JPH02311313A - Production of thin film superconductor - Google Patents
Production of thin film superconductorInfo
- Publication number
- JPH02311313A JPH02311313A JP1130866A JP13086689A JPH02311313A JP H02311313 A JPH02311313 A JP H02311313A JP 1130866 A JP1130866 A JP 1130866A JP 13086689 A JP13086689 A JP 13086689A JP H02311313 A JPH02311313 A JP H02311313A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- thin film
- oxide
- gas
- basal substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 21
- 239000002887 superconductor Substances 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 239000010949 copper Substances 0.000 claims abstract description 17
- 239000007789 gas Substances 0.000 claims abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 14
- 239000001301 oxygen Substances 0.000 claims abstract description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910002480 Cu-O Inorganic materials 0.000 claims abstract description 8
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 5
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- 238000000151 deposition Methods 0.000 claims abstract description 4
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 claims abstract 2
- 229910052706 scandium Inorganic materials 0.000 claims abstract 2
- 229910052727 yttrium Inorganic materials 0.000 claims abstract 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 8
- 239000001272 nitrous oxide Substances 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 238000007740 vapor deposition Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000010894 electron beam technology Methods 0.000 claims 1
- 238000001704 evaporation Methods 0.000 abstract description 9
- 230000008020 evaporation Effects 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 2
- 238000000605 extraction Methods 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 229910052747 lanthanoid Inorganic materials 0.000 abstract 2
- 150000002602 lanthanoids Chemical class 0.000 abstract 2
- 239000000463 material Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910000750 Niobium-germanium Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- RTRWPDUMRZBWHZ-UHFFFAOYSA-N germanium niobium Chemical compound [Ge].[Nb] RTRWPDUMRZBWHZ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- -1 oxygen radicals Chemical class 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明1上 高温酸化物薄膜超電導体の製造方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Industrial Field of Application The present invention 1 relates to a method for producing a high temperature oxide thin film superconductor.
従来の技術
高温超電導体として、A15型2元系化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(NbsGe)
などが知られていた力丈 これらの材料の超電導転移温
度はたかだか24°にであつ九一方、ペロブスカイト系
3元化合物(よ さらに高い転移温度が期待さf5
Ba−La−Cu−0系の高温超電導体が提案された〔
シ゛エイ、シゝ−1へゝンビルツ アンドケイ、ニー、
ミスーラー(J 、G、B endorzand
K’、A、Muller)、ツァイト シュリフト 7
エア フィシゝ−り(Z etshrift F u
rphysikB)−:lンテゝンスド マター(Co
ndensed Matter) 64゜189−
193(1986)]。また ]Y−Ba−Cu−0が
液体窒素の沸点(77K)より高い転移温度を示し、さ
らIts、 B1−Sr−Ca−Cu−0系の材料が
100に以上の転移温度を示すことも発見された〔エイ
チ、マエタ゛、ワイ、タナ力、エム、7クトミ アンド
ティー アサバH、M aeda、 Y 、T
anaka。Conventional technology Niobium nitride (NbN) and germanium niobium (NbsGe) are used as A15 type binary compounds as high-temperature superconductors.
The superconducting transition temperature of these materials is at most 24°9, while perovskite ternary compounds (for which an even higher transition temperature is expected)
A Ba-La-Cu-0-based high-temperature superconductor was proposed [
Sha, Sha-1 Builds & Kay, Nee.
Misura (J, G, B endorzand
K', A, Muller), Zeit Schrift 7
Air Fishery (Z etshrift F u
rphysikB)-:Intended Matter (Co
densed Matter) 64°189-
193 (1986)]. In addition, ]Y-Ba-Cu-0 exhibits a transition temperature higher than the boiling point of liquid nitrogen (77K), and furthermore, B1-Sr-Ca-Cu-0-based materials also exhibit a transition temperature of 100 or higher. Discovered [H, Maeda, Y, Tanariki, M, 7 Kutomi and T Asaba H, Maeda, Y, T
Anaka.
M 、F ukutomi andT 、A 5an
o)、 シ″ヤバニースゝ・シ″ヤーナル・オフー
アブライビ・フィシ’7クス(J apanese
J ournal ofA pplied P
hysics) V oL 27.L 209−
L 210(1988) 〕。M, Fukutomi and T, A 5an
O)
J o n al of A pplied P
hysics) V oL 27. L 209-
L 210 (1988)].
この種の材料の超電導機構の詳細は明らかではない力(
転移温度が室温以上に高くなる可能性があり、高温超電
導体として従来の2元系化合物より、より有望な特性が
期待される。、この種の材料を実用化する場合、薄膜状
に加工することが強く要望されている。The details of the superconducting mechanism of this type of material are not clear.
The transition temperature can be higher than room temperature, and it is expected to have more promising properties as a high-temperature superconductor than conventional binary compounds. When putting this type of material into practical use, there is a strong demand for processing it into a thin film.
発明が解決しようとする課題
しかし 従来 スパッタリング法等で薄膜化が行なわれ
ている力(作製時の基板温度が高いた六実用化には問題
がある。このたム 基板温度の低温化が望まれている。Problems to be Solved by the Invention However, there are problems in practical application of thin films, which have been conventionally achieved by sputtering and other methods (because the substrate temperature during fabrication was high). ing.
本発明(よ このような従来技術の課題を解決すること
を目的とする。The present invention aims to solve the problems of the prior art.
課題を解決するための手段
本発明の薄膜超電導体の製造方法c社 亜酸化窒素ガ
スを含むガスをマイクロ波、電子サイクロトロン共鳴吸
収を利用したプラズマ分解によって励起し 前記励起し
て形成した酸素を含むプラズマを基体上に照射しながら
同時に銅を含む酸化物を蒸着することにより超電導薄膜
を作製する。Means for Solving the Problems Method for manufacturing a thin film superconductor of the present invention Company C A gas containing nitrous oxide gas is excited by plasma decomposition using microwaves and electron cyclotron resonance absorption, and the gas containing oxygen formed by the excitation is excited. A superconducting thin film is produced by irradiating plasma onto a substrate and simultaneously depositing an oxide containing copper.
作用
亜酸化窒素は酸素に比べて解離エネルギーが小さく活性
な酸素ラジカルやイオンが十分得られやすく、また マ
イクロ波、電子サイクロトロン共鳴吸収を利用すること
により高励起な酸素ラジカルやイオ、ンが得られるため
、結晶成長に必要な運動エネルギーや化合エネルギーが
供給され 膜中に酸素がとりこまれやす’r’o L
/たがって、銅を含む酸化物を蒸着中に 基体表面に亜
酸化窒素ガスを含むガスをマイクロ波、電子サイクロト
ロン共鳴吸収を利用したプラズマ分解によって励起して
酸素を含むプラズマを形成し 前記形成した酸素を含む
プラズマを照射すること′により、形成時の基板温度を
低温化することが可能となる。Action Nitrous oxide has a smaller dissociation energy than oxygen, making it easy to obtain active oxygen radicals and ions, and highly excited oxygen radicals, ions, and ions can be obtained by using microwave and electron cyclotron resonance absorption. Therefore, the kinetic energy and chemical energy necessary for crystal growth are supplied, and oxygen is easily incorporated into the film.
/ Therefore, during the vapor deposition of an oxide containing copper, a gas containing nitrous oxide gas is excited on the substrate surface by plasma decomposition using microwaves and electron cyclotron resonance absorption to form a plasma containing oxygen. By irradiating plasma containing oxygen, it is possible to lower the substrate temperature during formation.
実施例
以下番ヘ 本発明の実施例について図面を参照しなが
ら説明する。Embodiments Below, embodiments of the present invention will be described with reference to the drawings.
Y−Ba−Cu−0系等の酸化物超電導体の超電導特性
(よ酸素濃度に非常に敏感であり、これらの薄膜形成に
おいては 膜への酸素導入が非常に重要な要素である。The superconducting properties of oxide superconductors such as Y-Ba-Cu-0 are very sensitive to oxygen concentration, and the introduction of oxygen into the film is a very important factor in the formation of these thin films.
今は 本発明者等(よ 亜酸化窒素ガスを含むガスをマ
イクロ波、電子サイクロトロン共鳴吸収を利用したプラ
ズマ分解によって励起し この励起して形成した酸素を
含むプラズマを基体上に照射しながら同時に銅を含む酸
化物を蒸着することにより超電導薄膜を作製した 第1
図に本実施例に用いる第1の薄膜超電導体の製造装置を
示す。 11が真空チャンバーであり、排気孔12より
真空に排気される。導波管13を通してマイクロ波発振
器14からマイクロ波がプラズマ発生室15へ導入され
る。電磁石16によりプラズマ発生室15に磁界が印加
される。 17はガス導入口であり亜酸化窒素ガスが流
量を精密に制御して真空チャンバー11に導入される。Currently, the present inventors (the inventors) excited a gas containing nitrous oxide gas by plasma decomposition using microwaves and electron cyclotron resonance absorption, and while simultaneously irradiating the plasma containing oxygen formed by this excitation onto the substrate, The first step was to fabricate a superconducting thin film by vapor-depositing an oxide containing
The figure shows the first thin film superconductor manufacturing apparatus used in this example. Reference numeral 11 denotes a vacuum chamber, which is evacuated to a vacuum through an exhaust hole 12. Microwaves are introduced from a microwave oscillator 14 into a plasma generation chamber 15 through a waveguide 13 . A magnetic field is applied to the plasma generation chamber 15 by the electromagnet 16 . Reference numeral 17 denotes a gas introduction port through which nitrous oxide gas is introduced into the vacuum chamber 11 with its flow rate precisely controlled.
プラズマ発生室15中の磁界の強さを電子サイクロトロ
ン共鳴条件を満たすように設定するごとにより、解離度
の高いプラズマを発生することができる。例え(′Lマ
イクロ波の周波数が2.45GHzの場合、磁界の強さ
が875Gで電子サイクロトロン共鳴が起こる。発生し
たプラズマはプラズマ引出し窓18を通過して基板ホル
ダ19上の加熱した基板20に照射される。例えば Y
−Ba−Cu”O薄膜を作製する場合 Y+ Ba2C
us OX焼結体21が蒸着源22中に収容されており
、例えば電子ビニム加熱法によりY+Ba2CusOx
焼結体21を加熱溶融して前記基板20上にY+ Ba
2Cu30xを蒸着する。この蒸着過程において、基板
表面上あるいは基板近傍で、活性化された酸素がY+
BazCuaOx中に取り込まれ薄膜超電導体が基板2
0上に形成される。作製した薄膜の結晶性をX線回折法
で測定した結果 基板温度が200℃以下ではピークは
観測されなかったが 300℃以上になるとピークが現
われ 400℃以」二になるとC軸が配向したエピタキ
シャル膜が得られた
また 銅を含む酸化物として’、 Y−Ba−Cu−
0以外に、B1−Sr−Ca−Cu−O、または、 B
1−Pb−Sr−Ca−Cu−O、または、 Tl−B
a−Ca−Cu−O、または、A−B−Cu−0の複合
化合物でも同様な結果が得られた。ただし、AはSc、
’l、 LaおよびLa系列元素(原子番号57〜7
1、ただし原子番号58、59、61を除く)のうち少
なくとも一種、BはBa、 SrなどのIIa族元素の
うち少なくとも一種 かつ、 A、B元素とCu元素
の濃度は。Plasma with a high degree of dissociation can be generated by setting the strength of the magnetic field in the plasma generation chamber 15 so as to satisfy the electron cyclotron resonance conditions. For example, when the frequency of the L microwave is 2.45 GHz, the magnetic field strength is 875 G and electron cyclotron resonance occurs. The generated plasma passes through the plasma extraction window 18 and reaches the heated substrate 20 on the substrate holder 19. irradiated.For example, Y
- When producing a Ba-Cu”O thin film Y+ Ba2C
A US OX sintered body 21 is housed in a vapor deposition source 22, and Y+Ba2CusOx is heated by, for example, an electronic vinyl heating method.
The sintered body 21 is heated and melted to form Y+ Ba on the substrate 20.
2Cu30x is deposited. During this vapor deposition process, activated oxygen is generated on the substrate surface or near the substrate.
The thin film superconductor incorporated into BazCuaOx is attached to the substrate 2.
Formed on 0. As a result of measuring the crystallinity of the fabricated thin film using X-ray diffraction, no peak was observed when the substrate temperature was below 200°C, but a peak appeared when the temperature was above 300°C. In addition, as a copper-containing oxide, Y-Ba-Cu-
In addition to 0, B1-Sr-Ca-Cu-O, or B
1-Pb-Sr-Ca-Cu-O or Tl-B
Similar results were obtained with a-Ca-Cu-O or AB-Cu-0 composite compounds. However, A is Sc,
'l, La and La series elements (atomic number 57-7
1, except for atomic numbers 58, 59, and 61); B is at least one of Group IIa elements such as Ba and Sr; and the concentrations of A, B elements, and Cu element are:
0.5≦(A十B)/Cu≦2.5
である、
第2図に本実施例に用いる第2の薄膜超電導体の製造装
置を示す。プラズマ発生室15は第1の実施例と同じ構
成になっており、蒸着源が複数個から形成されている。0.5≦(A×B)/Cu≦2.5. FIG. 2 shows a second thin film superconductor manufacturing apparatus used in this example. The plasma generation chamber 15 has the same configuration as the first embodiment, and includes a plurality of evaporation sources.
各蒸着源の材料(主 超電導体を構成する元素の単体あ
るいはその酸化物あるいは弗化物 超電導体を構成する
元素の合金等からなっている。この方法にすることによ
り、各蒸発源の蒸発量を制御することにより任意の組成
の薄膜を作製することができる。また シャッター30
の開閉を制御することによって、膜に垂直方向の組成を
制御することができる。The material of each evaporation source (mainly consisting of a single element, its oxide or fluoride, an alloy of the elements constituting the superconductor, etc. that constitute the superconductor). By using this method, the amount of evaporation from each evaporation source can be reduced. A thin film of any composition can be produced by controlling the shutter 30.
By controlling the opening and closing of the membrane, the composition in the direction perpendicular to the membrane can be controlled.
真空チャンバー内へ導入されるガスの導入量(よ真空チ
ャンバー内の圧力が1xlO−’Torrから5xlO
−3Torrに保たれるように設定することにより、安
定で高励起なプラズマを発生することができた
発明の効果
以上のように本発明の薄膜超電導体の製造方法(よ 各
種酸化物超電導薄膜を低温で再現性良く作製する方法を
提供するものであり、エレクトロニクス素子等への応用
など本発明の工業的価値は高い。The amount of gas introduced into the vacuum chamber (if the pressure inside the vacuum chamber is from 1xlO-'Torr to 5xlO
The effect of the invention was that stable and highly excited plasma could be generated by setting the temperature to be maintained at −3 Torr. The present invention provides a method for producing it at low temperatures with good reproducibility, and has high industrial value such as application to electronic devices and the like.
第1図は本発明の一実施例にかかる薄膜超電導体の製造
方法に使用される装置の概略を示す断面図 第2図は本
発明の他の実施例にかかる薄膜超電導体の製造方法に使
用される装置の概略を示す断面図である。
11・・・・・・真空チャンバー、 12・・・・・・
排気孔 13・・・・・・導波管、 14・・・・・・
マイクロ波発振315プラズマ発生室 16・・・・・
・電磁′EK 17・・・・・・ガス導入り、 18・
・・・・・プラズマ引出し* 19・・・・・・基板ホ
ルダ 20・・・・・・基板 21・・・・・・蒸発原
料、 22・・・・・・蒸発量 30・・・・・・シャ
ッター。FIG. 1 is a cross-sectional view schematically showing an apparatus used in a method for manufacturing a thin film superconductor according to an embodiment of the present invention. FIG. 2 is a sectional view schematically showing an apparatus used in a method for manufacturing a thin film superconductor according to another embodiment of the present invention. FIG. 11... Vacuum chamber, 12...
Exhaust hole 13... Waveguide, 14...
Microwave oscillation 315 plasma generation chamber 16...
・Electromagnetic 'EK 17...Gas introduction, 18.
...Plasma drawer * 19 ... Substrate holder 20 ... Substrate 21 ... Evaporation raw material, 22 ... Evaporation amount 30 ... ·shutter.
Claims (3)
の製造方法において、亜酸化窒素ガスを含むガスをマイ
クロ波、電子サイクロトロン共鳴吸収を利用したプラズ
マ分解によって励起して酸素を舎むプラズマを形成し、
前記形成した酸素を含むプラズマを前記基体上に照射し
ながら同時に前記銅を含む酸化物を蒸着する(ここで、
銅を含む酸化物として、Bi−Sr−Ca−Cu−O、
または、Bi−Pb−Sr−Ca−Cu−O、または、
Tl−Ba−Ca−Cu−O、または、A−B−Cu−
Oの複合化合物からなっている。ただし、AはSc、Y
、LaおよびLa系列元素(原子番号57〜71、ただ
し原子番号58、59、61を除く)のうち少なくとも
一種BはBa、SrなどのIIa族元素のうち少なくとも
一種、かつ、A、B元素とCu元素の濃度は、 0.5≦(A+B)/Cu≦2.5 である。)ことを特徴とする薄膜超電導体の製造方法。(1) In a method for manufacturing a thin film superconductor by depositing an oxide containing copper on a substrate, a gas containing nitrous oxide is excited by plasma decomposition using microwaves and electron cyclotron resonance absorption to generate oxygen. form a plasma that
While irradiating the formed oxygen-containing plasma onto the substrate, the copper-containing oxide is simultaneously deposited (here,
As oxides containing copper, Bi-Sr-Ca-Cu-O,
Or, Bi-Pb-Sr-Ca-Cu-O, or
Tl-Ba-Ca-Cu-O or AB-Cu-
It consists of a complex compound of O. However, A is Sc, Y
, at least one of La and La series elements (atomic numbers 57 to 71, excluding atomic numbers 58, 59, and 61) B is at least one of Group IIa elements such as Ba and Sr, and A and B elements The concentration of Cu element is 0.5≦(A+B)/Cu≦2.5. ) A method for producing a thin film superconductor.
抗加熱あるいはレーザーあるいはこれらの組合せで行な
うことを特徴とする請求1項記載の薄膜超電導体の製造
方法。(2) The method for manufacturing a thin film superconductor according to claim 1, characterized in that the vapor deposition of the oxide containing copper is performed using an electron beam, resistance heating, laser, or a combination thereof.
組成の複数個の蒸着源を用いて行なうことを特徴とする
請求項1記載の薄膜超電導体の製造方法。(3) The method for producing a thin film superconductor according to claim 1, characterized in that the vapor deposition of the oxide containing copper is performed using a plurality of vapor deposition sources having at least two types of compositions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1130866A JPH02311313A (en) | 1989-05-24 | 1989-05-24 | Production of thin film superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1130866A JPH02311313A (en) | 1989-05-24 | 1989-05-24 | Production of thin film superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02311313A true JPH02311313A (en) | 1990-12-26 |
Family
ID=15044532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1130866A Pending JPH02311313A (en) | 1989-05-24 | 1989-05-24 | Production of thin film superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02311313A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102476049A (en) * | 2010-11-29 | 2012-05-30 | 中国科学院大连化学物理研究所 | Application of Y-ferrite catalyst in nitrous oxide decomposition process |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6439783A (en) * | 1987-08-06 | 1989-02-10 | Matsushita Electric Ind Co Ltd | Manufacture of superconducting element |
JPH0195575A (en) * | 1987-10-07 | 1989-04-13 | Semiconductor Energy Lab Co Ltd | Formation of oxide superconducting material |
JPH0196015A (en) * | 1987-10-07 | 1989-04-14 | Hitachi Ltd | Formation of superconducting thin film |
JPH02248302A (en) * | 1989-03-22 | 1990-10-04 | Agency Of Ind Science & Technol | Method and device for producing oxide superconductor |
-
1989
- 1989-05-24 JP JP1130866A patent/JPH02311313A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6439783A (en) * | 1987-08-06 | 1989-02-10 | Matsushita Electric Ind Co Ltd | Manufacture of superconducting element |
JPH0195575A (en) * | 1987-10-07 | 1989-04-13 | Semiconductor Energy Lab Co Ltd | Formation of oxide superconducting material |
JPH0196015A (en) * | 1987-10-07 | 1989-04-14 | Hitachi Ltd | Formation of superconducting thin film |
JPH02248302A (en) * | 1989-03-22 | 1990-10-04 | Agency Of Ind Science & Technol | Method and device for producing oxide superconductor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102476049A (en) * | 2010-11-29 | 2012-05-30 | 中国科学院大连化学物理研究所 | Application of Y-ferrite catalyst in nitrous oxide decomposition process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5439876A (en) | Method of making artificial layered high Tc superconductors | |
DE68918489T2 (en) | Production of superconducting oxide films by pre-oxygen nitrogen annealing treatment. | |
Nakayama et al. | Superconductivity of Bi2Sr2Ca n− 1Cu n O y (n= 2, 3, 4, and 5) thin films prepared in situ by molecular‐beam epitaxy technique | |
Raven | Radio frequency sputtering and the deposition of high-temperature superconductors | |
JPH02311313A (en) | Production of thin film superconductor | |
JP2986799B2 (en) | Thin film forming method and thin film forming apparatus | |
EP0487421B1 (en) | Process for preparing a thin film of Bi-type oxide superconductor | |
JPH06291375A (en) | Manufacture of thin film superconductor and its manufacture | |
JPH06116094A (en) | Thin film superconductor and its production | |
Eom et al. | Synthesis and characterization of superconducting thin films | |
JPH05170448A (en) | Production of thin ceramic film | |
JP3231065B2 (en) | Method of forming oxide superconductor thin film | |
JPH01275406A (en) | Production of superconductor structure | |
JPH0196015A (en) | Formation of superconducting thin film | |
JPH01183496A (en) | Production of single crystal oxide superconducting thin film | |
JP3037396B2 (en) | Manufacturing method of thin film superconductor | |
JPH05194095A (en) | Production of thin-film electric conductor | |
JPH01275405A (en) | Production of superconductor structure | |
JPH05194097A (en) | Production of thin-film electric conductor | |
Bhushan | Preparation of YBa2Cu3Ox Thin Films by Multisource Deposition | |
JPH02120231A (en) | Production of superconducting thin film of oxide | |
JPH07100609B2 (en) | Method of manufacturing thin film superconductor | |
JPH02120232A (en) | Production of superconducting thin film of oxide | |
JPH01208323A (en) | Production of thin film | |
Nastasi et al. | The formation and analysis of thin film high temperature superconductors |