Nothing Special   »   [go: up one dir, main page]

JPH03205832A - Insulated-gate semiconductor device and manufacture thereof - Google Patents

Insulated-gate semiconductor device and manufacture thereof

Info

Publication number
JPH03205832A
JPH03205832A JP2000559A JP55990A JPH03205832A JP H03205832 A JPH03205832 A JP H03205832A JP 2000559 A JP2000559 A JP 2000559A JP 55990 A JP55990 A JP 55990A JP H03205832 A JPH03205832 A JP H03205832A
Authority
JP
Japan
Prior art keywords
substrate
layer
conductivity type
well layer
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000559A
Other languages
Japanese (ja)
Inventor
Tetsuo Iijima
哲郎 飯島
Satoru Komatsu
了 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Renesas Eastern Japan Semiconductor Inc
Original Assignee
Hitachi Ltd
Hitachi Tohbu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Tohbu Semiconductor Ltd filed Critical Hitachi Ltd
Priority to JP2000559A priority Critical patent/JPH03205832A/en
Publication of JPH03205832A publication Critical patent/JPH03205832A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0626Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a localised breakdown region, e.g. built-in avalanching region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To provide a vertical power MOSFET resistant to breakdown current and capable of use with higher inductive load by forming a buried layer between the substrate and the bottom of a well layer, wherein the buried layer is the same conductivity type as the substrate and has more doping concentration. CONSTITUTION:A vertical power MOSFET includes a semiconductor substrate 1 of one conductivity type. The substrate serves as a drain. A well layer 3 of the opposite conductivity type is formed on the surface of the substrate. A heavily doped region 5 of the same conductivity as the substrate, as a source, is formed on a part of the surface of the well layer 3. An insulated gate 6 is formed on the substrate 1. A channel region is located on the surface of the well layer 3 between the source and drain immediately under the gate electrode 6. A heavily doped layer 7 of the same conductivity type as the substrate is buried between the substrate and the well layer 3. In this MOSFET structure, breakdown current flows through a path that does not permit a parasitic bipolar diode to operate. Therefore, the device has a high breakdown voltage, and it allows larger inductive load.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁ゲート形半導体装置とその製造方法に係り
,特にスイッチング電源等のL負荷回路に好適な破壊耐
量を向上した縦形バソーMOSFETに関丁るものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an insulated gate type semiconductor device and its manufacturing method, and particularly relates to a vertical bassaw MOSFET with improved breakdown resistance suitable for L-load circuits such as switching power supplies. It is something to decorate.

〔従来の技術〕[Conventional technology]

パワーMOSFETの最も通常タイプとしてシリコンゲ
ートなVスクに二重拡散によりチャネル長を自己整合的
に形威した縦形MOSFETがある。この縦形MOSF
ETは第9図に示すようにたとえばn型シリコン基板1
をドレインとし、その表面にp型ウェル3を形成し,ウ
ェル表面の一部にn+型ンース5を形成し、基板の上に
絶縁ゲート電優6を設けてゲート電極直下のソースドレ
イン間p層表面をチャネル領域4とするものである。
The most common type of power MOSFET is a vertical MOSFET in which the channel length is self-aligned by double diffusion in a silicon gate V-screen. This vertical MOSF
ET is, for example, an n-type silicon substrate 1 as shown in FIG.
is used as a drain, a p-type well 3 is formed on its surface, an n+ type source 5 is formed on a part of the well surface, an insulated gate electrode 6 is provided on the substrate, and a p-type layer is formed between the source and drain directly under the gate electrode. The surface is used as a channel region 4.

このよった縦杉パワーMOSFETは、負荷がコイル(
配H)であることにより、必ずL負荷で実装される場合
が多い。特にスイッチング電源に使用丁る場合,第10
図に示すように誘導起電力Eが生じてパワーMOSFE
TQに大きい負荷がかかり、MOS素子が破壊される(
プレークダウン)jる現象がある。このブレークダウン
はベースの深さ、ウェルの深さあるいは素子の形成され
たエビタキシャル層により影響する。
In this twisted Tatesugi power MOSFET, the load is the coil (
H distribution), it is often always implemented with an L load. Especially when used in a switching power supply, the 10th
As shown in the figure, an induced electromotive force E is generated and the power MOSFE
A large load is applied to the TQ and the MOS device is destroyed (
There is a phenomenon called ``preakdown''. This breakdown is affected by the depth of the base, the depth of the well, or the epitaxial layer in which the device is formed.

このような縦形バワーMOSFETにおげるL負荷耐量
の向上を図るためには、第9図を参照し,素子の降伏す
る場所(接合部)をチャネル領域4直下のA,B点から
ウェルの底部に近いC,D点に移丁ことである。たとえ
ば特開昭59−132671等にも記載されて(・るよ
うに、pウェル層(全体)の濃度を高くする方法や,n
チャネルMOS素子ではn+眉(ソース)の直下部分を
ウェル層(pウェル)に近づける方法,ある(・はチャ
ネル層の一部に高濃度p+層を設げる方法が提案されて
いる。
In order to improve the L load withstand capability of such a vertical power MOSFET, referring to FIG. Transfer the pages to points C and D near the bottom. For example, as described in JP-A-59-132671, etc., there is a method of increasing the concentration of the p-well layer (overall),
In a channel MOS device, a method has been proposed in which the part immediately below the n+ eyebrow (source) is brought close to the well layer (p well), and a method in which a high concentration p+ layer is provided in a part of the channel layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記した従来技術において,pウェル濃度を上げた場合
、隣接するセルとの接合間隔が挾くなり,オン抵抗の増
大を招くことで好ましくな(・。
In the above-mentioned conventional technology, if the p-well concentration is increased, the junction distance between adjacent cells becomes narrower, leading to an increase in on-resistance, which is undesirable (.

又、サブ層(n基板)をウェルp層に近づけるというこ
とはエビタキシャル層(n一層)の厚さが少なくなるこ
とになり、ドレイン・ソース間耐圧が小となり,ある耐
圧以上への素子の適用はできfx < fxる。
Also, bringing the sub-layer (n-substrate) closer to the well p-layer means that the thickness of the epitaxial layer (n-layer) becomes smaller, which reduces the drain-source breakdown voltage, making it difficult for the device to exceed a certain breakdown voltage. It is possible to apply fx < fx.

又、p+層をソース直下に設ける方法は、チャネルp一
層の濃度に影響することになり、MOS特性が変ってく
る。
Furthermore, the method of providing the p+ layer directly under the source affects the concentration of the channel p layer, changing the MOS characteristics.

上記のいずれの技術についても、降伏により、寄生バイ
ボーラトランジスタを動作させることでMOS素子を破
壊させるおそれがある。
In any of the above techniques, breakdown may cause the parasitic bibolar transistor to operate, thereby destroying the MOS element.

本発明は上記の点にかんがみてたされたものであり、そ
の目的は、降伏電流による素子破壊を防止し、L負荷耐
量を向上させる縦形バフ−MOSFETを提供すること
にある。
The present invention has been developed in view of the above points, and its object is to provide a vertical buff MOSFET that prevents element destruction due to breakdown current and improves L load withstand capability.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達戒するために本発明による縦形MOSFE
Tはウェル層の底部に基板と同じ導電型でより高濃度の
量を埋設することによりゲート近くで降伏が起る以前に
ウェル層底部で降伏が起るように構成するものである。
In order to achieve the above object, a vertical MOSFE according to the present invention is used.
T is of the same conductivity type as the substrate and has a higher concentration buried in the bottom of the well layer, so that breakdown occurs at the bottom of the well layer before breakdown occurs near the gate.

〔作用〕[Effect]

ウェル層底部に基板と同じ導電型の高濃度埋込層を設げ
ることにより,降伏電流はウェル層底部を起点として流
れるようになるために寄生パイボーラトランジスタが動
作することなく、破壊耐量向上が図られる。
By providing a highly doped buried layer of the same conductivity type as the substrate at the bottom of the well layer, breakdown current flows starting from the bottom of the well layer, preventing the parasitic pibora transistor from operating, improving breakdown resistance. is planned.

ウェル底部の降伏は底部接合近傍の基板濃度を不純物イ
オン打込法により局所的に高めて,電界強度を高めるこ
とにより達成できる。
Breakdown at the bottom of the well can be achieved by locally increasing the substrate concentration near the bottom junction using impurity ion implantation to increase the electric field strength.

〔実施例〕〔Example〕

以下、本発明を適用したー実施例について図面を参照し
説明する。
Embodiments to which the present invention is applied will be described below with reference to the drawings.

第1図は本発明の一実施例であるnチャネル縦形パワー
MOSFETの1セルの模型断面図である。
FIG. 1 is a schematic cross-sectional view of one cell of an n-channel vertical power MOSFET, which is an embodiment of the present invention.

1はn一半導体基板(エビタキシャルSi基板)でドレ
イン部となる。2はドレインilEffl取出しn+層
である。
1 is an n-semiconductor substrate (evitaxial Si substrate) which becomes a drain portion. 2 is a drain ilEffl extraction n+ layer.

3はpウェル層であってその周辺表面部4はチャネル領
域として使用される。
3 is a p-well layer whose peripheral surface portion 4 is used as a channel region.

5はソースとなるn+領域である。5 is an n+ region which becomes a source.

6は絶縁ゲート(多結晶シリコン)電砺である。6 is an insulated gate (polycrystalline silicon) conductor.

7はn埋込層でpウェル層3底部とn一基板lとの間に
埋め込まれ基板1よりも高濃度に不純物がドープされて
いる。
An n-buried layer 7 is buried between the bottom of the p-well layer 3 and the n-substrate 1, and is doped with impurities at a higher concentration than the substrate 1.

第2図は第1図のA−A断面における不純物濃度プロフ
ァイルを示している。
FIG. 2 shows an impurity concentration profile in the AA cross section of FIG. 1.

同図のようにn埋込層7の濃度をエビタキシャル層であ
るn一基板1のそれより高めることで電界を高め、pウ
ェル層とn一基板の他の接合部よりもプレークダウン(
降伏)が起りやすくするものである。
As shown in the figure, by increasing the concentration of the n-buried layer 7 compared to that of the n-substrate 1, which is an epitaxial layer, the electric field is increased, and the breakdown (
(surrender) is more likely to occur.

第3図は太き(・負荷がかかった場合の降伏電流(太し
・矢印で示す)の流れる形態を示す。
Figure 3 shows the form in which a breakdown current (indicated by a thick arrow) flows when a load is applied.

すなわち,通常は周辺表面に近(・接合部A点,B点で
降伏が起るような場合、n+層5直下を降伏電流IAが
流れてn + p + n寄生バイボーラトランジスタ
が動作して破壊してしまう。しかし、n埋込層7の存在
することによってn埋込層7の界面のC点を起点とした
降伏電流IBによれば素子を破壊に至らせることはない
In other words, when breakdown occurs near the peripheral surface (junction points A and B), the breakdown current IA flows directly under the n+ layer 5, and the n+p+n parasitic bibolar transistor operates. However, due to the presence of the n-buried layer 7, the breakdown current IB starting from the point C at the interface of the n-buried layer 7 does not cause the element to be destroyed.

第4図は本発明の他の一実施例を示すものであり、nチ
ャネル縦形M08FETの1セルの縦断面図である。こ
のMOS素子はpウェル3の周辺に接してこれにより低
濃度のp一層8を設げてチャネル領域としたものである
FIG. 4 shows another embodiment of the present invention, and is a longitudinal sectional view of one cell of an n-channel vertical M08FET. In this MOS element, a low concentration p layer 8 is provided in contact with the periphery of the p well 3 to serve as a channel region.

この例において、pウェルの底部にn埋込層7を設げる
ことにより降伏電流を制御することができるとともに、
pウェル層3自体の濃度を比較的に高くすることができ
,n一基板1の濃度が高いときに耐圧的に有利である。
In this example, the breakdown current can be controlled by providing the n-buried layer 7 at the bottom of the p-well, and
The concentration of the p-well layer 3 itself can be made relatively high, which is advantageous in terms of breakdown voltage when the concentration of the n-substrate 1 is high.

第5図乃至第8図は本発明による縦形MOSFETの製
造方法の実施例を示す一部工程断面図である。
5 to 8 are partial process sectional views showing an embodiment of the method for manufacturing a vertical MOSFET according to the present invention.

以下、各工程にそって説明する。Each step will be explained below.

(1)  n−n+基板1,20表面にマスク材9によ
り@(・リン等の不純物イオン打込みを行なう。この場
合,不純物濃度は基板のそれよりやや高度とし,かつ,
深い部分に埋め込まれるようにする(第5図)。
(1) Impurity ions such as phosphorus are implanted into the surfaces of the n−n+ substrates 1 and 20 using the mask material 9. In this case, the impurity concentration is slightly higher than that of the substrate, and
Make sure that it is embedded deep (Figure 5).

(2)拡散により,基板1の深(・部分にn埋込層7を
形成する(第6図)。
(2) An n-buried layer 7 is formed in the deep portion of the substrate 1 by diffusion (FIG. 6).

(3)新たに形成したマスク材10を通してボロン不純
物のイオン打込み、拡散によりpウェル3を形成する(
第7図)。
(3) A p-well 3 is formed by ion implantation and diffusion of boron impurities through the newly formed mask material 10 (
Figure 7).

(4)基板表面上に絶縁膜(Sin,.膜)を介して多
結晶シリコン膜を形成し,これをパターニングして絶縁
ゲート電極6を形成する。このゲート[極をマスクに2
重拡散により、チャネル領域とrjるp一層8(第4図
を参照)及びソースn+領域5を形成する。最後に表面
を絶縁膜( SiO* ) 1 1で覆い,ソースn+
層5とpウェルに同時にコンタクトするスルーホールを
あげ、アルミニウムを蒸着してソース電極12を形成す
る(第8図)。
(4) A polycrystalline silicon film is formed on the surface of the substrate via an insulating film (Sin, . film), and is patterned to form an insulated gate electrode 6. This gate [2 with the pole as a mask
By heavy diffusion, a p-layer 8 (see FIG. 4) and a source n+ region 5 are formed which are connected to the channel region. Finally, the surface is covered with an insulating film (SiO*) 1 1, and the source n+
A through hole is made to simultaneously contact the layer 5 and the p-well, and aluminum is deposited to form the source electrode 12 (FIG. 8).

上記製造方法によれば、pウェル底部とn一基板との間
に降伏電流制御用のn埋込層を容易に形成することがで
き,それ以外に従来の二重拡散による縦形MOSFET
プロセスそのままを利用することができる。
According to the above manufacturing method, it is possible to easily form an n-buried layer for breakdown current control between the bottom of the p-well and the n-substrate, and in addition, it is possible to easily form an n-buried layer for controlling the breakdown current.
You can use the process as is.

〔発明の効果〕〔Effect of the invention〕

本発明によればパワーMOSFETにおいて、降伏電流
が寄生バイボーラトランジスタを動作させない経路をと
り流れることができ、破壊耐量を向上させることができ
る。すなわち、耐正の太きな低下を伴うことfx < 
L負荷耐量の向上が期待できる。
According to the present invention, in a power MOSFET, a breakdown current can flow through a path that does not cause the parasitic bibolar transistor to operate, and breakdown resistance can be improved. In other words, there is a large decrease in resistance fx <
It is expected that the L load capacity will be improved.

また、破壊耐量を高める手段を素子に内在させることが
でき、外付ダイオードがなくてすみ、半導体装置の小形
化が期待できる。
Furthermore, a means for increasing breakdown resistance can be built into the element, eliminating the need for an external diode, and making semiconductor devices more compact can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のパワーMOSFETの縦断
面図である。 第2図は第1図のA−A断面に対向する不純物濃度分布
図である。 第3図は第1図において降伏電流の流れる態様を示す断
面図である。 第4図は本発明の他の一実施例のパワーMOSFETの
縦断面図である。 第5図乃至第8図は本発明κよるMOSFETの製造方
法の一実施例を示す一部工程断面図である。 第9図は従来の縦形MOSFETの例を示す断面図であ
る。 第10図はMOSFETを用いたスイッチング回路の一
例を示す一部回路図である。 1・・・n一基板(エビタキシャル・シリコン層)、3
・・・pウェル,5・・・ソースn+領域、6・・・絶
縁ゲート,7・・・n埋込層,8・・・p−チャネル領
域。
FIG. 1 is a longitudinal sectional view of a power MOSFET according to an embodiment of the present invention. FIG. 2 is an impurity concentration distribution diagram opposite to the AA cross section of FIG. FIG. 3 is a cross-sectional view showing how the breakdown current flows in FIG. 1. FIG. 4 is a longitudinal sectional view of a power MOSFET according to another embodiment of the present invention. 5 to 8 are partial process cross-sectional views showing an embodiment of a method for manufacturing a MOSFET according to the present invention. FIG. 9 is a sectional view showing an example of a conventional vertical MOSFET. FIG. 10 is a partial circuit diagram showing an example of a switching circuit using MOSFETs. 1...n-substrate (evitaxial silicon layer), 3
...p well, 5...source n+ region, 6...insulated gate, 7...n buried layer, 8...p- channel region.

Claims (1)

【特許請求の範囲】 1、一導電型の半導体基板をドレインとし、その表面に
基板と逆の導電型のウェル層を形成し上記ウェル層表面
の一部に基板と同じ導電型の高濃度領域を形成してソー
スとし、基板の上に絶縁ゲート電極を設けてゲート電極
直下のソース・ドレイン間のウェル層表面をチャネル領
域とするとともに、上記ウェル層底部と基板との間に基
板と同じ導電型でより高濃度の埋込層を形成してなるこ
とを特徴とする絶縁ゲート形半導体装置。 2、一導電型の半導体基板をドレインとし、その表面に
基板と逆の導電型のウェル層を形成し、ウェル層の周辺
に接してこれより低濃度の領域を形成し、ウェル層の表
面の一部に基板と同じ導電型の高濃度領域からなるソー
スを形成し、基板上に絶縁ゲートを設けて、ゲート電極
直下のソース・ドレイン間の上記低濃度領域表面をチャ
ネル領域とするとともに上記ウェル層の底部と基板との
間に基板と同じ導電型でより高い濃度の埋込層を形成し
たことを特徴とする絶縁ゲート形半導体装置。 3、底面部に高濃度層を有する第1導電型低濃度半導体
基体の表面より深くより高い濃度の第1導電型ウェルを
形成し、第1導電型ウェルの一部にオーバーラップして
基体表面に第2導電型ウェルを形成し、基体上に絶縁ゲ
ートを設け、この絶縁ゲートを利用してチャネル領域の
ための低濃度第2導電型層及びソースのための高濃度第
1導電型層を形成することを特徴とする絶縁ゲート形半
導体装置の製造方法。
[Claims] 1. A semiconductor substrate of one conductivity type is used as a drain, a well layer of a conductivity type opposite to that of the substrate is formed on the surface thereof, and a high concentration region of the same conductivity type as the substrate is formed on a part of the surface of the well layer. An insulated gate electrode is provided on the substrate, and the surface of the well layer between the source and drain directly under the gate electrode is used as a channel region, and the same conductivity as the substrate is formed between the bottom of the well layer and the substrate. An insulated gate type semiconductor device characterized by forming a buried layer with a higher concentration in a mold. 2. A semiconductor substrate of one conductivity type is used as a drain, a well layer of a conductivity type opposite to that of the substrate is formed on its surface, a region of lower concentration is formed in contact with the periphery of the well layer, and the surface of the well layer is A source consisting of a high concentration region of the same conductivity type as the substrate is formed in a part, an insulated gate is provided on the substrate, and the surface of the low concentration region between the source and drain directly under the gate electrode is used as a channel region, and the An insulated gate type semiconductor device characterized in that a buried layer having the same conductivity type as the substrate and having a higher concentration is formed between the bottom of the layer and the substrate. 3. A first conductivity type well with a higher concentration is formed deeper than the surface of the first conductivity type low concentration semiconductor substrate having a high concentration layer on the bottom surface, and overlaps a part of the first conductivity type well to form a layer on the substrate surface. A second conductivity type well is formed in the substrate, an insulated gate is provided on the substrate, and the insulated gate is used to form a low concentration second conductivity type layer for a channel region and a high concentration first conductivity type layer for a source. 1. A method of manufacturing an insulated gate type semiconductor device.
JP2000559A 1990-01-08 1990-01-08 Insulated-gate semiconductor device and manufacture thereof Pending JPH03205832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000559A JPH03205832A (en) 1990-01-08 1990-01-08 Insulated-gate semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000559A JPH03205832A (en) 1990-01-08 1990-01-08 Insulated-gate semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03205832A true JPH03205832A (en) 1991-09-09

Family

ID=11477082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000559A Pending JPH03205832A (en) 1990-01-08 1990-01-08 Insulated-gate semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03205832A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101021A (en) * 2001-09-20 2003-04-04 Shindengen Electric Mfg Co Ltd Field-effect transistor and method of manufacturing the same
JP2006511961A (en) * 2002-12-20 2006-04-06 クリー インコーポレイテッド Vertical JFET Restricted Silicon Carbide Power Metal Oxide Semiconductor Field Effect Transistor and Method for Manufacturing Vertical JFET Restricted Silicon Carbide Metal Oxide Semiconductor Field Effect Transistor
JP2007081436A (en) * 1996-10-18 2007-03-29 Hitachi Ltd Semiconductor device and power converter using the same
EP1895595A2 (en) 1996-10-18 2008-03-05 Hitachi, Ltd. Semiconductor device and electric power conversion apparatus therewith
EP2197025A1 (en) * 2008-12-12 2010-06-16 ABB Technology AG Method for manufacturing a power semiconductor device
CN103839988A (en) * 2012-11-23 2014-06-04 中国科学院微电子研究所 Structure of EMPT-TI-IGBT device and preparation method thereof
CN103872115A (en) * 2012-12-13 2014-06-18 中国科学院微电子研究所 Reinforced micro-through IGBT
WO2014203317A1 (en) * 2013-06-17 2014-12-24 株式会社日立製作所 Semiconductor device and manufacturing method for same, as well as power conversion device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081436A (en) * 1996-10-18 2007-03-29 Hitachi Ltd Semiconductor device and power converter using the same
EP1895595A2 (en) 1996-10-18 2008-03-05 Hitachi, Ltd. Semiconductor device and electric power conversion apparatus therewith
EP1895595A3 (en) * 1996-10-18 2008-06-04 Hitachi, Ltd. Semiconductor device and electric power conversion apparatus therewith
JP2003101021A (en) * 2001-09-20 2003-04-04 Shindengen Electric Mfg Co Ltd Field-effect transistor and method of manufacturing the same
JP2006511961A (en) * 2002-12-20 2006-04-06 クリー インコーポレイテッド Vertical JFET Restricted Silicon Carbide Power Metal Oxide Semiconductor Field Effect Transistor and Method for Manufacturing Vertical JFET Restricted Silicon Carbide Metal Oxide Semiconductor Field Effect Transistor
EP2197025A1 (en) * 2008-12-12 2010-06-16 ABB Technology AG Method for manufacturing a power semiconductor device
JP2010141339A (en) * 2008-12-12 2010-06-24 Abb Technology Ag Method for manufacturing semiconductor device
US8324062B2 (en) 2008-12-12 2012-12-04 Abb Technology Ag Method for manufacturing a power semiconductor device
RU2510099C2 (en) * 2008-12-12 2014-03-20 Абб Текнолоджи Аг Method to manufacture power semiconductor device
CN103839988A (en) * 2012-11-23 2014-06-04 中国科学院微电子研究所 Structure of EMPT-TI-IGBT device and preparation method thereof
CN103872115A (en) * 2012-12-13 2014-06-18 中国科学院微电子研究所 Reinforced micro-through IGBT
WO2014203317A1 (en) * 2013-06-17 2014-12-24 株式会社日立製作所 Semiconductor device and manufacturing method for same, as well as power conversion device

Similar Documents

Publication Publication Date Title
JP3395473B2 (en) Horizontal trench MISFET and manufacturing method thereof
EP1033759B1 (en) MOS-gated device having a buried gate and process for forming same
KR100752799B1 (en) Lateral thin-film soi device having a lateral drift region and method of making such a device
KR100859701B1 (en) High voltage LDMOS transistor and method for fabricating the same
US5910669A (en) Field effect Trench transistor having lightly doped epitaxial region on the surface portion thereof
JP2932429B2 (en) MOS field effect transistor and method of manufacturing the same
KR100652449B1 (en) Lateral thin-film silicon-on-insulator soi jfet device
JP3202021B2 (en) Punch-through field-effect transistor
US5274259A (en) High voltage transistor
EP0718892B1 (en) Semiconductor device including insulated gate bipolar transistor and method of fabricating the same
KR100194661B1 (en) Power transistor
US20010020720A1 (en) Field-effect semiconductor devices
JP2003523089A (en) MOS gate device with alternating conductive zones
JPH0897411A (en) Lateral trench mos fet having high withstanding voltage and its manufacture
JPH01310576A (en) Semiconductor device and manufacture thereof
JP2004511910A (en) Trench double diffused metal oxide semiconductor transistor incorporating trench Schottky rectifier
JPH08264787A (en) Edge termination method of power mosfet and its structure
KR100883795B1 (en) Symmetric trench mosfet device and method of making same
US20020079521A1 (en) Surface breakdown reduction by internal field rings and multiple poly field plates in power LDMOSFET
JP3219045B2 (en) Manufacturing method of vertical MISFET
US7173308B2 (en) Lateral short-channel DMOS, method for manufacturing same and semiconductor device
JPH1126758A (en) Trench type mos semiconductor device and manufacture thereof
US5940721A (en) Termination structure for semiconductor devices and process for manufacture thereof
JPH0621468A (en) Insulated gate semiconductor device
JP2000269487A (en) Semiconductor device and its manufacture