Nothing Special   »   [go: up one dir, main page]

JPH03129667A - Electrode for battery and battery using this electrode - Google Patents

Electrode for battery and battery using this electrode

Info

Publication number
JPH03129667A
JPH03129667A JP2147118A JP14711890A JPH03129667A JP H03129667 A JPH03129667 A JP H03129667A JP 2147118 A JP2147118 A JP 2147118A JP 14711890 A JP14711890 A JP 14711890A JP H03129667 A JPH03129667 A JP H03129667A
Authority
JP
Japan
Prior art keywords
electrode
active material
battery
paper
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2147118A
Other languages
Japanese (ja)
Inventor
Koji Higashimoto
晃二 東本
Asahiko Miura
三浦 朝比古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Publication of JPH03129667A publication Critical patent/JPH03129667A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase an active material and electrolyte retainability and to increase productivity by producing an electrode by a paper production process with an active material raw material and an electrolyte retainer raw material which are formed so as to be capable of applying the paper production process. CONSTITUTION:A positive electrode 5 is produced by a paper production process in a porous state in which an active material raw material comprising Pb powder and PbO2 powder is held in an electrolyte retention layer comprising lead fibers and glass fibers. A negative electrode 6 is produced by a wet paper- production process by the use of Pb powder as an active material raw material and by the use of lead fibers and glass fibers as an electrolyte retention raw material. By this constitution method for electrodes 5, 6, a current collector, an active material layer, and an electrolyte retention layer are simultaneously formed in the electrode, and the producutivity of the electrode is increased. Since the active material layer and the electrolyte retention layer are mixed, a large amount of electrolyte is retained in the active material layer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明(L活物質保持機能と電解液保持機能とを併せ持
つ電池用電極及び該電極を用いた電池に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a battery electrode having both an L active material retention function and an electrolyte retention function, and a battery using the electrode.

[従来の技術] 従来、各種の電池では、ペースト式、粉体加圧式、クラ
ッド式、ポケット式、燃焼式等の電極が使用されている
[Prior Art] Conventionally, in various batteries, paste type, powder pressurized type, clad type, pocket type, combustion type, and other types of electrodes have been used.

ペースト式電極は、活物質になる粉体に溶液を加えて練
合してペースト状活物質を作り、これを集電体に充填す
ることにより得られる。この電極は、鉛蓄電池において
良く用いられており、主に鉛粉と水と希硫酸とを練合し
てペースト状にしたペースト状活物質材料を、鉛を主成
分とする格子体の格子部に充填して得られる。Ni−C
d電池においても、水酸化ニッケルや酸化カドミウムを
結着剤でペースト状にして得たペースト状活物質材料を
用いて電極が構成されている。
A paste-type electrode is obtained by adding a solution to a powder serving as an active material, kneading the powder to form a paste-like active material, and filling a current collector with the paste-like active material. This electrode is often used in lead-acid batteries, and is mainly made of a paste-like active material made by kneading lead powder, water, and dilute sulfuric acid into the lattice part of a lattice body whose main component is lead. It is obtained by filling the Ni-C
In the D battery as well, the electrodes are constructed using a paste-like active material obtained by pasting nickel hydroxide or cadmium oxide with a binder.

また粉末加圧式電極は、乾電池で知られている一次電池
の二酸化マンガン電池、酸化銀電池等に用いられており
、活物質粉体に導電性を良くする粉末等を混ぜ合わせて
これを加圧成型し、加圧成型したものを容器等に充填し
て電極を構成するものである。
Powder pressure electrodes are used in primary batteries known as dry batteries, such as manganese dioxide batteries and silver oxide batteries, and are made by mixing active material powder with powder that improves conductivity and pressurizing it. The electrode is formed by molding and pressurizing the product and filling it into a container or the like.

これらペースト式や粉末加圧式の電極は、製造が容易で
低コストであると共に電池の充放電特性が比較的良いた
めに、現在生産されている電極の主流になっているが、
これらの電極を二次電池で用いると、充放電を繰り返す
内に活物質の脱落や形状変化が生じ安いという問題が生
じる。
These paste-type and powder-pressure-type electrodes are easy to manufacture, low cost, and have relatively good charging and discharging characteristics, so they have become the mainstream electrodes currently produced.
When these electrodes are used in a secondary battery, a problem arises in that the active material easily falls off or changes in shape during repeated charging and discharging.

一方、クラッド式やポケット式の電極は、活物質を多孔
質のチューブ等に入れであるためペースト式に比べて長
寿命になるものの、エネルギー密度が低く、また生産性
に劣る欠点がある。
On the other hand, clad-type and pocket-type electrodes have a longer lifespan than paste-type electrodes because the active material is placed in a porous tube, but they have the drawbacks of low energy density and poor productivity.

焼結式電極は、焼結基板を用いているため電池特性、寿
命性能とも良くなっているが、焼結基板の製造、活物質
の充填等の工程が複雑であり、電極の価格が高価になっ
てしまう問題がある。
Sintered electrodes use a sintered substrate, so they have better battery characteristics and longevity, but the process of manufacturing the sintered substrate and filling the active material is complicated, making the electrodes expensive. There is a problem that can occur.

近年、上記の各種の電極の欠点に鑑み、次のような電極
が提案されている。
In recent years, in view of the drawbacks of the various electrodes described above, the following electrodes have been proposed.

(A)三次元網目構造の発泡金属又は発泡樹脂の表面に
導電性付与のための金属メツキを施したものを電極基体
とし、これに活物質を充填した電極。
(A) An electrode in which the electrode base is made of a foamed metal or foamed resin having a three-dimensional network structure and metal plating is applied to the surface to impart conductivity, and the electrode base is filled with an active material.

(B)フェルト、不織布、織布等に導電性付与のための
金属メツキを施すか、金属繊維を混抄したものを電極基
体とし、これに活物質を充填した電極。
(B) An electrode in which the electrode base is made of felt, nonwoven fabric, woven fabric, etc., plated with metal to impart conductivity, or mixed with metal fibers, and filled with an active material.

[発明が解決しようとする課題] 一般に電池では、電極に活物質と多量の電解液とを同時
に保持させれば、導電性が向上する上、活物質と電解液
とが反応する電池系では速かに反応が進むために、電池
特性を向上させることができるが、従来のペースト式や
粉末加圧式等の電極では、電解液を保持する空間を充分
に確保することが難しく、また仮に多孔性を高めると電
極の強度が低下する問題が生じる。従ってこれらの電極
では、電極に電解液を充分に保持させることができない
[Problems to be Solved by the Invention] In general, in batteries, if the electrode simultaneously holds an active material and a large amount of electrolyte, conductivity is improved, and in battery systems where the active material and electrolyte react, it is faster. However, with conventional paste-type or powder-pressure-type electrodes, it is difficult to secure enough space to hold the electrolyte, and if the electrode is porous, If this value is increased, a problem arises in that the strength of the electrode decreases. Therefore, these electrodes cannot sufficiently retain the electrolyte.

また上記(A)及び(B)の電極も含めて、多孔質の電
極基体に活物質を充填する電極でも、電極基体の孔は活
物質保持を主目的としているため、電解液保持能力はま
だ不十分である。そのうえ、従来の電極はすべて、電極
基体を製造する工程と、その後に電極基体に活物質を充
填する工程とを必ず必要とするため、製造工程を減らす
ことに限界があり、所定レベル以上に量産性が向上しな
いという問題を有していた。
In addition, even in electrodes in which a porous electrode base is filled with an active material, including the electrodes in (A) and (B) above, the pores of the electrode base are primarily intended to retain the active material, so the electrolyte retention capacity is still low. Not enough. Furthermore, all conventional electrodes always require a process to manufacture the electrode base and a subsequent process to fill the electrode base with active material, so there is a limit to reducing the number of manufacturing processes, and mass production beyond a certain level is difficult. There was a problem that the performance did not improve.

本発明の目的は、活物質保持能力と電解液保持能力に優
れ、しかも予め電極基体を用意しておく必要のない電池
用電極を提供することにある。
An object of the present invention is to provide a battery electrode that has excellent active material retention ability and electrolyte retention ability and does not require the preparation of an electrode base in advance.

本発明の他の目的は、活物質保持能力と電解液保持能力
に優れ、また予め電極基体を用意しておく必要がなく、
しかも機械的強度の強い電池用電極を提供することにあ
る。
Another object of the present invention is to have excellent active material retention ability and electrolyte retention ability, and eliminate the need to prepare an electrode base in advance.
Moreover, it is an object of the present invention to provide a battery electrode with strong mechanical strength.

本発明の更に他の目的は、本出願によって提案された新
規な電池用電極を用いる電池において、電槽や加圧ケー
スを利用することなく電極群に群加圧を印加することが
できる電池を提供することにある。
Still another object of the present invention is to provide a battery that uses the novel battery electrode proposed by the present application, in which group pressure can be applied to a group of electrodes without using a battery case or a pressure case. It is about providing.

[課題を解決するための手段] 請求項1の発明は、抄造可能に加工された活物質素材及
び抄造可能に加工された電解液保持素材を原料として抄
造してなる電池用電極である。抄造可能に加工された活
物質素材は、例えば繊維状又は粉状若しくはこれらの混
合材である。また抄造可能に加工された電解液保持素材
は、例えば繊維状又は粉状若しくはこれらの混合材であ
る。
[Means for Solving the Problems] The invention according to claim 1 is a battery electrode formed by paper-making using an active material material processed to be paper-formable and an electrolyte holding material processed to be paper-formable as raw materials. The active material processed to be paper-formable is, for example, fibrous, powder, or a mixture thereof. The electrolyte holding material processed to be paper-formable is, for example, fibrous, powder, or a mixture thereof.

請求項4の発明では、電池用電極の強度及び集電性を高
めるために、抄造した電極シートをシート状集電体に密
着状態で接合する。電極シートとシート状集電体との接
合は溶接により行うことができる。
In the fourth aspect of the invention, in order to improve the strength and current collecting properties of the battery electrode, the fabricated electrode sheet is bonded to a sheet-like current collector in a close state. The electrode sheet and the sheet-like current collector can be joined by welding.

請求項6の発明では、上記電池用電極を用いた電池にお
いて、抄造可能に加工された活物質素材及び電解液保持
素材を原料として抄造されてなる正極電極と負極電極と
を隔離体を介して重合して電極群を構成する。そして電
極群を絶縁性を有する縫合部材により群加圧を発生する
ように縫合する。
In the invention according to claim 6, in a battery using the above-mentioned battery electrode, a positive electrode and a negative electrode, which are made by paper-making using an active material material and an electrolyte holding material that have been processed to be paper-manufacturable, are connected via a separator. Polymerizes to form an electrode group. Then, the electrode group is sutured using an insulating suture member so as to generate group pressure.

請求項7の発明では、抄造可能に加工された活物質素材
及び電解液保持素材を原料として抄造されてなる正極電
極と負極電極とを隔離体を介して重合して電極群を構成
する。正極電極及び負極電極の重合面と隔離体の重合面
とには、それぞれ対向する位置に熱溶着部材を分散して
固定する。その上で正極電極及び負極電極の重合面に固
定した熱溶着部材と隔離体の重合面に固定した熱溶着部
材とを熱溶着する。
In the seventh aspect of the present invention, an electrode group is constructed by polymerizing a positive electrode and a negative electrode, which are formed by paper-forming using an active material material and an electrolyte holding material that have been processed to be paper-formable, via a separator. Thermal welding members are dispersed and fixed at opposing positions on the overlapping surfaces of the positive electrode and the negative electrode and the overlapping surface of the separator, respectively. Then, the heat welding member fixed to the overlapping surfaces of the positive electrode and the negative electrode and the heat welding member fixed to the overlapping surface of the separator are thermally welded.

[作 用] 請求項1の発明の電池用電極のように、抄造可能に加工
された活物質素材と電解液保持素材とを原料として抄造
により電極を構成すると、電極中にいわゆる集電部、活
物質層及び電解液保持層とを同時に形成できる。従って
電極の生産性が向上する。また活物質素材または電解液
保持素材に含まれる導電性物質が相互に接触して集電部
が構成され、活物質素材と電解液保持素材とが混在して
、混合した活物質層及び電解液保持層とが形成されるこ
とになる。その結果、電解液保持素材が活物質層(電極
中)に分散された状態になるため、活物質層(電極中)
に電解液を多量に保持することができて電池性能を向上
させることができる。別の見方をすると、電解液保持層
形成と同時に該層中に活物質を混在させることになるた
め、多量の電解液を活物質に接触させることができる。
[Function] When an electrode is formed by paper-making using an active material material and an electrolyte holding material processed to be paper-formable as raw materials, as in the battery electrode of the invention of claim 1, a so-called current collecting part, The active material layer and the electrolyte holding layer can be formed simultaneously. Therefore, productivity of electrodes is improved. In addition, the conductive materials contained in the active material material or the electrolyte holding material contact each other to form a current collecting part, and the active material material and the electrolyte holding material are mixed, and the mixed active material layer and electrolyte A retaining layer will be formed. As a result, the electrolyte holding material becomes dispersed in the active material layer (in the electrode), so
It is possible to hold a large amount of electrolyte and improve battery performance. From another perspective, since the active material is mixed in the electrolyte retaining layer at the same time as the formation of the electrolyte holding layer, a large amount of the electrolyte can be brought into contact with the active material.

請求項4の発明では、抄造により形成した電極の集電能
力を向上させることができる。抄造により製造した電極
シートは高多孔質であり、また導電性物質の量の多少に
よって集電能力に差が生じる。そこで電極シートをシー
ト状集電体に密着状態で接合すれば、電極の集電能力を
向上させることができる。
In the invention of claim 4, the current collecting ability of the electrode formed by papermaking can be improved. Electrode sheets manufactured by papermaking are highly porous, and their current collecting ability varies depending on the amount of conductive material. Therefore, if the electrode sheet is closely joined to the sheet-like current collector, the current collecting ability of the electrode can be improved.

請求項6の電池のように、抄造により製造した電極を用
いた電極群を絶縁性を有する縫合部材により群加圧を発
生するように縫合すれば、加圧ケース等を用いずに、適
切な群加圧を極板群に印加することができる。抄造によ
り製造した極板シートは、不織布状で多孔質であるため
、活物質をほとんど脱落させることなく、布と同様にし
て糸のような縫合部材により縫合することができる。請
求項4で用いるシート状集電体も、その厚みにもよるが
縫合が可能である。
As in the battery of claim 6, if an electrode group using electrodes manufactured by paper making is sutured with an insulating suture member to generate group pressure, an appropriate amount of pressure can be obtained without using a pressurizing case or the like. A group pressurization can be applied to the plate group. Since the electrode plate sheet manufactured by papermaking is non-woven and porous, it can be stitched with a thread-like stitching member in the same manner as cloth, without causing most of the active material to fall off. The sheet-like current collector used in claim 4 can also be sewn, although it depends on its thickness.

請求項7の発明の電池では、請求項6の発明と同様に、
抄造により製造した電極を用いる場合に、電極と隔離体
との間を溶着させた熱溶着素材により接合するため、簡
単な構成で群加圧を得ることができる。
In the battery of the invention of claim 7, similarly to the invention of claim 6,
When using electrodes manufactured by papermaking, group pressure can be obtained with a simple configuration because the electrodes and the separator are joined by a welded heat welding material.

[実施例] 本発明の実施例について説明する。[Example] Examples of the present invention will be described.

第1図は本発明の電池用電極を密閉形鉛蓄電池の正極電
極に用いた実施例の概略部分拡大図を示している。同図
において、1はPb粉、2はPbO2粉、3は鉛繊維、
4はガラス繊維である。Pb粉1及びPbO2粉2の活
物質素材は、鉛繊維3及びガラス繊維4からなる電解液
保持素材の層に吸着可能な粒径寸法を有していればよく
、また鉛繊維3及びガラス繊維4は、抄造工程により相
互に絡み合って両繊維が電極基体に相当する層を形成で
きる直径寸法及び長さを有していればよい。
FIG. 1 shows a schematic partial enlarged view of an embodiment in which the battery electrode of the present invention is used as the positive electrode of a sealed lead-acid battery. In the same figure, 1 is Pb powder, 2 is PbO2 powder, 3 is lead fiber,
4 is glass fiber. The active material materials of Pb powder 1 and PbO2 powder 2 only need to have a particle size that can be adsorbed to the layer of electrolyte holding material consisting of lead fibers 3 and glass fibers 4. 4 may have a diameter and length that allow both fibers to intertwine with each other during the papermaking process and form a layer corresponding to the electrode base.

これらの素材の配合比及び電極の厚み寸法は、電極に必
要な電気的性能及び機械的強度を考慮して定められる。
The blending ratio of these materials and the thickness of the electrode are determined in consideration of the electrical performance and mechanical strength required for the electrode.

第1図の電極の製造方法について説明する。まず所定量
のPb粉1及びPbO2粉2と、所定量の鉛繊維3及び
ガラス繊維4とを水溶液中に分散混合し、分散混合した
ものの中にポリアクリルアマイドの如き凝集定着剤を添
加して粉体を繊維に吸着させる。その後続を抄造する場
合と同様の工程により電極シートを抄造する。なお抄造
の工程は、所定の大きさの電極シートを抄く工程と、適
宜の乾燥工程と、適宜の切断工程等とを含む。所望の大
きさに加工された電極シートに、集電用の耳をスポット
溶接や高周波加熱等で取付けて電極の製造が完成する。
A method of manufacturing the electrode shown in FIG. 1 will be explained. First, predetermined amounts of Pb powder 1 and PbO2 powder 2 and predetermined amounts of lead fiber 3 and glass fiber 4 are dispersed and mixed in an aqueous solution, and a coagulating fixing agent such as polyacrylamide is added to the dispersed mixture. Adsorb the powder onto the fibers. An electrode sheet is made by the same process as the subsequent paper-making process. Note that the papermaking process includes a process of papermaking an electrode sheet of a predetermined size, an appropriate drying process, an appropriate cutting process, and the like. Electrode manufacturing is completed by attaching current collecting ears to the electrode sheet, which has been processed to the desired size, by spot welding or high-frequency heating.

このようにして製造した正極電極では、鉛繊維3とガラ
ス繊維4からなる電解液保持層中に、Pb粉1とPbO
2粉2からなる活物質素材が保持された高多孔質の状態
になっている。
In the positive electrode manufactured in this way, Pb powder 1 and PbO
It is in a highly porous state in which the active material made of powder 2 is retained.

一方負極電極は、活物質素材としてPb粉を使用し、電
解液保持素材として鉛繊維とガラス繊維とを使用して、
上記と同様の湿式抄造により製造することができる。
On the other hand, the negative electrode uses Pb powder as the active material and lead fiber and glass fiber as the electrolyte holding material.
It can be manufactured by wet papermaking similar to the above.

なお正極電極の場合、活物質素材としてPb粉1とPb
O2粉2だけでなく、Pb3 o、粉や親水性を高める
ためにシリカ粉等その他の粉体を混入させてもよい。ま
た電解液保持素材として、さらに機械強度を上げるため
にアクリル繊維等の合成繊維や無機繊維を混入したり、
更に導電性を上げるために鉛繊維以外の他の導電性繊維
を混入することができる。
In the case of the positive electrode, Pb powder 1 and Pb are used as active materials.
In addition to O2 powder 2, other powders such as Pb3O powder and silica powder may be mixed in order to improve hydrophilicity. In addition, synthetic fibers such as acrylic fibers or inorganic fibers are mixed in as electrolyte holding materials to further increase mechanical strength.
Furthermore, conductive fibers other than lead fibers can be mixed in to increase the conductivity.

負極電極の場合も、活物質素材としてPb粉1だけでな
く、Pb0粉、BaSO4粉やリグニンを含むものを用
いることができ、また電解液保持素材としては正極電極
と同様にアクリル繊維等の合成繊維や無機繊維を混入し
たり、更に導電性を上げるために鉛繊維以外の他の導電
性繊維を混入することができる。なお導電性を向上させ
るために、カーボン、黒鉛の繊維や粉を混入させること
が望ましい。
In the case of the negative electrode, not only Pb powder 1 but also Pb0 powder, BaSO4 powder, and materials containing lignin can be used as the active material, and as the electrolyte holding material, synthetic acrylic fibers etc. can be used as well as the positive electrode. Fibers or inorganic fibers may be mixed in, or conductive fibers other than lead fibers may be mixed in order to further increase the conductivity. Note that in order to improve conductivity, it is desirable to mix carbon or graphite fibers or powder.

活物質素材と電解液保持素材との混抄すなわち抄造とし
ては、前述のように水溶液を用いる湿式抄造法だけでな
く、いわゆる公知の乾式抄造法を用いることもできる。
For mixing the active material and the electrolyte holding material, that is, papermaking, not only the wet papermaking method using an aqueous solution as described above but also the so-called dry papermaking method can be used.

第2図は、上記第1図の構造の正極電極5と負極電極6
とをセパレータすなわち隔離体7を介して重合または積
層してなる電極群を用いた薄形密閉型鉛蓄電池であり、
電極群はフィルム状またはシート状の一対の合成樹脂体
の周囲を溶着してなるいわゆるフィルムバック式の電槽
8内に配置されている。9は電槽8の上端側開口部に溶
着された熱溶着可能な合成樹脂枠体であり、この枠体9
には安全弁10が固定され、また各電極5及び6に固定
した耳部を延長してなる出力端子(1である。電槽8内
には電解液を注入し、充電を施して密閉形鉛蓄電池が完
成する。なお電解液を隔離体7に含浸保持させることが
できるのは勿論である。
FIG. 2 shows a positive electrode 5 and a negative electrode 6 having the structure shown in FIG.
It is a thin sealed lead-acid battery using an electrode group formed by polymerizing or laminating the above and the like with a separator, that is, a separator 7 in between,
The electrode group is arranged in a so-called film-back type battery case 8, which is formed by welding the periphery of a pair of film- or sheet-like synthetic resin bodies. Reference numeral 9 denotes a heat-weldable synthetic resin frame welded to the upper opening of the battery case 8;
A safety valve 10 is fixed to the terminal, and an output terminal (1) is formed by extending the ears fixed to each electrode 5 and 6.An electrolytic solution is injected into the battery case 8, and the battery is charged and sealed. The storage battery is completed.It goes without saying that the separator 7 can be impregnated and held with the electrolytic solution.

ここで隔離体7としては公知の隔離体を用いることがで
きるが、第1図の正極電極と同様に微細なガラス繊維を
主体として抄造により隔離体を作ることもできる。この
場合、隔離体の材料として用いられる絶縁性繊維として
は、ガラス繊維の外にポリエチンレン等の耐酸性を有す
る有機物を用いることもできる。なおその他の繊維物質
を種々混合してその特性を向上してもよい。
Here, a known separator can be used as the separator 7, but the separator can also be made by paper-making using fine glass fibers as the main material, similar to the positive electrode shown in FIG. In this case, as the insulating fiber used as the material of the separator, in addition to glass fiber, an acid-resistant organic material such as polyethylene can also be used. Note that various other fiber materials may be mixed to improve the properties.

第3図は、第2図に示した構造の本発明の電池(lAh
[10時間率コ)とペースト式電極を用いた従来の電池
とについて放電試験を行った結果を示している。試験の
条件は160mA定電流放電、終放電圧1.75V、 
25°Cであった。これかられかるように本発明の電極
を用いた電池は、従来のシール鉛蓄電池とほとんど変わ
らない放電特性を示す。
FIG. 3 shows a battery (lAh) of the present invention having the structure shown in FIG.
This figure shows the results of a discharge test performed on [10 hour rate CO] and a conventional battery using a paste type electrode. The test conditions were 160mA constant current discharge, final discharge voltage 1.75V,
The temperature was 25°C. As will be seen, a battery using the electrode of the present invention exhibits discharge characteristics that are almost the same as those of conventional sealed lead-acid batteries.

上記実施例は鉛蓄電池の電極に本発明を適用した場合の
実施例であるが、本発明は実施例の密閉形鉛蓄電池に用
いる電極だけではなく、その他の一次電池、二次電池に
用いる電極にも適用できるのは勿論である。
The above embodiment is an example in which the present invention is applied to the electrode of a lead-acid battery, but the present invention is applicable not only to the electrode used in the sealed lead-acid battery of the embodiment, but also to the electrode used in other primary batteries and secondary batteries. Of course, it can also be applied to

第4図は、抄造により製造した電極の集電能力と機械的
強度とを向上させる請求項4の発明の電極を製造する場
合の製造工程の途中の状態を示している。第1図に示し
た構造は、多孔質であり電解液保持能力は優れているが
、その分集型能力は低下することになる。そこで請求項
4の発明では、抄造により製造した電極シートをシート
状集電体に接合して集電性能を向上させる。第4図にお
いて、50は抄造により製造した第1図の実施例と同様
の正極電極シートである。本実施例ではこの電極シート
50を鉛箔からなるシート状集電体12上に載置し、こ
れを積層方向両側からスポット溶接用Wの電極を用いて
スポット溶接することにより、電極シート50と集電体
12とを接合している。なお電極シート50と集電体1
2とを密着状態で接合する方法としては、溶着だけでは
なく、耐酸性を有する糸のような縫合部材を用いて両者
を縫合させて接合する方法や、メツキや化学的結合方法
を用いて接合する方法を用いることができる。また両者
を完全に結合させずに、電極群に加圧ケース等を用いて
外部から群加圧を加える場合には、単に電極シート50
の外側に集電体12を配置するだけでもよい。
FIG. 4 shows a state in the middle of the manufacturing process when manufacturing an electrode according to the invention according to claim 4, which improves the current collecting ability and mechanical strength of the electrode manufactured by paper forming. The structure shown in FIG. 1 is porous and has an excellent electrolyte retention ability, but its concentration ability is reduced. Therefore, in the invention of claim 4, an electrode sheet manufactured by paper making is joined to a sheet-like current collector to improve current collection performance. In FIG. 4, reference numeral 50 denotes a positive electrode sheet similar to the embodiment shown in FIG. 1, which was manufactured by paper making. In this embodiment, the electrode sheet 50 is placed on a sheet-like current collector 12 made of lead foil, and spot welded from both sides in the stacking direction using spot welding W electrodes. It is joined to the current collector 12. Note that the electrode sheet 50 and the current collector 1
In addition to welding, methods for joining the two in close contact include methods of suturing and joining the two using an acid-resistant suture member such as thread, and joining using plating or chemical bonding methods. A method can be used. In addition, when applying group pressure to the electrode group from the outside using a pressurizing case or the like without completely combining the two, simply attach the electrode sheet 50 to the electrode group.
It is also possible to simply arrange the current collector 12 on the outside.

シート状集電体12としては、電解液に対して耐性を有
するものであればよい。例えば鉛蓄電池に用いる電極の
場合には、電極シート50に接触する側を鉛または鉛合
金の箔で構成し、非接触面側にステンレス等の腐蝕しに
くい金属箔を有するラミネート構造の集電体を用いるこ
ともできる。
The sheet-like current collector 12 may be any material as long as it has resistance to the electrolyte. For example, in the case of an electrode used in a lead-acid battery, the current collector has a laminate structure in which the side in contact with the electrode sheet 50 is made of lead or lead alloy foil, and the non-contact side is made of corrosion-resistant metal foil such as stainless steel. You can also use

鉛とステンレスのラミネート構造の集電体を用いると、
集電体それ自体を電槽の一部または端子として使用する
ことができる。このように集電体として多層構造の集電
体を用いることができるのは勿論のこと、導電性と電解
液に対する耐性とを有するものでれば、有機物や無機物
からなる集電体を用いることができる。
Using a current collector with a laminate structure of lead and stainless steel,
The current collector itself can be used as part of the battery case or as a terminal. In addition to being able to use a multilayered current collector as the current collector, it is also possible to use a current collector made of organic or inorganic materials as long as it has conductivity and resistance to electrolytes. Can be done.

第5図は、集電体12それ自体を電槽の一部または端子
として使用した場合の電池の外観の一例を示している。
FIG. 5 shows an example of the appearance of a battery when the current collector 12 itself is used as a part of a battery case or a terminal.

ここで80は、ラミネート構造の一対の合成樹脂体81
.82を熱溶着して構成した電槽であり、合成樹脂体8
1及び82の中央部には開口部81a及び82aが形成
され、この開口部から集電体12の一部↓21を露出さ
せて端子としている。このように集電体12の中央部を
端子とすると、電極自体に電流が集中しなくなり寿命が
伸びる利点がある。また第6図に示すように電極群を構
成する場合には、中央に配置される集電体12を正極端
子として利用することもできる。
Here, 80 is a pair of synthetic resin bodies 81 having a laminate structure.
.. 82 is thermally welded, and the synthetic resin body 8
Openings 81a and 82a are formed in the centers of the current collectors 1 and 82, and a portion ↓21 of the current collector 12 is exposed from these openings to serve as a terminal. When the central part of the current collector 12 is used as a terminal in this way, there is an advantage that current does not concentrate on the electrode itself and the life of the electrode is extended. Furthermore, when forming an electrode group as shown in FIG. 6, the centrally placed current collector 12 can also be used as a positive terminal.

第7図(A)は、請求項1の発明の電極5,6を用いて
構成した請求項6の電池の実施例で用いる電極群の製造
工程の途中の状態を示しており、第7図(B)は完成し
た電極群の斜視図を示している。電槽や加圧ケースを用
いて電極群を積層方向または重合方向に群加圧して電極
と隔離体との密着性を高めてもよいが、電極群それ自体
で群加圧を発生させることができれば、特別な加圧ケー
スが不要になる。抄造により製造した電極5,6は、不
織布状で多孔質であるため、活物質をほとんど脱落させ
ることなく、布と同様にして縫い合わせることができる
。そこで第7図に示すように、正極電極5と隔離体7と
負極電極6とを積層してなる電極群を絶縁性と電解液に
対する耐性とを有する糸13を用いて縫合すれば、電極
群自体で群加圧を発生させることができる。なお第7図
(A)において14は縫い針である。第7図(B)に示
した完成品は一例であって、縫い方は実施例に限定され
るものではなく任意である。電極群の縫合は、工業用ミ
シンを用いれば簡単に行うことができる。縫合は布を縫
合する場合と同じ要領で行えばよく、量産性に優れてい
る。ここで縫合に使用する縫合部材としては、縫合に使
用される周知の形状の部材を用いることができ、糸状の
他に帯状の縫合部材等を用いることもできる。縫合部材
としては、例えばポリプロピレン製の糸を用いることが
できる。
FIG. 7(A) shows a state in the middle of the manufacturing process of an electrode group used in an embodiment of the battery according to claim 6, which is constructed using the electrodes 5 and 6 according to the invention according to claim 1, and FIG. (B) shows a perspective view of the completed electrode group. Although it is possible to increase the adhesion between the electrodes and the separator by applying group pressure to the electrode group in the stacking direction or polymerization direction using a battery container or pressurizing case, it is not possible to generate group pressure in the electrode group itself. If possible, a special pressurized case would be unnecessary. Since the electrodes 5 and 6 manufactured by papermaking are non-woven and porous, they can be sewn together in the same manner as cloth without causing most of the active material to fall off. Therefore, as shown in FIG. 7, if the electrode group formed by stacking the positive electrode 5, the separator 7, and the negative electrode 6 is sutured using a thread 13 having insulation properties and resistance to electrolyte, the electrode group It can generate group pressure by itself. In FIG. 7(A), 14 is a sewing needle. The finished product shown in FIG. 7(B) is an example, and the sewing method is not limited to the example and is arbitrary. The electrode group can be easily sewn using an industrial sewing machine. The stitching can be performed in the same manner as when sewing cloth, and is excellent in mass production. As the suturing member used for suturing here, members of known shapes used for suturing can be used, and in addition to thread-like suture members, band-like suture members etc. can also be used. As the suture member, for example, polypropylene thread can be used.

第8図は、請求項1の発明の電極5,6を用いて構成し
た請求項7の電池の一実施例の一部切り欠き概略平面図
であり、この実施例では第7図の実施例と同様に電極群
それ自体で群加圧を発生することができる。この実施例
では、正極電極5及び負極電極6の重合面と隔離体7の
重合面とに、それぞれ対向する位置に熱溶着可能な熱溶
着部材15・・・を分散して固定しておく。そして正極
電極シート及び負極電極シートの重合面に固定された熱
溶着部材と隔離体の重合面に固定された熱溶着部材を熱
溶着して電極群に群加圧を生じさせる。
FIG. 8 is a partially cutaway schematic plan view of an embodiment of the battery according to claim 7 constructed using the electrodes 5 and 6 according to the invention according to claim 1. Similarly, group pressurization can be generated by the electrode group itself. In this embodiment, thermal welding members 15 that can be thermally welded are dispersed and fixed to opposing positions of the overlapping surfaces of the positive electrode 5 and the negative electrode 6 and the overlapping surface of the separator 7, respectively. Then, the thermal welding member fixed to the overlapping surfaces of the positive electrode sheet and the negative electrode sheet and the thermal welding member fixed to the overlapping surface of the separator are thermally welded to generate group pressure on the electrode group.

なお本実施例では電槽8と電極5及び6とを熱溶着させ
ている。従って電極5及び6と隔離体7の両面に、それ
ぞれ熱溶着部材15・・・が固定してあり、熱溶着部材
15・・・どうしの熱溶着は、電槽8内部に電極群を収
納した後に、電槽8の開口部を溶着する際に、電槽を構
成する合成樹脂体の上から熱を加えることにより簡単に
行うことができる1熱溶着部材15・・・としては、ポ
リプロピレンを用いることができる。
In this embodiment, the battery case 8 and the electrodes 5 and 6 are thermally welded. Therefore, heat welding members 15 are fixed to both sides of the electrodes 5 and 6 and the separator 7, respectively, and the heat welding of the heat welding members 15 is performed by storing the electrode group inside the battery case 8. Later, when welding the opening of the battery case 8, this can be easily done by applying heat from above the synthetic resin body that constitutes the battery case.1 Polypropylene is used as the heat welding member 15. be able to.

第9図は、熱溶着部材15・・・を形成する方法の一例
を示している。この例では、容射装置16を用いて、正
極電極5.隔離体7及び負極電極6の上に順次ポリプロ
ピレンを容射することにより熱溶着部材15・・・を形
成する。容射されたポリプロピレンは、各部材(5,6
,7)に含浸されて各部材に固定される。熱溶着部材1
5の固定は、ポリプロピレンの粉体や繊維を、電極及び
隔離体を抄造する際に抄造原料の中に入れて、電極及び
隔離体の抄造と同時に行ってもよい。熱溶着部材の量は
、電池の電気的な性能に影響を与えることなしに、所定
の群加圧を与えることができる程度に定めれる。
FIG. 9 shows an example of a method for forming the heat welding members 15. In this example, using the radiation device 16, the positive electrode 5. Thermal welding members 15 are formed by sequentially spraying polypropylene onto the separator 7 and the negative electrode 6. The injected polypropylene is applied to each member (5, 6
, 7) and fixed to each member. Heat welding member 1
The fixation in step 5 may be performed simultaneously with the fabrication of the electrodes and the separator by putting polypropylene powder or fibers into the papermaking raw material when forming the electrodes and the separator. The amount of heat welding material is determined to the extent that a predetermined group pressure can be applied without affecting the electrical performance of the battery.

上述した本発明の実施例によれば、活物質保持機能と電
解液保持機能とを併せ有する電極を備えたことにより、
電極間をたとえ薄いセパレータのみで近接させても活物
質周囲に多量の電解液を存在させることができ、電解液
を電極以外に保持又は存在させなくても、十分な特性が
得られるほど電池特性を向上させることができ、更に電
極が電解液保持層形成と同時に該層中に活物質が混在し
たものになるため、従来における電極基体の作製と該電
極基体への活物質充填と電解液保持体作製の各工程を一
度に行え、電池の生産性が著しく向上する点工業的価値
甚だ大なるものである。
According to the embodiment of the present invention described above, by providing an electrode having both an active material retention function and an electrolyte retention function,
Even if the electrodes are placed close to each other with only a thin separator, a large amount of electrolyte can be present around the active material, and the battery characteristics are such that sufficient characteristics can be obtained even if the electrolyte is not held or present anywhere other than the electrodes. Furthermore, since the electrode becomes a mixture of active material in the electrolyte holding layer at the same time as formation of the electrolyte holding layer, it is possible to improve the electrolyte retention layer, which eliminates the conventional method of preparing the electrode base, filling the active material into the electrode base, and holding the electrolyte. The industrial value of this method is enormous because each step of battery production can be carried out at once, significantly improving battery productivity.

[発明の効果コ 請求項1の発明のように、抄造可能に加工された活物質
素材と電解液保持素材とを原料として抄造により電極を
構成すると、電極中にいわゆる集電部、活物質層及び電
解液保持層とを同時に形成できるため、電極の生産性が
著しく向上する。また活物質素材と電解液保持素材とが
混在して、混合した活物質層及び電解液保持層とが形成
されることになり、その結果電解液保持素材が活物質層
に分散された状態になるため、活物質層に電解液を多量
に保持させることができる。
[Effects of the Invention] When an electrode is constructed by paper-making using an active material material and an electrolyte holding material processed to be paper-formable as raw materials as in the invention of claim 1, a so-called current collecting part and an active material layer are formed in the electrode. and the electrolyte holding layer can be formed at the same time, which significantly improves the productivity of the electrode. In addition, the active material material and the electrolyte holding material coexist to form a mixed active material layer and electrolyte holding layer, and as a result, the electrolyte holding material is dispersed in the active material layer. Therefore, a large amount of electrolyte can be held in the active material layer.

請求項4の発明によれば、抄造により形成した電極シー
トにシート状集電体を密着状態で接合させるため、集電
能力と機械的強度とを向上させることができる。
According to the invention of claim 4, since the sheet-like current collector is closely joined to the electrode sheet formed by papermaking, the current collecting ability and mechanical strength can be improved.

請求項6の発明によれば、抄造により製造した電極を用
いて構成した電極群を絶縁性を有する縫合部材により群
加圧を発生するように縫合するため、加圧ケース等を用
いずに、適切な群加圧を極板群に印加することができ、
電極と隔離体との密着性を向上させることができる。
According to the invention of claim 6, since the electrode group constructed using the electrodes manufactured by paper making is sutured using the insulating suture member to generate group pressure, the electrode group is sewn together so as to generate group pressure, without using a pressurizing case or the like. Appropriate group pressure can be applied to the electrode plate group,
Adhesion between the electrode and the separator can be improved.

請求項7の発明によれば、請求項6の発明と同様に、抄
造により製造した電極を用いる場合に、電極と隔離体と
の間を溶着させた熱溶着素材により接合するため、簡単
な構成で群加圧を得ることができる。
According to the invention of claim 7, similarly to the invention of claim 6, when using an electrode manufactured by paper making, the electrode and the separator are joined by a welded heat welding material, so that the structure is simple. Group pressure can be obtained with

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は請求項1の発明の一実施例における正極電極の
構造を示す部分拡大断面図、第2図は第1図の構造の電
極を用いた電池の実施例の構造を示す斜視図、第3図は
第2図の電池と従来の電池との特性を示す線図、第4図
は請求項4に記載の電極を製造する場合の工程の途中の
状態を示す図、第5図は請求項4の電極を用いた電池の
斜視図、第6図は請求項4の電極を用いた他の電池の断
面図、第7図(A)は請求項6の電池の実施例で用いる
電極群の製造工程の途中の状態を示す図、第7図(B)
は完成した極板群の斜視図、第8図は請求項7の電池の
実施例の一部切欠き概略構成図、第9図は熱溶着部材を
形成する方法の一例を説明するための図である。 1・・・pb粉、2・・・pb○2粉、3・・・鉛繊維
、4・・・ガラス繊維、5・・・正極電極、6・・・負
極極板、7・・・隔離体、8,80・・・電槽、↓0・
・・安全弁、11・・・端子、↓2・・・シート状集電
体、13・・・糸(縫合部材)、14・・・針、15・
・・熱溶着部材。 第 1 図 、pb%11 第 図 第 図 Ii!  電 時 闇(i) 第 図 第 図 第 図
1 is a partially enlarged sectional view showing the structure of a positive electrode in an embodiment of the invention according to claim 1; FIG. 2 is a perspective view showing the structure of an embodiment of a battery using the electrode having the structure shown in FIG. 1; FIG. 3 is a diagram showing the characteristics of the battery shown in FIG. 2 and a conventional battery, FIG. A perspective view of a battery using the electrode of claim 4, FIG. 6 is a sectional view of another battery using the electrode of claim 4, and FIG. 7(A) is an electrode used in an embodiment of the battery of claim 6. A diagram showing the state in the middle of the manufacturing process of the group, FIG. 7 (B)
is a perspective view of a completed electrode plate group, FIG. 8 is a partially cutaway schematic configuration diagram of an embodiment of the battery according to claim 7, and FIG. 9 is a diagram for explaining an example of a method for forming a heat-welded member. It is. 1... PB powder, 2... PB○2 powder, 3... Lead fiber, 4... Glass fiber, 5... Positive electrode, 6... Negative electrode plate, 7... Isolation Body, 8,80...Battery container, ↓0・
... Safety valve, 11 ... Terminal, ↓2 ... Sheet-like current collector, 13 ... Thread (suture member), 14 ... Needle, 15.
・・Heat welding parts. Figure 1, pb%11 Figure Figure Ii! Electric Time Darkness (i) Figure Figure Figure

Claims (7)

【特許請求の範囲】[Claims] (1)抄造可能に加工された活物質素材及び抄造可能に
加工された電解液保持素材を原料として抄造してなる電
池用電極。
(1) A battery electrode produced by paper-making using an active material material processed to be paper-formable and an electrolyte holding material processed to be paper-formable as raw materials.
(2)前記活物質素材は、繊維状又は粉状若しくはこれ
らの混合材であることを特徴とする請求項1に記載の電
池用電極。
(2) The battery electrode according to claim 1, wherein the active material is in the form of fibers, powder, or a mixture thereof.
(3)電解液保持素材は、繊維状又は粉状若しくはこれ
らの混合材であることを特徴とする請求項1に記載の電
池用電極。
(3) The battery electrode according to claim 1, wherein the electrolyte holding material is in the form of fibers, powder, or a mixture thereof.
(4)抄造可能に加工された活物質素材及び抄造可能に
加工された電解液保持素材を原料として抄造されてなる
電極シートがシート状集電体に密着状態で接合されてい
る電池用電極。
(4) A battery electrode, in which an electrode sheet is formed by paper-making using an active material material processed to be paper-formable and an electrolyte holding material processed to be paper-formable as raw materials, and is closely joined to a sheet-like current collector.
(5)前記電極シートと前記シート状集電体とは溶接に
より接合されている請求項4に記載の電池用電極。
(5) The battery electrode according to claim 4, wherein the electrode sheet and the sheet-like current collector are joined by welding.
(6)抄造可能に加工された活物質素材及び抄造可能に
加工された電解液保持素材を原料として抄造されてなる
正極電極と負極電極とが隔離体を介して重合されて電極
群が構成され、 前記電極群が絶縁性を有する縫合部材により群加圧を発
生するように縫合されてなる電池。
(6) An electrode group is formed by polymerizing a positive electrode and a negative electrode, which are made from an active material material processed to be made into paper and an electrolyte holding material processed to be made into paper, through a separator. . A battery in which the electrode group is sewn together using an insulating suture member to generate group pressure.
(7)抄造可能に加工された活物質素材及び抄造可能に
加工された電解液保持素材を原料として抄造されてなる
正極電極と負極電極とが隔離体を介して重合されて電極
群が構成され、 前記正極電極及び負極電極の重合面と前記隔離体の重合
面とにはそれぞれ対向する位置に熱溶着部材が分散して
固定されており、 前記正極電極及び負極電極の重合面に固定された前記熱
溶着部材と前記隔離体の重合面に固定された前記熱溶着
部材が熱溶着されてなる電池。
(7) An electrode group is formed by polymerizing a positive electrode and a negative electrode, which are made from an active material material processed to be paper-formable and an electrolyte holding material processed to be paper-formable, through a separator. , thermal welding members are dispersed and fixed at opposing positions on the overlapping surfaces of the positive electrode and the negative electrode and the overlapping surface of the separator, respectively; A battery in which the thermal welding member and the thermal welding member fixed to the overlapping surfaces of the separator are thermally welded.
JP2147118A 1989-06-05 1990-06-05 Electrode for battery and battery using this electrode Pending JPH03129667A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-142367 1989-06-05
JP14236789 1989-06-05

Publications (1)

Publication Number Publication Date
JPH03129667A true JPH03129667A (en) 1991-06-03

Family

ID=15313737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2147118A Pending JPH03129667A (en) 1989-06-05 1990-06-05 Electrode for battery and battery using this electrode

Country Status (1)

Country Link
JP (1) JPH03129667A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013502698A (en) * 2009-08-27 2013-01-24 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Power storage device and electrode thereof
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
JP2013502698A (en) * 2009-08-27 2013-01-24 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Power storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system

Similar Documents

Publication Publication Date Title
US4606982A (en) Sealed lead-acid cell and method
CA1060949A (en) Rechargeable nickel-zinc battery
AU610443B2 (en) Cadmium electrode and process for its production
JPH03129667A (en) Electrode for battery and battery using this electrode
KR100634227B1 (en) Alkali storage battery
JP2002198055A (en) Paste-like thin electrode for battery, its manufacturing method and secondary battery
US6150056A (en) Alkaline storage battery and method for producing an electrode used therefor
JPH10302842A (en) Winding type secondary battery
WO2019159287A1 (en) Active material holding tube, electrode, and lead storage battery
CN101150193A (en) Battery electrode substrate and electrode using the same
JP3654634B2 (en) Alkaline secondary battery separator, alkaline secondary battery using the same, and method for producing the same
JPS62165862A (en) Manufacture of electrode base plate for alkaline storage battery
JP4868761B2 (en) Current collector with terminal and electrochemical device using the same
JP4644336B2 (en) Method for producing positive electrode for alkaline storage battery
JP6719101B2 (en) Nickel-hydrogen battery and manufacturing method thereof
JP2000215873A (en) Alkaline storage battery and its manufacture
JP2022110671A (en) Coin-type all-solid-state battery and manufacturing method thereof
JP4766832B2 (en) Current collector with terminal, electrochemical element using the same
CN104538593B (en) A kind of alkaline storage battery used film covering type nickel electrode and preparation method thereof
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JPS634562A (en) Paste type nickel positive electrode
JP4454260B2 (en) Separator for alkaline secondary battery
JPS61208756A (en) Electrode for alkaline secondary battery
JPS62122057A (en) Button type battery
JPH03184257A (en) Battery