmission/reception system for operation state information of earth station using superposition modulation | |
JPH02280423A (en) | Transmission power control system using superimposing modulation | |
US5592507A (en) | Intermediate relay station of a digital microwave communication system using service channel for monitoring and controlling space and/or time diversity, heterodyne relay, phase control, frequency control, with phase shift keying modulation | |
EP0552692A1 (en) | System for synchronizing mutually interfering signals in digital radio transmissions with frequency re-use | |
JP2500781B2 (en) | Line switching device | |
JPH0142528B2 (en) | ||
JPH0611125B2 (en) | Same frequency relay system | |
JP2513311B2 (en) | Cross polarization communication system | |
JPH05199270A (en) | Digital microwave radio equipment | |
JPS59112739A (en) | Removing circuit of cross polarization interference | |
JPS6341251B2 (en) | ||
JPS61136350A (en) | Carrier wave recovery circuit | |
Springett | Shuttle payload S-band communications study | |
JPH0730595A (en) | Modulation control system in satellite communication | |
JPS58205358A (en) | Demodulator | |
JP2504184B2 (en) | Cross polarization communication system | |
JPH0412660B2 (en) | ||
JPH0523652B2 (en) | ||
JPS6314534B2 (en) |