Nothing Special   »   [go: up one dir, main page]

JPH03163174A - Heat-insulating coating agent and process for coating with same - Google Patents

Heat-insulating coating agent and process for coating with same

Info

Publication number
JPH03163174A
JPH03163174A JP2049016A JP4901690A JPH03163174A JP H03163174 A JPH03163174 A JP H03163174A JP 2049016 A JP2049016 A JP 2049016A JP 4901690 A JP4901690 A JP 4901690A JP H03163174 A JPH03163174 A JP H03163174A
Authority
JP
Japan
Prior art keywords
heat
coating
coating agent
coating layer
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2049016A
Other languages
Japanese (ja)
Other versions
JP2845550B2 (en
Inventor
Hirobumi Kutoku
久徳 博文
Hiroyuki Tajiri
博幸 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2049016A priority Critical patent/JP2845550B2/en
Publication of JPH03163174A publication Critical patent/JPH03163174A/en
Application granted granted Critical
Publication of JP2845550B2 publication Critical patent/JP2845550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain a heat-insulating coating agent which can form a coating layer having a high efficiency of heat reflection a high effect of heat insulation and surface smoothness by mixing at least a binder with a micaceous graphite powder of a particle diameter in a specified range and a solvent. CONSTITUTION:A heat-insulating coating agent is obtained by mixing at least a binder (e.g. a thermosetting resin such as a phenolic resin or an epoxy resin or petroleum- or coal-derived pitch) with a micaceous graphite powder of a particle diameter of 0.1-500mu and a solvent (e.g. water or methanol). this coating agent can form a coating layer having an increased efficiency of heat reflection, a high effect of heat insulation and surface smoothness and excels in heat insulation especially in a temperature range above 2000 deg.C in which heat transmission by radiation is predominant. This agent can be applied desirably to a furnace wall heat-insulating material for high-temperature furnaces.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高温炉の炉壁断熱材に好適に適用される耐熱性
コーティング剤とそれを用いたコーティング方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat-resistant coating agent suitably applied to a furnace wall insulation material of a high-temperature furnace, and a coating method using the same.

[従来の技術と発明が解決しようとする課題]従来、高
温加熱炉の断熱性を高めるため、炭素繊維製フェルト等
の炉壁用断熱材が使用されている。この断熱材には、耐
風性が大きいこと、処理物の断熱材への侵入を防止でき
ることが必要がある。そこで、炉壁用断熱材の表面に黒
鉛シートを貼り付けることが行なわれている。しかし、
この方法では、断熱材表面が、平滑でなく、しかも曲面
や凹凸形状等の複雑な形状である場合、断熱材表面に黒
鉛シートを密着させて貼り付けるのが困難である。
[Prior Art and Problems to be Solved by the Invention] Conventionally, in order to improve the heat insulation properties of high-temperature heating furnaces, heat insulating materials for furnace walls, such as carbon fiber felt, have been used. This heat insulating material needs to have high wind resistance and be able to prevent processed materials from entering the heat insulating material. Therefore, a graphite sheet is attached to the surface of the furnace wall heat insulating material. but,
In this method, if the surface of the heat insulating material is not smooth and has a complicated shape such as a curved surface or uneven shape, it is difficult to adhere the graphite sheet to the surface of the heat insulating material in close contact with the surface of the heat insulating material.

上記の点に鑑み、土壌黒鉛や人造黒鉛を含有するコーテ
ィング剤を断熱材表面に塗布することが行なわれている
。しかし、この方法では、コーティング層の表面は平滑
性に欠け、光沢がなく、輻射伝熱の抑制効果が小さい。
In view of the above points, coating agents containing soil graphite or artificial graphite are applied to the surface of the heat insulating material. However, in this method, the surface of the coating layer lacks smoothness and lacks gloss, and the effect of suppressing radiant heat transfer is small.

また土壌黒鉛や人造黒鉛の形状に起因してコーティング
層の黒鉛粒子間にW:t間が生じるので、熱の反射効率
、ひいては断熱効率を高めるのが困難である。さらには
、上記黒鉛を含有するコーティング剤で形成したコーテ
ィング層は、機械的強度が十分でないため、断熱材を補
強できないだけでなく、断熱材から剥離したりする。従
って、長期に亘り高い熱反射効率及び断熱効率を維持す
るのが困難であると共に、断熱材の寿命も短くなる。
Further, due to the shape of soil graphite or artificial graphite, a W:t gap occurs between graphite particles in the coating layer, making it difficult to increase heat reflection efficiency and, by extension, heat insulation efficiency. Furthermore, the coating layer formed from the graphite-containing coating agent does not have sufficient mechanical strength, and therefore not only cannot reinforce the heat insulating material, but also peels off from the heat insulating material. Therefore, it is difficult to maintain high heat reflection efficiency and heat insulation efficiency over a long period of time, and the life of the insulation material is also shortened.

本発明の目的は、熱の反射効率及び耐風性を高めること
ができ、断熱効率が大きな、表面平滑性を有するコーテ
ィング層を形成できる断熱性コーティング剤を提供する
ことにある。
An object of the present invention is to provide a heat-insulating coating agent that can improve heat reflection efficiency and wind resistance, and form a coating layer with high heat-insulating efficiency and surface smoothness.

また本発明の他の目的は、上記特性の他に、機械的強度
に優れたコーティング層を形成できると共に、断熱材を
補強し、断熱材を長寿命化できる断熱性コーティング剤
を堤供することにある。
Another object of the present invention is to provide a heat-insulating coating agent that, in addition to the above-mentioned properties, can form a coating layer with excellent mechanical strength, reinforce a heat-insulating material, and extend the life of the heat-insulating material. be.

更に、本発明の他の目的は、上記の如き優れた特性を付
与できるコーティング方法を提供することにある。
Furthermore, another object of the present invention is to provide a coating method that can impart the above-mentioned excellent properties.

[発明の榊威] 本発明は、少なくとも、結合剤と、粒径0.  1〜5
00μ■の鱗状黒鉛粉末と、溶媒とを含有する断熱性コ
ーティング剤を提供する。
[Takeshi Sakaki of the Invention] The present invention provides at least a binder and a particle size of 0. 1-5
To provide a heat-insulating coating agent containing 00 μι scale graphite powder and a solvent.

また本発明は、上記或分に加えて、繊維長0.01〜1
.0mmの炭素繊維化可能な繊維又は炭素繊維及び/又
は粒径1〜200μの炭素質化可能な粉体または炭素質
粉体を含有する断熱性コーティング剤を提供する。
In addition to the above-mentioned certain amount, the present invention also provides fiber length of 0.01 to 1.
.. Provided is a heat-insulating coating agent containing fibers or carbon fibers that can be made into carbon fibers with a diameter of 0 mm and/or powder or carbonaceous powder that can be made into carbon fibers with a particle size of 1 to 200 μm.

さらに、本発明は、上記各断熱性コーティング剤を断熱
材の表面に塗布し、炭化又は黒鉛化処理するコーティン
グ方法を提供する。
Furthermore, the present invention provides a coating method in which each of the above heat-insulating coating agents is applied to the surface of a heat-insulating material and carbonized or graphitized.

また本発明は、上記各断熱性コーティング剤を断熱材の
表面に塗布し、コーティング剤が未硬化の状態で、金型
で加圧し、加熱成形した後、最終的に炭化又は黒鉛化処
理するコーティング方法を提供する。
Furthermore, the present invention provides a coating in which each of the above-mentioned heat-insulating coating agents is applied to the surface of a heat-insulating material, the coating agent is pressurized with a mold in an uncured state, heat-formed, and then finally carbonized or graphitized. provide a method.

なお、本明細書における用語の定義は次の通りである。The definitions of terms used in this specification are as follows.

炭素繊維とは炭化又は黒鉛化処理された繊維を言う。Carbon fiber refers to fiber that has been carbonized or graphitized.

炭化処理とは、炭素繊維化可能な繊維を、例えば、45
0〜1500℃程度の温度で焼成処理することを言う。
Carbonization treatment refers to fibers that can be made into carbon fibers, for example, 45
It refers to firing treatment at a temperature of about 0 to 1500°C.

黒鉛化処理とは、例えば1 500〜3000℃程度の
温度で焼成処理することを言い、黒鉛の結晶IR造を有
していないときでも、上記温度で処理した場合は黒鉛化
処理されたものと言う。
Graphitization treatment refers to firing treatment at a temperature of, for example, 1,500 to 3,000°C, and even if it does not have a graphite crystal IR structure, if it is treated at the above temperature, it is considered to have been graphitized. To tell.

本発明のコーティング剤に含有される結合剤としては、
例えば、フェノール樹脂、フラン樹脂、尿素樹脂、メラ
ミン樹脂、不飽和ポリエステル、ジアリルフタレート樹
脂、エボキシ樹脂、ポリウレタン、ポリイミド、熱硬化
性アクリル樹脂等の熱硬化性樹脂二石油又は石炭のピッ
チ等が例示される。これらの結合剤は一種又は二種以上
使用できる。これらの結合剤のうち、炭化又は黒鉛化時
の残炭率が大きく、接着性に優れるフェノール樹脂、フ
ラン樹脂等の熱硬化性樹脂が好ましい。
As the binder contained in the coating agent of the present invention,
Examples include thermosetting resins such as phenolic resins, furan resins, urea resins, melamine resins, unsaturated polyesters, diallyl phthalate resins, epoxy resins, polyurethanes, polyimides, thermosetting acrylic resins, petroleum or coal pitch, etc. Ru. One or more types of these binders can be used. Among these binders, thermosetting resins such as phenol resins and furan resins, which have a large residual carbon content during carbonization or graphitization and have excellent adhesive properties, are preferred.

鱗状黒鉛粉末は、前記土壌黒鉛や人造黒鉛が非鱗片状で
あるのと異なり、形状が鱗片状であるため、コーティン
グ層の表面平滑性、隠蔽性に優れる。特に、土壌黒鉛や
人造黒鉛ではコーティング層中の黒鉛粒子間に隙間が生
じるのに対して、鱗状黒鉛粉末の場合、コーティング層
内で黒鉛粉末が層状に配列し、黒鉛粒子間の隙間が著し
く小さく又は隙間が生じない。また2000℃以上の高
温領域では、熱伝導率に占める輻射伝熱の割合が支配的
となるが、鱗状黒鉛粉末は土壌黒鉛や人造黒鉛よりも、
熱の反射率及び非透過性の点で優れる。従って、鱗状黒
鉛粉末を用いると、輻射伝熱を抑制し、熱の反射効率や
断熱効率を著しく高めることができる。
Unlike the soil graphite and artificial graphite, which are non-scaly, the scaly graphite powder has a scaly shape, and therefore has excellent surface smoothness and hiding properties of the coating layer. In particular, with soil graphite and artificial graphite, gaps occur between graphite particles in the coating layer, whereas in the case of scale graphite powder, graphite powder is arranged in layers within the coating layer, and the gaps between graphite particles are extremely small. Or no gap is created. In addition, in the high temperature range of 2000℃ or higher, the proportion of radiation heat transfer in the thermal conductivity is dominant, but scaly graphite powder has a higher rate of heat transfer than soil graphite or artificial graphite.
Excellent in terms of heat reflectance and non-transmission. Therefore, when scaly graphite powder is used, radiation heat transfer can be suppressed and heat reflection efficiency and heat insulation efficiency can be significantly increased.

鱗状黒鉛粉末は、塗布性や分散安定性等を損わない粒径
0.1〜500μ園、好ましくは1〜300μ一のもの
を使用する。鱗状黒鉛粉末の粒径が0.1μ未満である
と、熱の反射率や断熱効率が低下し易く、500μmを
越えると塗布性や分散安定性が低下し易い。
The scaly graphite powder used has a particle size of 0.1 to 500 μm, preferably 1 to 300 μm, which does not impair coating properties, dispersion stability, etc. If the particle size of the scaly graphite powder is less than 0.1 μm, the heat reflectance and heat insulation efficiency tend to decrease, and if it exceeds 500 μm, the coating properties and dispersion stability tend to decrease.

なお、鱗状黒鉛の含有量は、コーティング層の黒鉛粒子
間に隙間が生じない範囲で適宜設定できるが、通常、結
合剤100重量部に対して、鱗状黒鉛20〜300重量
部、好ましくは30〜200重量部である。鱗状黒鉛の
量が20重量部未満では熱伝導率を小さくするのが困難
であり、300重量部を越えると、断熱材への塗布性が
低下し易いだけでなく、断熱材から剥離し易くなる。
The content of scale graphite can be set as appropriate within a range that does not create gaps between graphite particles in the coating layer, but usually 20 to 300 parts by weight, preferably 30 to 30 parts by weight, of scale graphite per 100 parts by weight of the binder. It is 200 parts by weight. If the amount of scaly graphite is less than 20 parts by weight, it is difficult to reduce the thermal conductivity, and if it exceeds 300 parts by weight, it not only tends to reduce the applicability to the insulation material but also tends to peel off from the insulation material. .

コーティング剤は、上記鱗状黒鉛と共に炭素繊維化可能
な繊維や炭素繊維を含有するのが好ましい。炭素繊維化
可能な繊維や炭素繊維を併用すると、コーティング層を
補強できると共に、断熱材の強度を高めることができる
。また断熱材からのコーティング層の剥離を防止でき、
断熱材の寿命を著しく長くすることができる。炭素繊維
化可能な繊維としては、例えば、アクリロニトリル、セ
ルロース、レーヨン、フェノール樹脂等を素祠とする繊
維が例示され、炭素繊維としては、これらの繊維を原料
とする炭素繊維が例示される。炭素繊維は高強度タイプ
、高仲度タイプ、高弾性タイプ、汎用タイプ等のいずれ
であってもよく、一種又は二種以上使用される。なお、
炭素繊維化可能な繊維と炭素繊維とを混合して用いても
よい。上記炭素繊維化可能な繊維及び炭素繊維は、例え
ば繊維径5〜30μ重等適宜のものが使用できる。
It is preferable that the coating agent contains fibers or carbon fibers that can be made into carbon fibers together with the above-mentioned scale-like graphite. When fibers that can be made into carbon fibers or carbon fibers are used in combination, the coating layer can be reinforced and the strength of the heat insulating material can be increased. It also prevents the coating layer from peeling off from the insulation material.
The life of the insulation material can be significantly extended. Examples of fibers that can be made into carbon fibers include fibers made from acrylonitrile, cellulose, rayon, phenol resin, etc., and examples of carbon fibers include carbon fibers made from these fibers. The carbon fibers may be of high strength type, high density type, high elasticity type, general purpose type, etc., and one or more types may be used. In addition,
A mixture of fibers that can be made into carbon fibers and carbon fibers may be used. The above-mentioned fibers that can be made into carbon fibers and carbon fibers may have an appropriate fiber diameter of 5 to 30 μm, for example.

炭素繊維化可能な繊維や炭素繊維としては、繊維長0.
01〜1.0mmのものが使用される。繊維長が0.0
1mm未満であると、補強性等が十分てなく、1.0m
mを越えると均一なコーティング剤を得るのが困難であ
る。好ましい繊維はミルドファイバーやミルドファイバ
ーに類するものである。
Fibers that can be made into carbon fibers or carbon fibers have a fiber length of 0.
01 to 1.0 mm is used. Fiber length is 0.0
If it is less than 1mm, the reinforcing property etc. will not be sufficient and 1.0m
If it exceeds m, it is difficult to obtain a uniform coating agent. Preferred fibers are milled fibers and milled fiber-like fibers.

上記炭素繊維化可能な繊維や炭素繊維は、補強性等の特
性を損わない範囲で使用でき、通常、結合剤100重量
部に対して10〜150重量部、好ましくは25〜12
5重量部である。繊維の含有量が10重量部未満である
と、十分な補強性を確保するのが困難であり、150重
量部を越えると均一に混合するのが困難である。なお、
これら炭素繊維の混合は、補強性の増大に役立つが、熱
伝導率には殆ど影響を与えない。
The above-mentioned fibers that can be made into carbon fibers and carbon fibers can be used within a range that does not impair properties such as reinforcing properties, and are usually 10 to 150 parts by weight, preferably 25 to 12 parts by weight, based on 100 parts by weight of the binder.
5 parts by weight. If the fiber content is less than 10 parts by weight, it is difficult to ensure sufficient reinforcing properties, and if it exceeds 150 parts by weight, it is difficult to mix uniformly. In addition,
Mixing these carbon fibers helps increase reinforcing properties, but has little effect on thermal conductivity.

さらにコーティング剤は、少なくとも鱗状黒鉛と共に、
好ましくは鱗状黒鉛と、炭素繊維化可能な繊維や炭素繊
維と共に、粒径1〜200μ、好ましくは1〜80μ閾
の炭素質化可能な粉体または炭素質粉体を含有するのが
好ましい。粉体の粒径が1一未満である場合には、コー
ティング層と断熱材との密着性が小さく、200μを越
える場合には、塗布性や分散安定性が低下し易い。
Furthermore, the coating agent, together with at least flaky graphite,
Preferably, it contains scale-like graphite, fibers or carbon fibers that can be made into carbon fibers, and powder or carbonaceous powder that can be made into carbonaceous material with a particle size of 1 to 200 μm, preferably 1 to 80 μm. When the particle size of the powder is less than 11, the adhesion between the coating layer and the heat insulating material is low, and when it exceeds 200 μm, the applicability and dispersion stability tend to deteriorate.

粉体としては、例えば、メソカーボンマイクロビースな
どの炭素質小球体、コークスブリーズなどの他、炭化又
は黒鉛化可能な充填剤、例えば、ピッチの破砕品を不融
化処理したバルクメソフエーズカーボン、石炭などを5
00℃程度の低温で乾留し、粉伜した低温か焼コークス
などであってもよい。これらの炭素質粉体の中で、メソ
カーボンマイクロビーズが好ましい。このメソカーボン
マイクロビーズは真球状であり、鱗状黒鉛粉末を含むコ
ーティング剤中に均一に分散し易い。またコーティング
層を補強するとともに、コーティング層と断熱材との密
着性を高める。なお、メソカーボンマイクロビーズとは
、コールタール、ピッチの減圧蒸留残油などを約400
〜500℃で熱処理し、生成したメソフェーズ小球体を
キノリン不溶分としてピッチマトリックスから分離した
粒径1〜80μ程度の球状体を意味する。
Examples of the powder include small carbonaceous spheres such as mesocarbon microbeads, coke breeze, and fillers that can be carbonized or graphitized, such as bulk mesophase carbon obtained by making infusible crushed pitch products. 5 coal etc.
It may also be low-temperature calcined coke that is carbonized at a low temperature of about 00°C and pulverized. Among these carbonaceous powders, mesocarbon microbeads are preferred. These mesocarbon microbeads have a true spherical shape and are easily dispersed uniformly in a coating agent containing scaly graphite powder. It also reinforces the coating layer and improves the adhesion between the coating layer and the heat insulating material. Mesocarbon microbeads are made from approximately 400% of coal tar, pitch vacuum distillation residue, etc.
Means spherical bodies with a particle size of about 1 to 80 μm that are heat-treated at ~500° C. and separated from the pitch matrix by using the generated mesophase small spheres as quinoline insoluble matter.

コーティング層では鱗状黒鉛粉末が層状に配向し、コー
ティング層と断熱材との密着性が低下し易い。これに対
して、前紀粉体を併用する場合には、断熱材表面に存在
する空隙部を粉体が充填し、接合面積を大きくすると共
に、アンカー効果によって、密着性がさらに大きくなり
、コーティング面のクラックや剥離が生じない。
In the coating layer, the scaly graphite powder is oriented in a layered manner, and the adhesion between the coating layer and the heat insulating material tends to decrease. On the other hand, when using powder from the previous generation, the powder fills the voids existing on the surface of the insulation material, increasing the bonding area and further increasing the adhesion due to the anchor effect. No surface cracks or peeling occurs.

これらの粉体は、一種又は二種以上混合して使用できる
。粉体の含有量は、コーティング層を補強し、かつ断熱
材との密着性を損わない範囲で選択できるが、通常、結
合剤100重量部に対して、20〜300重量部、奸ま
しくは50〜150重量部程度である。粉体の含有量が
20重量部未満である場合には、コーティング層の補強
性、密着性を高めるのが困難であり、300重量部を越
える場合には、塗布性が低下し、コーティング層が剥離
し易くなる。
These powders can be used alone or in combination of two or more. The content of the powder can be selected within a range that reinforces the coating layer and does not impair the adhesion with the heat insulating material, but it is usually 20 to 300 parts by weight per 100 parts by weight of the binder. is about 50 to 150 parts by weight. If the content of the powder is less than 20 parts by weight, it is difficult to improve the reinforcing properties and adhesion of the coating layer, and if it exceeds 300 parts by weight, the coating properties decrease and the coating layer becomes It becomes easy to peel off.

本発明のコーティング剤はさらに溶媒を含有している。The coating agent of the present invention further contains a solvent.

該溶媒としては、例えば、水、メタノール、エタノール
及びイソプロパノール等のアルコール類、ヘキサン、オ
クタン及びシクロヘキサン等の脂肪族又は脂環族炭化水
素、ベンゼン、トルエン及びキシレン等の芳香族炭化水
素、ジクロロメタン、トリクロロメタン及びエチレンク
ロライド等のハロゲン化炭化水素、酢酸エチル等のエス
テル類、ジエチルエーテル、ジオキサン及びテトラヒド
ロフラン等のエーテル類、アセトン及びメチルエチルケ
トン等のケトン類やこれらの混合溶媒が使用できる。
Examples of the solvent include water, alcohols such as methanol, ethanol and isopropanol, aliphatic or alicyclic hydrocarbons such as hexane, octane and cyclohexane, aromatic hydrocarbons such as benzene, toluene and xylene, dichloromethane and trichloro. Halogenated hydrocarbons such as methane and ethylene chloride, esters such as ethyl acetate, ethers such as diethyl ether, dioxane and tetrahydrofuran, ketones such as acetone and methyl ethyl ketone, and mixed solvents thereof can be used.

溶媒は前記結合剤の種類に応じて選択できる。The solvent can be selected depending on the type of binder.

またその量もコーティング剤の粘度に応じて塗布性等を
損わない範囲で適宜設定できるが、通常、桔合剤100
重量部に対して溶媒100〜500重量部、好ましくは
150〜400重量部である。
In addition, the amount can be set as appropriate depending on the viscosity of the coating agent within a range that does not impair the coating properties, etc., but it is usually 100%
The amount of the solvent is 100 to 500 parts by weight, preferably 150 to 400 parts by weight.

上記溶媒の量が100瑣量部未満であると、コーティン
グ剤の粘度が高く、塗膜に、微小エアーが巻き込まれ易
く、均一で表面平滑性を有するコーティング層を形成す
るのが困難である。またコーティング剤で処理した断熱
材を炭化、黒鉛化したとき、微小エアーが膨脹し、コー
ティング層の表面がボーラスになり、表面平滑性が損わ
れ、輻射伝熱量、特に、2000℃以上で支配的となる
輻射伝熱量を減少させることが困難である。また溶媒が
500重量部を越えるとコーティング剤中の成分濃度が
小さくなり、所定の塗膜厚を確保するのに、塗布回数を
多くする必要があり、作業性が低下する。
When the amount of the solvent is less than 100 parts, the viscosity of the coating agent is high, and minute air is likely to be entangled in the coating film, making it difficult to form a coating layer that is uniform and has a smooth surface. Furthermore, when a heat insulating material treated with a coating agent is carbonized or graphitized, minute air expands, the surface of the coating layer becomes a bolus, the surface smoothness is impaired, and the amount of radiant heat transfer becomes dominant, especially at temperatures above 2000℃. It is difficult to reduce the amount of radiant heat transfer. Furthermore, if the amount of solvent exceeds 500 parts by weight, the concentration of the components in the coating agent decreases, and in order to ensure a predetermined coating thickness, it is necessary to increase the number of coatings, resulting in a decrease in workability.

なお、本発明のコーティング剤は、断熱性等を損わない
範囲で、分散剤、粘度調整剤及び充填剤等の種々の添加
剤を含有していてもよい。
The coating agent of the present invention may contain various additives such as a dispersant, a viscosity modifier, and a filler within a range that does not impair the heat insulation properties.

本発明のコーティング剤は、断熱材に塗布し、加熱又は
常温で硬化させることにより、コーティング層を形成し
てもよいが、コーティング層の強度向上及び断熱効率を
さらに高めるため、次のようにしてコーティング層を形
成するのが好ましい。
The coating agent of the present invention may be applied to a heat insulating material and cured by heating or at room temperature to form a coating layer, but in order to further improve the strength and heat insulation efficiency of the coating layer, it can be applied as follows. Preferably, a coating layer is formed.

すなわち、本発明のコーティング方法は、少なくとも、
上記コーティング剤を断熱材表面に塗布する塗布工程と
、炭化又は黒鉛化処理工程とを含んでいる。好ましいコ
ーティング方法は、上記塗布工程と、炭化又は黒鉛化処
理工程との間に、コーティング剤が未硬化の状態で、金
型で加圧し加熱する成形加熱工程を含む。
That is, the coating method of the present invention includes at least the following:
The method includes a coating step of applying the coating agent to the surface of the heat insulating material, and a carbonization or graphitization treatment step. A preferred coating method includes, between the coating step and the carbonization or graphitization step, a molding and heating step in which the coating agent is pressurized and heated with a mold in an uncured state.

塗布工程での塗布手段としては、従来慣用の方法が利用
でき、通常、刷毛塗り、ヘラ塗りやスプレー塗布方法な
どが採用できる。またコーティング層の膜厚は、断熱性
を確保できる限り特に制限されないが、通常0.1〜5
 mm s好ましくは0.2〜2.5mm程度である。
As a coating means in the coating step, conventionally used methods can be used, such as brush coating, spatula coating, and spray coating methods. The thickness of the coating layer is not particularly limited as long as it can ensure heat insulation, but it is usually 0.1 to 5.
mms is preferably about 0.2 to 2.5 mm.

また成形加熱工程で使用される金型は、表面平滑性を付
与するため、平滑面を有する金型、特に鏡面仕上げの金
型が好ましい。金型の形状は、成形断熱材が適用される
加熱炉の形状に応じて選択できる。例えば、一対の平板
状プレート、一対の雄雌金型や、筒体と該筒体を外方か
ら挾圧できる成形部材とで構成された金型等である。な
お、コーティング剤を塗布した後の面が、平面でない形
状を有する断熱材の場合には、金型の使用を割愛できる
Furthermore, the mold used in the molding and heating step is preferably a mold with a smooth surface, particularly a mold with a mirror finish, in order to impart surface smoothness. The shape of the mold can be selected depending on the shape of the heating furnace to which the molded insulation material is applied. Examples include a pair of flat plates, a pair of male and female molds, and a mold composed of a cylindrical body and a molding member that can press the cylindrical body from the outside. In addition, in the case of a heat insulating material whose surface after applying the coating agent has a shape other than a flat surface, the use of a mold can be omitted.

成形加熱工程での加圧条件は、コーティング層に平滑面
を形戊できる範囲で設定でき、加熱温度は前記炭化また
は黒鉛化可能な樹脂の種類に応じて硬化できる条件が採
用され、通常100〜170℃程度である。
Pressure conditions in the molding and heating process can be set within a range that allows a smooth surface to be formed on the coating layer, and the heating temperature is set to a temperature that allows curing depending on the type of resin that can be carbonized or graphitized. The temperature is about 170°C.

コーティング層を形戊した断熱材を加圧加熱する際、金
型との離型性をよくするため、コーティング層と金型と
の間に離型紙を敷設したり、金型表面にシリコーンオイ
ル等の離型剤を塗布してもよい。
When pressurizing and heating the insulation material with the coating layer formed, in order to improve the release property from the mold, a release paper is placed between the coating layer and the mold, and silicone oil, etc. is applied to the mold surface. A mold release agent may be applied.

コーティング層を形或した断熱材を金型で加圧加熱する
と、脱型後、金型の平滑面に対応してコーティング層が
平滑となるだけでなく、緻密で均一な厚みのコーティン
グ層を形戊できるので、熱の反q1効率が著しく大きく
、強度の大きな表面平滑性に優れたコーティング層を形
成でき、優れた断熱性を付与できる。特に鏡面仕上げの
威形型を用いると、コーティング層の表面に金型鏡面が
転写されるので、鏡而仕」二げが可能となり、熱の反射
効率の大幅な向上が可能となる。また加圧加熱してコー
ティング層を硬化するので、コーティング層の強度が大
きくなるだけでなく、断熱材を補強でき、機械的強度を
高めることができる。
When the insulation material with a coating layer is heated under pressure in a mold, after demolding, the coating layer not only becomes smooth to correspond to the smooth surface of the mold, but also forms a dense and uniformly thick coating layer. Since it is possible to form a coating layer with extremely high heat reaction q1 efficiency, high strength and excellent surface smoothness, it is possible to provide excellent heat insulation properties. In particular, when a mold with a mirror finish is used, the mirror surface of the mold is transferred to the surface of the coating layer, making it possible to improve the mirror finish and greatly improve heat reflection efficiency. Furthermore, since the coating layer is cured by applying heat and pressure, not only the strength of the coating layer is increased, but also the heat insulating material can be reinforced and the mechanical strength can be increased.

炭化又は黒鉛化処理工程は、窒素ガス、ヘリウムガス等
の不活性雰囲気又は真空中で行なうことができる。
The carbonization or graphitization process can be carried out in an inert atmosphere such as nitrogen gas or helium gas or in vacuum.

本発明のコーティング剤及びコーティング方法は、断熱
性が必要とされる種々の材料、特に2000℃以上の高
温域で使用する断熱材に好適に適用される。
The coating agent and coating method of the present invention are suitably applied to various materials that require heat insulating properties, particularly to heat insulating materials used in a high temperature range of 2000° C. or higher.

[発明の効果コ 本発明の断熱性コーティング剤は、熱の反射効串を高め
ることができ、断熱効率が大きく、表面平滑性を有する
コーティング層を形戊できる。特に、輻射伝熱が支配的
な2000℃以上の温度域での断熱性に優れている。
[Effects of the Invention] The heat-insulating coating agent of the present invention can enhance the heat reflection effect, form a coating layer having high heat-insulating efficiency and surface smoothness. In particular, it has excellent heat insulation properties in a temperature range of 2000° C. or higher, where radiation heat transfer is predominant.

また繊維長0.01〜1.0mmの炭素繊維化可能な繊
維又は炭素繊維を含有する断熱性コーティング剤や粒径
1〜1− 0 0μ塵の炭素質化可能な粉体または炭素
質粉体を含有する断熱性コーティング剤は、上記特性の
他に、機械的強度に優れたコーティング層を形或できる
と共に、断熱材を補強でき、断熱材を長寿命化できる。
In addition, fibers that can be made into carbon fibers with a fiber length of 0.01 to 1.0 mm, or heat-insulating coating agents containing carbon fibers, and powders or carbonaceous powders that can be made into carbon with a particle size of 1 to 1-00μ dust. In addition to the above-mentioned properties, the heat-insulating coating agent containing the above can form a coating layer with excellent mechanical strength, can reinforce the heat-insulating material, and can extend the life of the heat-insulating material.

さらに、本発明のコーティング方法によると、表向平滑
性、熱の反1・I効率及び断熱性に優れると共に、機械
的強度に優れたコーティング層を形成できると共に、断
ハ月を補強し、断熱材を長寿命化できる。
Furthermore, according to the coating method of the present invention, it is possible to form a coating layer that has excellent surface smoothness, thermal insulation efficiency, and mechanical strength. The life of the material can be extended.

[実施例] 以下に、実施的に基づいて本発明をより詳細に説明する
[Example] Hereinafter, the present invention will be explained in more detail based on practical examples.

実施例1 フェノール樹脂(群栄化学工業■製、商品名PI,38
20^)100重m部、鱗状黒鉛(日本黒鉛工業■製、
商品名CB−150、平均粒径150μm)100重量
部、メタノール300重量部及び炭素繊維のミルドファ
イバー(ドナック沖製、商品名ドナカーボS243、繊
維長0.5mm)50重量部を均一に混合分散させてコ
ーティング剤を調製した。
Example 1 Phenol resin (manufactured by Gunei Chemical Industry ■, trade name PI, 38
20^) 100 parts by weight, graphite scales (manufactured by Nippon Graphite Industries ■,
100 parts by weight of CB-150 (trade name, average particle size 150 μm), 300 parts by weight of methanol, and 50 parts by weight of milled carbon fiber (manufactured by Donac Oki, trade name Dona Carbo S243, fiber length 0.5 mm) were uniformly mixed and dispersed. A coating agent was prepared.

このコーティング剤を炭素繊維製フエルトからなる厚み
3 0 mmの断熱材の片面に刷毛塗りする塗市王程と
、乾燥する乾燥工程とを4〜5回繰返し、コーティング
剤の塗布厚を0.6mmとした。次いで、温度150℃
で加熱してコーティング層を硬化させた後、窒素ガス雰
囲気中、温度1000’Cで2時間炭化処理すると共に
、温度2300℃で2時間黒鉛化処理した。なお、黒鉛
化処理後のコーティング層の表面は平滑であり、光沢が
あった。
The coating process of applying this coating agent to one side of a 30 mm thick heat insulating material made of carbon fiber felt with a brush and the drying process were repeated 4 to 5 times until the coating thickness of the coating agent was 0.6 mm. And so. Then, the temperature is 150℃
After curing the coating layer by heating, carbonization treatment was performed at a temperature of 1000° C. for 2 hours in a nitrogen gas atmosphere, and graphitization treatment was performed at a temperature of 2300° C. for 2 hours. Note that the surface of the coating layer after the graphitization treatment was smooth and glossy.

実施f!AI 2 実施例1の炭素繊維のミルドファイバー50重量部に代
えて、メソカーボンマイクロビーズ(大阪瓦斯■製、商
品名MPB−20、平均粒径4〇一)50重量部を用い
る以外、実施例1と同様にしてコーティング剤を調製し
た。
Implementation f! AI 2 Example except that 50 parts by weight of mesocarbon microbeads (manufactured by Osaka Gas, trade name MPB-20, average particle size 401) were used instead of 50 parts by weight of the milled carbon fiber of Example 1. A coating agent was prepared in the same manner as in Example 1.

このコーティング剤を実施例1の断熱材の片面に刷毛塗
りする塗布工程と、乾燥する乾燥工程とを1〜3同繰返
し、コーティング剤の塗布厚を0.6 mmとし、実施
例1と同様にして、炭化及び黒鉛化処理した。なお、黒
鉛化処理後のコーティング層の表面は平滑であり、光沢
があった。
The coating process of applying this coating agent to one side of the heat insulating material of Example 1 with a brush and the drying process of drying it were repeated 1 to 3 times, and the coating thickness of the coating agent was 0.6 mm, and the same procedure as in Example 1 was carried out. Then, carbonization and graphitization were carried out. Note that the surface of the coating layer after the graphitization treatment was smooth and glossy.

比較例1 実施例1で用いた断熱材をコーティングすることなく試
験に供した。
Comparative Example 1 The heat insulating material used in Example 1 was tested without being coated.

比較例2 実施例1の鱗状黒鉛に代えて、土壌黒鉛(口本黒鉛工業
■製、平均粒径100μlIl)を用いる以外、実施例
]−と同様にしてコーティング剤を凋製した。
Comparative Example 2 A coating agent was prepared in the same manner as in Example 2, except that soil graphite (manufactured by Kuchimoto Graphite Industries, average particle size: 100 μl) was used instead of the scaly graphite of Example 1.

また得られたコーティング剤を、実施例1と同様にして
、厚み3 0 mmの断熱材に塗布、乾燥し、硬化させ
、炭化及び黒鉛化処理した。なお、黒鉛化処理後のコー
ティング層は、表面平滑性が十分でなく、光沢がなかっ
た。
Further, the obtained coating agent was applied to a heat insulating material having a thickness of 30 mm in the same manner as in Example 1, dried, hardened, and subjected to carbonization and graphitization treatment. The coating layer after graphitization did not have sufficient surface smoothness and lacked gloss.

実施例3 フラン樹脂(日立化成工業沖製、商品名ヒタフラン30
1)100重量部、鱗状黒鉛(日本黒鉛工業F#製、商
品名Cf3−150、平均粒径150μm) 50重量
部、メチルエチルケトン20Offiffi部及び炭素
繊維のミルドファイバー(ドナック■製、商品名ドナカ
ーボS243、繊維長0.5mm)100重量部を均一
に混合分散させてコーティング剤を調製した。
Example 3 Furan resin (manufactured by Hitachi Chemical Oki, trade name Hitafuran 30)
1) 100 parts by weight, scaly graphite (manufactured by Nippon Graphite Industries F#, trade name Cf3-150, average particle size 150 μm), 50 parts by weight, 20 parts of methyl ethyl ketone, and milled carbon fiber (manufactured by Donac ■, trade name Dona Carbo S243, A coating agent was prepared by uniformly mixing and dispersing 100 parts by weight (fiber length: 0.5 mm).

このコーティング剤を前記実施例1と同様にして、厚み
3 0 mmの断熱材に塗布、乾燥し、塗膜厚0.6+
nmのコーティング層を形威し、硬化した後炭化及び黒
鉛化処理した。なお、黒鉛化処理後のコーティング層の
表面は平滑であり、光沢があった。
This coating agent was applied to a heat insulating material with a thickness of 30 mm in the same manner as in Example 1 and dried, resulting in a coating film thickness of 0.6+.
After forming and curing a coating layer of 100 nm thick, it was carbonized and graphitized. Note that the surface of the coating layer after the graphitization treatment was smooth and glossy.

実施例4 実施例3の鱗状黒鉛50重量部に代えて、鱗状黒鉛10
0重量部を用いると共に、ミルドファイバーに代えて、
実施例2で用いたメソカーボンマイクロビーズ100重
量部を用いる以外、実施例3と同様にして、コーティン
グ層を形威し、硬化した後、炭化及び黒鉛化処理した。
Example 4 Instead of 50 parts by weight of scaly graphite in Example 3, 10 parts by weight of scaly graphite
Using 0 parts by weight and replacing milled fiber,
The coating layer was shaped and cured in the same manner as in Example 3, except that 100 parts by weight of the mesocarbon microbeads used in Example 2 were used, and then carbonized and graphitized.

なお、黒鉛化処理後のコーティング層の表面は平滑であ
り、光沢があった。
Note that the surface of the coating layer after the graphitization treatment was smooth and glossy.

実施例5 炭素繊維のミルドファイバーを用いることなく、実施例
3と同様にして、フラン樹脂100重量部、鱗状黒鉛5
0ffl量部、メチルエチルケトン200重量部を含有
し、炭素繊維のミルドファイバーを含有しないコーティ
ング剤を調製した。また実施例1と同様にして、このコ
ーティング剤を厚み30 mmの断熱材に塗布、乾燥し
、塗膜厚0.6mmのコーティング層を形成し、硬化し
た後、炭化及び黒鉛化処理した。なお、黒鉛化処理後の
コーティング層の表面は平滑であり、光沢があった。
Example 5 100 parts by weight of furan resin and 5 parts by weight of scaly graphite were prepared in the same manner as in Example 3 without using milled carbon fibers.
A coating agent containing 0ffl parts and 200 parts by weight of methyl ethyl ketone and not containing milled carbon fibers was prepared. Further, in the same manner as in Example 1, this coating agent was applied to a heat insulating material with a thickness of 30 mm, dried to form a coating layer with a coating thickness of 0.6 mm, and after curing, carbonization and graphitization treatments were performed. Note that the surface of the coating layer after the graphitization treatment was smooth and glossy.

そして、実施例1〜5、比較例1及び比較例2で得られ
た断熱材の熱伝導率を側定したところ、第1図に示す結
果を得た。なお、第1図において、実施例1と実施VA
J 2の断熱材間、実施例3〜5の断熱材間には熱伝導
率の差が殆どなかった。
The thermal conductivity of the heat insulating materials obtained in Examples 1 to 5, Comparative Example 1, and Comparative Example 2 was determined, and the results shown in FIG. 1 were obtained. In addition, in FIG. 1, Example 1 and implementation VA
There was almost no difference in thermal conductivity between the heat insulating materials of J2 and between the heat insulating materials of Examples 3 to 5.

第1図より明らかなように、比較例1の断熱材や比較例
2の断熱材よりも各実施例の断熱材の方が熱伝導率が小
さく、断熱性に優れていた。特に、温度2500℃にお
いて、鱗状黒鉛を含有するコーティング剤を塗布した実
施例1及び2の断熱材は、比較例2の所熱材よりも、熱
伝導率が0.  2Kcal /m− h r ・”C
小さく、実施例3〜5の断熱材は、比較例2の断熱材よ
りも、熱伝導率が0.15Kcal /m−hr−”C
小さく、高温域での断熱性が約30%向上した。
As is clear from FIG. 1, the heat insulating materials of each example had lower thermal conductivity than the heat insulating materials of Comparative Example 1 and the heat insulating material of Comparative Example 2, and were superior in heat insulation properties. In particular, at a temperature of 2500°C, the heat insulating materials of Examples 1 and 2 coated with a coating agent containing scaly graphite had a thermal conductivity of 0.0. 2Kcal/m-hr・”C
The thermal conductivity of the insulation materials of Examples 3 to 5 is smaller than that of the insulation material of Comparative Example 2 by 0.15 Kcal/m-hr-"C.
It is small, and its insulation properties at high temperatures have improved by about 30%.

また、実施例3〜5及び比較例1の断熱材を用い、コー
ティング面が引張り側になる曲げる曲げ試験に供し、曲
げ強度を測定したところ、表に示す結果を得た。
Further, the heat insulating materials of Examples 3 to 5 and Comparative Example 1 were subjected to a bending test in which the coated surface was bent on the tensile side, and the bending strength was measured, and the results shown in the table were obtained.

表 ーティング剤でコーティングすると、 断熱材を補 強できる。また炭素繊維のミルドファイバーを含有する
実施例3のコーティング剤でコーティングすると、炭素
繊維のミルドファイバーを含有しない実施例5のコーテ
ィング剤に比べ、曲げ強度が約60%向上した。またメ
ソカーボンマイクロビーズを含有する実施例4のコーテ
ィング剤でコーティングすると、実施例5のコーティン
グ剤に比べ、萌げ強度が約100%向上した。
Coating with a surface agent can strengthen the insulation. Further, when coating with the coating agent of Example 3 containing milled carbon fibers, the bending strength was improved by about 60% compared to the coating agent of Example 5 which did not contain milled carbon fibers. Furthermore, when coating with the coating agent of Example 4 containing mesocarbon microbeads, the sprouting strength was improved by about 100% compared to the coating agent of Example 5.

実施例6 実施例1のフェノール樹脂50重量部、実施例2のフラ
ン樹脂50重量部、実施例1の鱗状黒鉛200重量部、
実施例1の炭素繊維のミルドファイバー50重量部、及
びメタノール300重量部を均一に混合分散せしめてコ
ーティング剤を調製した。
Example 6 50 parts by weight of phenolic resin of Example 1, 50 parts by weight of furan resin of Example 2, 200 parts by weight of scaly graphite of Example 1,
A coating agent was prepared by uniformly mixing and dispersing 50 parts by weight of the milled carbon fiber of Example 1 and 300 parts by weight of methanol.

得られたコーティング剤を、実施例1で用いた断熱材の
片面に乾燥後の膜厚が0.6mmとなるように塗布し、
コーティング層が未硬化の状態で、離型剤を塗布した鏡
面仕上げの戊形型を用いて加圧加熱し、コーティング剤
を硬化させた。次いで、実施例1と同様にして炭化及び
黒鉛化処理した。
The obtained coating agent was applied to one side of the heat insulating material used in Example 1 so that the film thickness after drying was 0.6 mm,
While the coating layer was in an uncured state, it was heated under pressure using a mirror-finished hollow mold coated with a release agent to cure the coating agent. Next, carbonization and graphitization treatments were carried out in the same manner as in Example 1.

実施例7 実施例6の炭素繊維のミルドファイバーに代えて、実施
例2のメソカーボンマイクロビーズ50重量部を用いる
以外、実施例6と同様にして、鏡面仕上げの戊形型を用
いて、コーティング剤を硬化させた。次いで、実施例1
と同様にして炭化及び黒鉛化処理した。
Example 7 Coating was carried out in the same manner as in Example 6, except that 50 parts by weight of the mesocarbon microbeads of Example 2 were used instead of the milled carbon fibers of Example 6, using a mirror-finished oval mold. The agent was cured. Next, Example 1
Carbonization and graphitization were carried out in the same manner as above.

実施例8及び9 実施例6及び7で得られたコーティング剤を、実施例1
で用いた断熱材の片面に乾燥後の膜厚が0.6mmとな
るように塗布し、成形型で加圧加熱することなく、実施
例1と同様にして硬化させ、炭化及び黒鉛化処理した。
Examples 8 and 9 The coating agents obtained in Examples 6 and 7 were used in Example 1.
It was applied to one side of the heat insulating material used in Example 1 so that the film thickness after drying was 0.6 mm, and it was cured in the same manner as in Example 1 without being pressurized and heated with a mold, and then subjected to carbonization and graphitization treatment. .

そして、実施例6〜9で得られた断熱材の熱伝導率を測
定したところ、第2図に示す結果を得た。
When the thermal conductivity of the heat insulating materials obtained in Examples 6 to 9 was measured, the results shown in FIG. 2 were obtained.

なお、実施例6と実施例7で得られた断熱材間では、熱
伝導率の差が殆どなく、実施例8と実施例9で得られた
断熱材間では、熱伝導率の差が殆どなかった。
Note that there is almost no difference in thermal conductivity between the insulation materials obtained in Example 6 and Example 7, and there is almost no difference in thermal conductivity between the insulation materials obtained in Example 8 and Example 9. There wasn't.

これらの桔果より、戊形型で加圧加熱した大施例6及び
7の断熱材は、実施例8及びっで得られた断熱材よりも
、高温域での熱伝導率が小さく、断熱性に優れていた。
From these results, the heat insulating materials of Examples 6 and 7, which were pressurized and heated using a hollow mold, had lower thermal conductivity in the high temperature range than the heat insulating materials obtained in Examples 8 and 7, and had a lower thermal conductivity in the high temperature range. She had excellent sex.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ実施例及び比較例における
拮果を示すグラフである。
FIG. 1 and FIG. 2 are graphs showing the results of an example and a comparative example, respectively.

Claims (1)

【特許請求の範囲】 1、少なくとも、結合剤と、粒径0.1〜500μmの
鱗状黒鉛粉末と、溶媒とを含有することを特徴とする断
熱性コーティング剤。 2、繊維長0.01〜1.0mmの炭素繊維化可能な繊
維又は炭素繊維を含有する請求項1記載の断熱性コーテ
ィング剤。 3、粒径1〜200μmの炭素質化可能な粉体または炭
素質粉体を含有する請求項1または請求項2記載の断熱
性コーティング剤。 4、請求項1〜請求項3のいずれかに記載の断熱性コー
ティング剤を断熱材の表面に塗布し、炭化又は黒鉛化処
理することを特徴とするコーティング方法。 5、請求項1〜請求項3のいずれかに記載の断熱性コー
ティング剤を断熱材の表面に塗布し、コーティング剤が
未硬化の状態で、金型で加圧し、加熱成形した後、炭化
又は黒鉛化処理することを特徴とするコーティング方法
[Scope of Claims] 1. A heat-insulating coating agent comprising at least a binder, scaly graphite powder having a particle size of 0.1 to 500 μm, and a solvent. 2. The heat-insulating coating agent according to claim 1, which contains fibers capable of being made into carbon fibers or carbon fibers having a fiber length of 0.01 to 1.0 mm. 3. The heat-insulating coating agent according to claim 1 or 2, which contains carbonizable powder or carbonaceous powder with a particle size of 1 to 200 μm. 4. A coating method comprising applying the heat-insulating coating agent according to any one of claims 1 to 3 onto the surface of a heat-insulating material and subjecting it to carbonization or graphitization treatment. 5. The heat-insulating coating agent according to any one of claims 1 to 3 is applied to the surface of the heat-insulating material, and in an uncured state, the coating agent is pressurized with a mold and heat-formed, and then carbonized or A coating method characterized by graphitization treatment.
JP2049016A 1989-08-22 1990-02-27 Insulating coating agent and coating method using the same Expired - Lifetime JP2845550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2049016A JP2845550B2 (en) 1989-08-22 1990-02-27 Insulating coating agent and coating method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-216625 1989-08-22
JP21662589 1989-08-22
JP2049016A JP2845550B2 (en) 1989-08-22 1990-02-27 Insulating coating agent and coating method using the same

Publications (2)

Publication Number Publication Date
JPH03163174A true JPH03163174A (en) 1991-07-15
JP2845550B2 JP2845550B2 (en) 1999-01-13

Family

ID=26389363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2049016A Expired - Lifetime JP2845550B2 (en) 1989-08-22 1990-02-27 Insulating coating agent and coating method using the same

Country Status (1)

Country Link
JP (1) JP2845550B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260915A (en) * 2005-03-16 2006-09-28 Masaji Miyake Electromagnetic wave heating apparatus
WO2006114897A1 (en) * 2005-04-22 2006-11-02 Kureha Corporation Coating agent for thermally insulating material and laminate for thermally insulating material using the same
WO2006115102A1 (en) 2005-04-22 2006-11-02 Kureha Corporation Coating layer for heat insulation, laminate for heat insulation, coating material for heat insulation and process for production of the coating material
JP2009280434A (en) * 2008-05-21 2009-12-03 Ibiden Co Ltd Crucible holding member and method for producing the same
JP2011155013A (en) * 2011-03-30 2011-08-11 Masaji Miyake Electromagnetic wave heating device
CN102766379A (en) * 2012-07-24 2012-11-07 南京理工大学常熟研究院有限公司 Nano composite transparent heat-insulating coating and preparation method thereof
CN106009809A (en) * 2016-05-21 2016-10-12 浙江大学自贡创新中心 Finishing inorganic dry powder heat insulation paint
CN108948957A (en) * 2018-06-29 2018-12-07 佛山腾鲤新能源科技有限公司 A kind of epoxy resin-matrix insulating mold coating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102300388B1 (en) * 2019-10-30 2021-09-10 장완건설 주식회사 High thermal shield, durability, thermal durability urethane waterproof coating containing carbon fiber composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260915A (en) * 2005-03-16 2006-09-28 Masaji Miyake Electromagnetic wave heating apparatus
WO2006114897A1 (en) * 2005-04-22 2006-11-02 Kureha Corporation Coating agent for thermally insulating material and laminate for thermally insulating material using the same
WO2006115102A1 (en) 2005-04-22 2006-11-02 Kureha Corporation Coating layer for heat insulation, laminate for heat insulation, coating material for heat insulation and process for production of the coating material
JP2009280434A (en) * 2008-05-21 2009-12-03 Ibiden Co Ltd Crucible holding member and method for producing the same
JP2011155013A (en) * 2011-03-30 2011-08-11 Masaji Miyake Electromagnetic wave heating device
CN102766379A (en) * 2012-07-24 2012-11-07 南京理工大学常熟研究院有限公司 Nano composite transparent heat-insulating coating and preparation method thereof
CN106009809A (en) * 2016-05-21 2016-10-12 浙江大学自贡创新中心 Finishing inorganic dry powder heat insulation paint
CN108948957A (en) * 2018-06-29 2018-12-07 佛山腾鲤新能源科技有限公司 A kind of epoxy resin-matrix insulating mold coating

Also Published As

Publication number Publication date
JP2845550B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
US11167991B2 (en) Method for preparing carbon nanotube/polymer composite
JP3943123B2 (en) Method for producing carbon fiber reinforced carbon composite material suitable for heat sink for semiconductor
US6146611A (en) Graphitizable foam preform
CN115028466B (en) Carbon fiber composite material and preparation method thereof
JPH08157273A (en) Unidirectional carbon fiber reinforced carbon composite material and its production
JPH03163174A (en) Heat-insulating coating agent and process for coating with same
JPH03150266A (en) Production of carbon/carbon composite material
JP2928278B2 (en) Preliminary surface protection board, surface protection board for furnace wall insulation, and furnace wall insulation using them
JP2687458B2 (en) Insulation material for heating furnace
JP3013374B2 (en) Coating agent for carbonaceous molded insulation
JP3193762B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JPH0848509A (en) Production of carbonaceous porous body
Jiang et al. Controllable pre-oxidation strategy toward achieving high compressive strength in self-bonded carbon fiber monolith
JP3215701B2 (en) Method for producing high heat load resistant C / C material and first wall material of fusion reactor
JP2603087B2 (en) Carbon compact
JP3138718B2 (en) Method for producing carbon fiber reinforced carbon material
KR20200123295A (en) Mothod for manufacturing brake discs and brake disc for vehicles
JP2579560B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon materials
JPH01153572A (en) Production of formed heat-insulation material
JPH029776A (en) Carbon fiber reinforced carbon composite material and production thereof
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JPH0273881A (en) Production of sealing material
KR20150045308A (en) Graphite sheet derived from coated polymeric resin particles and method for preparing same
JPH04305080A (en) Method for coating carbon fiber reinforced carbon composite material with oxidation resistant film by application
JPH07215775A (en) Production of carbon-carbon composite material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12