Nothing Special   »   [go: up one dir, main page]

JPH03120887A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH03120887A
JPH03120887A JP25938489A JP25938489A JPH03120887A JP H03120887 A JPH03120887 A JP H03120887A JP 25938489 A JP25938489 A JP 25938489A JP 25938489 A JP25938489 A JP 25938489A JP H03120887 A JPH03120887 A JP H03120887A
Authority
JP
Japan
Prior art keywords
face
edge face
semiconductor laser
light
light reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25938489A
Other languages
Japanese (ja)
Inventor
Takashi Takamura
高村 孝士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP25938489A priority Critical patent/JPH03120887A/en
Publication of JPH03120887A publication Critical patent/JPH03120887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To acquire high light output by specifying light reflectance of a projecting edge face and light reflectance of a monitor side edge face. CONSTITUTION:After a current constriction region 108 is formed, electrodes 109, 110 are formed. Then, cleavage is made and a laser oscillator edge face and edge face protecting films 111, 112 are formed. At this time, three layers of SiO2/a-Si pair whose film thickness is controlled are laminated on a monitor side projecting edge face. A single layer of SiO2 having a controlled film thickness is laminated on an output side projecting edge face. Light reflectance at the monitor side projecting edge face is made 32 to 100% and light reflectance at the output side projecting edge face is made 2 to 32%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ディスク等に用いられる半導体レーザに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser used in optical discs and the like.

[従来の技術] 従来、少なくとも一方の端面近傍では屈折率導波路幅と
電流注入幅を同程度として屈折率導波構造とし、その他
の領域では屈折率導波路幅を電流注入幅より充分広くし
利得導波構造としたm−v族化合物半導体筋よりなるリ
ブ状の光導波路を[−VI族化合物半導体層で埋め込ん
だ構造を用いることにより出射光の可干渉性を低減した
、戻り光雑音特性に優れた半導体レーザが知られていた
[Prior Art] Conventionally, a refractive index waveguide structure is constructed in which the refractive index waveguide width and the current injection width are approximately the same in the vicinity of at least one end face, and the refractive index waveguide width is made sufficiently wider than the current injection width in other regions. By using a structure in which a rib-shaped optical waveguide made of m-v group compound semiconductor stripes with a gain waveguide structure is embedded with a [-VI group compound semiconductor layer, the coherence of the emitted light is reduced, and the return light noise characteristics are improved. Excellent semiconductor lasers were known.

[発明が解決しようとする課題] しかしながら、従来用いられていたこのような半導体レ
ーザは、最大光出力が端面破壊レベル(CODレベル)
で40 m W HRテア3、発明の詳細な説明 また、信頼性が保証できるレベルではせいぜい30mW
が最大定格となる。
[Problems to be Solved by the Invention] However, the maximum optical output of such conventionally used semiconductor lasers is at the edge destruction level (COD level).
At 40 mW HR Thea 3, Detailed Description of the Invention Also, at the level where reliability can be guaranteed, at most 30 mW
is the maximum rating.

ところが通常用いられる光磁気ディスクでは50mW程
度の最大光出力が要求されるためこの光出力では不十分
である。
However, since a commonly used magneto-optical disk requires a maximum optical output of about 50 mW, this optical output is insufficient.

また、閾値電流値もかなり大きな値となり消費電力が大
きくなってしまう。
Further, the threshold current value also becomes a considerably large value, resulting in increased power consumption.

そこで、本発明は従来のこのような問題点を解決し、高
い光出力が得られる半導体レーザを提供することにある
SUMMARY OF THE INVENTION Therefore, the present invention aims to solve these conventional problems and provide a semiconductor laser that can provide high optical output.

状の先導波路をn−vr族化合物半導体層で埋め込んだ
構造を持ちかつ両端面におのおの光反射率の異なる端面
保護膜を有する半導体レーザにおいて、出射端面の光反
射率が2%から32%の間の値でありかつモニタ側端面
の光反射率が32%から100%の間であることを特徴
とする。
In a semiconductor laser which has a structure in which a shaped leading waveguide is buried in an N-VR group compound semiconductor layer and has end face protection films with different light reflectances on both end faces, the light reflectance of the output end face is between 2% and 32%. It is characterized in that the value is between 32% and 100%, and the light reflectance of the monitor side end face is between 32% and 100%.

[実 施 例] 以下に本発明の実施例を図面を用いて説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

[課題を解決するための手段〕 従来のこのような問題点を解決するため本発明の半導体
レーザ は、少なくとも一方の端面近傍では屈折率導波路幅と電
流注入幅を同程度として屈折率導波構造とし、その他の
領域では屈折率導波路幅を電流注入幅より充分広くし利
得導波構造とした■−v族化合物半導体層よりなるリブ
(実施例−1) 本発明の第1の実施例として出力側出射端面の光反射率
を10%に落とし、またモニタ側端面の光反射率を95
%に増やすことにより最大光出力及び微分量子効率を増
大させかつ閾値電流値が変わらない半導体レーザについ
て説明する。
[Means for Solving the Problems] In order to solve these conventional problems, the semiconductor laser of the present invention uses a refractive index waveguide with the refractive index waveguide width and the current injection width being approximately the same in the vicinity of at least one end face. (Example 1) First example of the present invention As a result, the light reflectance of the output end surface is reduced to 10%, and the light reflectance of the monitor side end surface is reduced to 95%.
%, the maximum optical output and differential quantum efficiency are increased, and the threshold current value remains unchanged.

第1図は多モード発振レーザの出力側出射端面にS+0
2薄膜を、モニタ側出射端面にaSt/5IO2多層薄
膜を形成した半導体レーザの斜視図である。
Figure 1 shows S+0 on the output side emission end face of a multimode oscillation laser.
2 is a perspective view of a semiconductor laser in which an aSt/5IO2 multilayer thin film is formed on the output end face on the monitor side.

まず、製造工程から説明する。First, the manufacturing process will be explained.

n−GaAs基板101上にn−GaAsバッファ層1
02、n −A l 11.aG a a、sA sク
ラッド層103、A I [1,[15G a e、9
sA s活性層104、p −A I B、aG a 
a、eA sクラッド層105、p−GaAs:+ンタ
クト層106とを有機金属化学気層成長法(MOCVD
法)により成長する。
n-GaAs buffer layer 1 on n-GaAs substrate 101
02,n-A l 11. aG a a, sA s cladding layer 103, A I [1, [15G a e, 9
sA s active layer 104, p-A I B, aG a
a, eAs cladding layer 105 and p-GaAs:+ contact layer 106 are formed by metal organic chemical vapor deposition (MOCVD).
growth by law).

成長条件はv−m比75、成長忍度670℃、成長時圧
カフ0Torrにて行った。反応管はコールドウオール
の横型炉である。
The growth conditions were a v-m ratio of 75, a growth tolerance of 670°C, and a growth pressure cuff of 0 Torr. The reaction tube is a cold wall horizontal furnace.

なお、材料ガスとしては、■族にはトリメチルガリウム
(TMG)及びトリメチルアルミニウム(TMA)を用
い、V族にはアルンン(ASH3)を用いた。
As the material gases, trimethyl gallium (TMG) and trimethyl aluminum (TMA) were used for group (1), and Arunn (ASH3) was used for group V.

次に、電子ビーム蒸着法によりSiO2薄膜を形成した
後通常のフォトエツチング工程により第2図に示すよう
な形状にパターニングする。
Next, a SiO2 thin film is formed by electron beam evaporation, and then patterned into the shape shown in FIG. 2 by an ordinary photoetching process.

次に、硫酸系のエツチング液によりリブ形の領域を形成
する。
Next, rib-shaped regions are formed using a sulfuric acid-based etching solution.

続いて、選択MOCVD法によりZnS e107をリ
ブ側面を埋め込む。
Subsequently, ZnS e107 is embedded into the side surfaces of the rib by selective MOCVD.

成長条件はII−VIII 0.  成長温度700°
C成長時圧力10Torrにておこなった。
Growth conditions are II-VIII0. Growth temperature 700°
C growth was performed at a pressure of 10 Torr.

反応管はコールドウオールの横型炉である。The reaction tube is a cold wall horizontal furnace.

なお、材料ガスとしては、■族にはジメチルジンク(D
MZn)、■族にはジメチルセレン(DMS e)を用
いた。
In addition, as a material gas, dimethyl zinc (D
MZn), dimethyl selenium (DMSe) was used for group ①.

次に5i02薄膜を除去した後、再び電子ビーム蒸着法
によりSiO2薄膜を形成した後通常のフォトエツチン
グ工程により電流狭窄領域108を形成し、次に電極1
09.110を形成した後、へき開を行いレーザ共振器
端面を形成する。
Next, after removing the 5i02 thin film, a SiO2 thin film is again formed by electron beam evaporation, a current confinement region 108 is formed by a normal photoetching process, and then the electrode 1
After forming 09.110, cleavage is performed to form a laser resonator end face.

次に、電子ビーム蒸着法により5iQ2がら成る端面保
護膜111.112を形成するがこの際膜厚制御を行い
、モニタ側出射端面にはSiO2を140 n m、 
 a −S jを66nmの膜厚に制御したSi○2/
a−3iベアを3層積層し、出力側出射端面には190
nmの膜厚に制御した5i02の単屓を積層する。
Next, edge protection films 111 and 112 made of 5iQ2 are formed by electron beam evaporation, and the film thickness is controlled at this time.
Si○2/ with a - S j controlled to a film thickness of 66 nm
Three layers of a-3i bare are laminated, and the output end surface has a 190
A single layer of 5i02 with a controlled thickness of nm is laminated.

この端面保護膜の膜厚の時、モニタ側出射端面での光反
射率は95%であり、出力側出射端面での光反射率は1
0%である。
At this film thickness of the end face protection film, the light reflectance at the output end face on the monitor side is 95%, and the light reflectance at the output end face is 1.
It is 0%.

最後に、電極金属を真空蒸着法により形成した後パッケ
ージに実装し製造工程を終了した。
Finally, electrode metal was formed by vacuum evaporation and mounted on a package to complete the manufacturing process.

次に、この半導体レーザの特性評価を行った。Next, the characteristics of this semiconductor laser were evaluated.

端面破壊光出力(COD)レベルは180m ’vVで
あり、両端面に単に保護膜をつけただすのサンプルの9
0mWと比べると90mW程度と約2倍に増加した。
The end face destruction optical output (COD) level is 180m'vV, and 9 of the samples are simply coated with a protective film on both end faces.
Compared to 0mW, it increased approximately twice to 90mW.

また、発振閾値は44mAであり、端面保護膜をつけて
いないものく両端面の反射率はこの場合32%となる)
の43mAに比べほぼ同一のものであった。
In addition, the oscillation threshold is 44 mA, and the reflectance of both end faces without an end face protection film is 32% in this case)
It was almost the same as 43mA.

また、半導体レーザ内部の光強度分布及び光利得分布が
端面保護膜の反射率を変えることにより大きく変化する
ため利得導波部(屈折率導波路幅を電流注入幅より充分
広くした部分)と端面近傍の屈折率導波路部(屈折率導
波路幅と電流注入幅を同程度とした部分)との間の利得
分布が光強度に対し変動するため縦モード特性は高い光
出力においても切干1歩性が小さい多モード発振を行う
In addition, since the optical intensity distribution and optical gain distribution inside the semiconductor laser change greatly by changing the reflectance of the end face protection film, it is important to note that the gain waveguide (the part where the refractive index waveguide width is sufficiently wider than the current injection width) and the end face Since the gain distribution between the nearby refractive index waveguide section (the section where the refractive index waveguide width and the current injection width are approximately the same) changes with respect to the light intensity, the longitudinal mode characteristics remain unchanged even at high optical output. Performs multi-mode oscillation with low sensitivity.

そのため、多モード発振を行う光出力は160mWまで
得られ端面に単に保護膜をつけただけのサンプルの40
mWと比べると約4倍の光出力まで多モード発振をした
Therefore, the optical output for multi-mode oscillation can be obtained up to 160 mW, which is 40 mW compared to the sample with only a protective film attached to the end face.
Multimode oscillation was achieved up to an optical output approximately four times that of mW.

また、遠視野像(FFP)は端面保護膜の反射率によら
ず端面破壊光出力レベルまで単峰性が保たれていた。
In addition, the far-field pattern (FFP) remained unimodal up to the edge destruction light output level, regardless of the reflectance of the edge protection film.

これらのデータは初期不良を除いた500サンプルの測
定値の平均値である。
These data are average values of the measured values of 500 samples excluding initial defects.

本実施例では出射側端面光反射率10%、モニタ側端面
光反射率95%の物について説明したがこれはもちろん
これと異なる光反射率の組み合せを用いてもよい。しか
し、出射側端面の光反射率を4%以下にすると閾値電流
の増加が著しくなり、また2%以下にするとレーザ発振
が室温では困難になるため出射端面側の光反射率は2%
以上、通常の目的では望ましくは4%以上の値を用いる
のがよい。
In this embodiment, a light reflectance of 10% on the exit side and a light reflectance of 95% on the monitor side has been described, but it is of course possible to use a combination of light reflectances different from this. However, if the light reflectance of the output end face is set to 4% or less, the threshold current increases significantly, and if it is set to 2% or less, laser oscillation becomes difficult at room temperature, so the light reflectance of the output end face is reduced to 2%.
As mentioned above, it is preferable to use a value of 4% or more for normal purposes.

また、モニタ側光反射率を高くし過ぎるとモニタ出力が
小さくなり信号検出に支障をきたすので98%以下の値
に抑えるのが望ましい。
Furthermore, if the light reflectance on the monitor side is made too high, the monitor output will become small and signal detection will be hindered, so it is desirable to keep it to a value of 98% or less.

もちろん、出射光の一部を用いてフィードバック信号を
得る方法を用いる場合には光反射率を100%にしても
問題はなく、閾値や効率の点からはむしろ好ましいこと
となる。
Of course, when using a method of obtaining a feedback signal using a part of the emitted light, there is no problem even if the light reflectance is set to 100%, and it is actually preferable from the point of view of the threshold value and efficiency.

以上AlGaAs系のダブルへテロ接合基板を用い、ス
トライブ側面の埋め込みにZn5eを用いた例を述べた
が、もちろんInP系などの他の系列に属するダブルへ
テロ接合摺合基板を用いてももちろん良い。
Above, we have described an example in which an AlGaAs double heterojunction substrate is used and Zn5e is used to fill the stripe side surface, but of course it is also possible to use a double heterojunction sliding substrate belonging to other series such as an InP type. .

また、埋め込み材もZn5eに限ることなくZnSやZ
nTe等の材料やあるいはその混晶であってもよい。
In addition, the filling material is not limited to Zn5e, but can also be ZnS or Z.
It may be a material such as nTe or a mixed crystal thereof.

特に、ダブルへテロ接合基板にAlGaAs系の、もの
を用いるときはZnS eとZnSの混晶を用いると基
板との格子整合が取れるため特に有望である。
In particular, when using an AlGaAs-based double heterojunction substrate, it is particularly promising to use a mixed crystal of ZnSe and ZnS because lattice matching with the substrate can be achieved.

また、半導体レーザの基本構造も例えば埋め込み形など
の方法を用いることにより、低しきい値化を図ることが
出来る。
Further, the basic structure of the semiconductor laser can also be made low in threshold by using a method such as a buried type.

[発明の効果] 本発明の半導体レーザは、次に示すような効果を有する
[Effects of the Invention] The semiconductor laser of the present invention has the following effects.

(1)端面保護膜の反射率を変えることにより半導体レ
ーザ内部の光強度分布及び光利得分布、及びその現象に
伴うキャリア密度分布が大きく変調される。
(1) By changing the reflectance of the end face protection film, the light intensity distribution and optical gain distribution inside the semiconductor laser, as well as the carrier density distribution accompanying this phenomenon, are significantly modulated.

しかも、この現象は半導体レーザ内部の光強度に強く依
存する。  そのため利得導波部(屈折率導波路幅を電
流注入幅より充分広くした部分)と端面近傍の屈折率導
波路部(屈折率導波路幅と電流注入幅を同程度とした部
分)とをもつ半導体レーザ内部での電磁気学的な対称性
が崩れるため高出力動作時にお〜1でも発振波長の選択
性が生ずることがない。
Moreover, this phenomenon strongly depends on the light intensity inside the semiconductor laser. Therefore, it has a gain waveguide section (a section where the refractive index waveguide width is sufficiently wider than the current injection width) and a refractive index waveguide section near the end face (a section where the refractive index waveguide width and current injection width are approximately the same). Since the electromagnetic symmetry inside the semiconductor laser is destroyed, selectivity of the oscillation wavelength does not occur even at a wavelength of 1 to 1 during high output operation.

そのため、被照射媒体からの反射戻り光に起因する戻り
光雑音が発生しなくなる。
Therefore, return light noise due to reflected return light from the irradiated medium is not generated.

この特性は高出力、かつ低戻り光雑音を同時に備えなけ
ればならない高速型光ディスクにとっては必要不可欠な
ものである。
This characteristic is essential for high-speed optical discs that must simultaneously have high output and low return optical noise.

また、出射光に可干渉性がないため、光学系を渭いて集
光を行った時不必要な干渉縞が発生しないためレーザビ
ームプリンタ等に用いると高品質化することが出来る。
In addition, since the emitted light has no coherence, unnecessary interference fringes are not generated when the light is focused through an optical system, so high quality can be achieved when used in a laser beam printer or the like.

(2)半導体レーザチップの状態で可干渉性の制御を行
うことが出来るのできわめて自由度の高い設計を行うこ
とが出来る。
(2) Since the coherence can be controlled in the state of the semiconductor laser chip, it is possible to perform a design with an extremely high degree of freedom.

例えばLPE法(Liquid  Phase  Ep
itaxlcy)で作成した半導体レーザチップは、結
晶成長時に生じる不均一性のため特性が安定しにくく、
高出力動作時にも低可干渉性を保つデバイスを安定に作
ることは困難であったが、端面保護膜反射率変調により
デバイスとしての特性を揃えることにより初期特性にお
いての不良発生率を半分以下にすることが出来た。
For example, the LPE method (Liquid Phase Ep
Semiconductor laser chips fabricated using ITAXLCY have difficult to stabilize characteristics due to non-uniformity that occurs during crystal growth.
It has been difficult to stably produce a device that maintains low coherence even during high-power operation, but by aligning the characteristics of the device by modulating the reflectance of the end face protection film, the failure rate in the initial characteristics has been reduced by more than half. I was able to do it.

また、通常の保護膜では電流狭窄機能の不十分な利得導
波部を持つため駆動電流がかなり大きくなってしまい充
分な信頼性の得られないデバイスでも充分な信頼性を確
保することができ、寿命試験においても3倍以上の推定
寿命を確認することが出来た。
In addition, sufficient reliability can be ensured even in devices where normal protective films have a gain waveguide with insufficient current confinement function, resulting in a considerably large drive current and insufficient reliability. In the life test, we were able to confirm that the estimated lifespan was more than three times as long.

(3)量子効率が向上し、かつ閾値電流値が低下するた
め消費電力が低下し発熱が抑えられるため信頼性が向上
する。また、電池駆動時には本半導体レーザを用いたシ
ステムを長時間動作させることが出来る。
(3) Quantum efficiency is improved and the threshold current value is lowered, so power consumption is reduced and heat generation is suppressed, so reliability is improved. Furthermore, when powered by batteries, the system using this semiconductor laser can be operated for a long time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例−1を説明するための半導体レ
ーザの斜視図。 第2図は本発明の実施例−1を説明するための半導体レ
ーザ製造工程中途における斜視図。 oQ  01 02 03 ド層 04 105 ・ ド層 06 107 ・ 09 110・  11 12
FIG. 1 is a perspective view of a semiconductor laser for explaining Example 1 of the present invention. FIG. 2 is a perspective view in the middle of a semiconductor laser manufacturing process for explaining Example 1 of the present invention. oQ 01 02 03 Do layer 04 105 ・ Do layer 06 107 ・ 09 110 ・ 11 12

Claims (1)

【特許請求の範囲】[Claims] 少なくとも一方の端面近傍では屈折率導波路幅と電流注
入幅を同程度として屈折率導波構造とし、その他の領域
では屈折率導波路幅を電流注入幅より充分広くし利得導
波構造としたIII−V族化合物半導体層よりなるリブ状
の光導波路をII−VI族化合物半導体層で埋め込んだ構造
を持ちかつ両端面におのおの光反射率の異なる端面保護
膜を有する半導体レーザにおいて、出射端面の光反射率
が2%から32%の間の値でありかつモニタ側端面の光
反射率が32%から100%の間であることを特徴とす
る半導体レーザ。
In the vicinity of at least one end face, the refractive index waveguide width and the current injection width are approximately the same, creating a refractive index waveguide structure, and in the other regions, the refractive index waveguide width is sufficiently wider than the current injection width to create a gain waveguide structure.III - In a semiconductor laser having a structure in which a rib-shaped optical waveguide made of a group V compound semiconductor layer is embedded with a group II-VI compound semiconductor layer and having end face protection films with different light reflectances on both end faces, the light of the output end face is 1. A semiconductor laser having a reflectance between 2% and 32% and a monitor side end face having a light reflectance between 32% and 100%.
JP25938489A 1989-10-04 1989-10-04 Semiconductor laser Pending JPH03120887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25938489A JPH03120887A (en) 1989-10-04 1989-10-04 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25938489A JPH03120887A (en) 1989-10-04 1989-10-04 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH03120887A true JPH03120887A (en) 1991-05-23

Family

ID=17333391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25938489A Pending JPH03120887A (en) 1989-10-04 1989-10-04 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH03120887A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141601A (en) * 2000-11-06 2002-05-17 Furukawa Electric Co Ltd:The Semiconductor laser module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141601A (en) * 2000-11-06 2002-05-17 Furukawa Electric Co Ltd:The Semiconductor laser module

Similar Documents

Publication Publication Date Title
Hayamizu et al. Lasing from a single-quantum wire
US5386429A (en) Low operating current and low noise semiconductor laser device for optical disk memories
JP3887174B2 (en) Semiconductor light emitting device
JPH0491484A (en) Manufacture of semiconductor laser device
KR100246054B1 (en) Semiconductor laser with optimum resonator
JPH0945993A (en) Semiconductor light-emitting element
JP4047358B2 (en) Self-excited semiconductor laser device
JP2003031894A (en) Semiconductor laser and its manufacturing method
JPH07226562A (en) Semiconductor laser and its manufacture
JPH03120887A (en) Semiconductor laser
JP4033626B2 (en) Manufacturing method of semiconductor laser device
JP2842465B2 (en) Semiconductor laser device and method of manufacturing the same
JP4309636B2 (en) Semiconductor laser and optical communication device
JPH0438888A (en) Semiconductor laser
Goddard et al. Gain characteristic of continuous-wave InGaN multiple quantum well laser diodes during life testing
JPH10154843A (en) Semiconductor laser element and optical disc unit employing the same
JPH05102613A (en) Multiple wave length semiconductor laser device
JPH04103187A (en) Semiconductor laser and manufacture thereof
JPH0671121B2 (en) Semiconductor laser device
JPH01100988A (en) Semiconductor laser device
JP3075512B2 (en) Semiconductor laser device
JP3119301B2 (en) High power semiconductor laser
JP2863340B2 (en) Semiconductor laser device
JP3710313B2 (en) Semiconductor laser element
JP2723649B2 (en) Method for manufacturing semiconductor laser device