Nothing Special   »   [go: up one dir, main page]

JPH02213330A - Ultrasonic diagnostic apparatus - Google Patents

Ultrasonic diagnostic apparatus

Info

Publication number
JPH02213330A
JPH02213330A JP1034414A JP3441489A JPH02213330A JP H02213330 A JPH02213330 A JP H02213330A JP 1034414 A JP1034414 A JP 1034414A JP 3441489 A JP3441489 A JP 3441489A JP H02213330 A JPH02213330 A JP H02213330A
Authority
JP
Japan
Prior art keywords
scanning
vibrators
receiving
transducers
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1034414A
Other languages
Japanese (ja)
Other versions
JPH0798042B2 (en
Inventor
Kinya Takamizawa
高見沢 欣也
Makoto Hirama
信 平間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1034414A priority Critical patent/JPH0798042B2/en
Publication of JPH02213330A publication Critical patent/JPH02213330A/en
Publication of JPH0798042B2 publication Critical patent/JPH0798042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To suppress a lowering of resolving power without reducing the number of receiving vibrators even in their end part scanning and to obtain an image of a wide visual field width by deflecting the receiving directionality of an ultrasonic wave when the signal of the arrangement end part of the vibrators to be obtained. CONSTITUTION:When an end part image is obtained, control performing dynamic focusing while receiving directionality is turned to the outside is performed by a transmission system 2, a vibrator selection switch 11 and a digital receiving system 10. When receiving directionality is turned to the outside, control reducing the angle of deflection thereof with the depth of a covering point is also performed in the same way. The scanning direction of the (n-1)-th transducer is divided into fine sections in the same way as the scanning direction of the n-th transducer and 1-N is used from the vibrators 1-(N-M+1) of an array type probe to converge the beam to the fine sections. The same operation is repeated up to the n/2-th scanning and, in the (n/2+1)-th scanning, vibrators from 1-2 to 1-(M+1) are used to allow the centers of (M) vibrators to coincide with a scanning position.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、超音波を用いて生体の断層像を得る超音波診
断装置に係わり、特に高精度の受信ダイナミックフォー
カスを実現することにより、画像端部の分解能劣化を低
減し、画質の大幅な向上を図った超音波診断装置に関す
るものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an ultrasonic diagnostic apparatus that obtains tomographic images of a living body using ultrasonic waves, and in particular realizes highly accurate receiving dynamic focus. The present invention relates to an ultrasonic diagnostic apparatus that reduces deterioration in resolution at the edges of images and significantly improves image quality.

(従来の技術) 超音波パルス生体内に放射し、各組織からの反射波によ
り生体情報を得る超音波診断法は、X線のような照射障
害がなく、シかも造影剤なしで軟部組織の診断ができる
利点をもっている。
(Prior technology) Ultrasonic diagnostic methods emit ultrasound pulses into the living body and obtain biological information from reflected waves from each tissue.There is no irradiation damage like with X-rays, and it is possible to detect soft tissues without a contrast agent. It has the advantage of being diagnostic.

今日量も広く用いられている超音波診断装置の探触子で
は、配列型(アレイ型)超音波振動子(プローブ)が使
われており、これ等の超音波振動子の各々を駆動し超音
波を発生させるための駆動信号、あるいは生体内からの
反射波が、前記振動子によってで受信される。このとき
、受信信号に所定の遅延時間を与えることによって超音
波ビームを所定の距離(位置)に収束させて方位分解能
を高め、解像度の優れた断層像を得ている。
The probes of ultrasonic diagnostic equipment, which are widely used today, use array-type ultrasonic transducers (probes). A drive signal for generating a sound wave or a reflected wave from within the living body is received by the vibrator. At this time, by giving a predetermined delay time to the received signal, the ultrasonic beam is focused at a predetermined distance (position) to improve azimuth resolution and obtain a tomographic image with excellent resolution.

第3図にこの種の超音波診断装置の従来例を示す。第3
図は、リニア電子走査型超音波診断装置のブロック図を
示したもので、生体内に放射される超音波パルスの間隔
を決定するパルス発生器2人から出力された繰返しパル
スは、送信遅延回路2B−1〜2B−Nにおいて、送信
超音波の放射方向と収束点から決定される所定の遅延時
間が与えられたのち振動子駆動回路(バルサ)3A−1
〜3A−Nに送られ駆動パルスが形成される。この駆動
パルスは振動子選択スイッチ11によってN本のアレイ
型超音波振動子1−1〜1−Nのうち所定のM本(例え
ば1−1〜1−M (M <N ) )が選択駆動され
、超音波が生体内に放射される。
FIG. 3 shows a conventional example of this type of ultrasonic diagnostic apparatus. Third
The figure shows a block diagram of a linear electronic scanning ultrasound diagnostic device.Repetitive pulses output from two pulse generators that determine the interval between ultrasound pulses emitted into a living body are sent to a transmission delay circuit. In 2B-1 to 2B-N, after a predetermined delay time determined from the radiation direction and convergence point of the transmitted ultrasound is given, the transducer drive circuit (balsa) 3A-1
~3A-N to form a drive pulse. This driving pulse selectively drives a predetermined M number (for example, 1-1 to 1-M (M < N)) of the N array type ultrasonic transducers 1-1 to 1-N by the transducer selection switch 11. The ultrasonic waves are then emitted into the living body.

一方、生体内から反射された超音波ビームは前記アレイ
型超音波振動子1−1〜1−Nによって受信されるが、
振動子1−1〜1−Hの受信信号のみが振動子選択スイ
ッチ11によってプリアンプ3A−1〜3A−Nに送ら
れ、さらに受信遅延回路2B−1〜2B−Nに送られる
。ここで、前記送信遅延回路2B−1〜2B−Nにおい
て与えられた遅延時間とほぼ同一の遅延時間が与えられ
てから、加算器3cにおいて他の振動子からの受信信号
と加算される。
On the other hand, the ultrasound beam reflected from inside the living body is received by the array type ultrasound transducers 1-1 to 1-N,
Only the received signals of the transducers 1-1 to 1-H are sent by the transducer selection switch 11 to preamplifiers 3A-1 to 3A-N, and further sent to reception delay circuits 2B-1 to 2B-N. Here, almost the same delay time as that given in the transmission delay circuits 2B-1 to 2B-N is given, and then the adder 3c adds the signal received from the other vibrators.

この加算器3Cの出力信号は一方は断層像を表示するた
めのBモード処理系4へ、また、もう−方は、血流情報
を算出するためのDモード処理系5へ送られて所定の信
号処理が施される。まず、Bモード処理系4では対数増
幅器4Aにおいて信号振幅が対数変換されたのち、包路
線検波回路4Bにて受信信号の包路線が検出され、A/
D変換器(A/D−C)4Cを通った後画像メモリ6A
にストアされる。
The output signal of this adder 3C is sent on one side to the B-mode processing system 4 for displaying the tomographic image, and on the other hand to the D-mode processing system 5 for calculating blood flow information. Signal processing is performed. First, in the B-mode processing system 4, the signal amplitude is logarithmically converted in the logarithmic amplifier 4A, and then the envelope line of the received signal is detected in the envelope line detection circuit 4B, and the A/
Image memory 6A after passing through D converter (A/D-C) 4C
Stored in

つぎに、Dモード処理系5について述べる。加算器3C
の出力は、位相検波回路5Aa、5Abで、基準信号発
生器5B、π/2移相器5cにより超音波信号の周波数
とほぼ同じ周波数をもった基準信号との間で直交位相検
波され、これら90度(π/2)位相の異なった位相検
波出力は、ローパスフィルタ(L、P、F)5Da、5
Dbを通ってA/D変換器(A/D−C)5Ea。
Next, the D mode processing system 5 will be described. Adder 3C
The outputs of the ultrasonic signal are quadrature-phase detected by the phase detection circuits 5Aa and 5Ab, and a reference signal having approximately the same frequency as the ultrasonic signal frequency by the reference signal generator 5B and π/2 phase shifter 5c. The phase detection outputs with different phases of 90 degrees (π/2) are processed by low-pass filters (L, P, F) 5Da, 5
A/D converter (A/D-C) 5Ea through Db.

5Ebを通り、その後図示しないバッファメモリに一旦
スドアされる。
5Eb, and is then temporarily stored in a buffer memory (not shown).

ドツプラ信号を得るには、同一場所を所定間隔で走査し
、これにより得られる血球からの反射信号につき、その
単位時間内の位相シフト量(ドツプラシフト量)から血
流速度を求める。例えば、振動子の選択と送受信のビー
ム収束用遅延量とを全く同じくして10回同一場所を走
査し、これにより得られた受信信号を、前記同様にドツ
プラ用バッファメモリに順次ストアしていく。
To obtain a Doppler signal, the same location is scanned at predetermined intervals, and the blood flow velocity is determined from the phase shift amount (Doppler shift amount) within a unit time of the reflected signal from the blood cells obtained thereby. For example, the same location is scanned 10 times with exactly the same transducer selection and transmit/receive beam convergence delay amount, and the received signals obtained thereby are sequentially stored in the Doppler buffer memory as described above. .

次に、このようにして同一場所を10回走査して得られ
た生体内の反射信号から、所定の深さの血球の速度を検
出する。このとき、各々の反射信号には血球のように移
動している物体からの反射と、血管壁のようにほとんど
移動しない固定物体からの反射波とが混在しており、し
かも後者が支配的になっている。したがって、まず、固
定反射体からの反射波(クラッタ信号)を取除くため、
所定の深さにおいて得られた10ケの信号を、MTIフ
ィルタ5Fa、5Fbに入力する。
Next, the velocity of blood cells at a predetermined depth is detected from the in-vivo reflection signals obtained by scanning the same location 10 times in this manner. At this time, each reflected signal contains a mixture of reflections from moving objects such as blood cells and reflected waves from stationary objects that hardly move, such as blood vessel walls, and the latter is dominant. It has become. Therefore, first, in order to remove the reflected waves (clutter signal) from the fixed reflector,
Ten signals obtained at a predetermined depth are input to MTI filters 5Fa and 5Fb.

MTIフィルタ技術はレーダ分野において一般に知られ
ている技術であるためその詳細については省略する。
Since the MTI filter technique is generally known in the radar field, its details will be omitted.

そして、MTIフィルタ5Fa、5Fbによってクラッ
タ信号は除去され、血球からの反射波のみが演算回路5
Gに送られる。ここでは所定の深さの前記10ケのデー
タを用い、周波数分析が行なわれて、そのスペクトルの
中心あるいは広がり(分散)が算出されて、その値は画
像メモリ5G内の血流信号メモリ内にストアされる。こ
のようにして所定の方向に超音波ビームを送受信して断
層像用信号とドツプラ信号とが得られる。
Then, the clutter signal is removed by the MTI filters 5Fa and 5Fb, and only the reflected waves from the blood cells are sent to the arithmetic circuit 5.
Sent to G. Here, frequency analysis is performed using the 10 pieces of data at a predetermined depth, the center or spread (dispersion) of the spectrum is calculated, and the value is stored in the blood flow signal memory in the image memory 5G. Stored. In this way, a tomographic image signal and a Doppler signal are obtained by transmitting and receiving ultrasound beams in a predetermined direction.

つぎに、振動子選択スイッチ11によって前記アレイ型
超音波振動子1−1〜1−Nのうち1−2〜1− (M
al)が選択され、超音波の送受信が行なわれる。この
送受信方向での断層信号とドツプラ信号とが前記同様に
得られ、これらは各々画像メモリ6A内の断層像メモリ
と血流信号メモリにストアされる。
Next, the transducer selection switch 11 selects 1-2 to 1- (M
al) is selected, and ultrasonic waves are transmitted and received. A tomographic signal and a Doppler signal in the transmission/reception direction are obtained in the same manner as described above, and these are stored in the tomographic image memory and blood flow signal memory in the image memory 6A, respectively.

(発明が解決・しようとする課題) このように、リニア電子走査方式ではアレイ型超音波振
動子1−1〜1−Nは振動子選択スイッチ11により1
本づつシフトして選択駆動されることによって、生体内
を走査することができる。この場合、従来の走査では同
時駆動振動子数を常に一定にする方法と、端部走査にお
いては振動子数を減らす方法がある。
(Problems to be Solved by the Invention) In this way, in the linear electronic scanning system, the array type ultrasonic transducers 1-1 to 1-N are selected by the transducer selection switch 11.
By shifting and selectively driving one book at a time, the inside of a living body can be scanned. In this case, in conventional scanning, there is a method of always keeping the number of simultaneously driven transducers constant, and in edge scanning, there is a method of reducing the number of transducers.

例えば、前者の方法では、全振動子数をN1同時駆動振
動子数Mとすれば、1−1〜1−Hの振動子を用いた走
査からスタートして1−(N−M+1)〜1−Nの振動
子を用いた (N−M+1)番目の走査で終了して1枚
の断層像と血流信号による血流イメージングが得られる
。この場合、振動子M本分に相当する面積が画像化され
ないため視野が狭くなってしまう。
For example, in the former method, if the total number of oscillators is N1 and the number of simultaneously driven oscillators is M, then scanning starts with 1-1 to 1-H oscillators, and 1-(N-M+1) to 1 The process ends at the (N-M+1)th scan using -N transducers, and blood flow imaging is obtained using one tomographic image and blood flow signals. In this case, the field of view becomes narrow because an area corresponding to M transducers is not imaged.

これに対して端部走査は、振動子を減らす方法では視野
はあまり狭くならないが、端部はど少ない振動子で走査
を行なうため、超音波ビームの収束が十分に行なわれず
、良好な画質が得られない。
On the other hand, in edge scanning, the field of view is not so narrow if the number of transducers is reduced, but since scanning is performed with fewer transducers at the edges, the ultrasound beam is not converged sufficiently, resulting in poor image quality. I can't get it.

そこで本発明の目的は、分解能の低下を抑え広い視野幅
の画像を得ることができる超音波診断装置を提供するこ
とにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an ultrasonic diagnostic apparatus that can obtain images with a wide field of view while suppressing a decrease in resolution.

[発明の構成] (課題を解決するための手段) 本発明は上記課題を解決し且つ目的を達成するため次の
ような構成としている。すなわち、本発明では、振動子
の配列端部の信号を得る場合には、超音波受信方向を外
側に偏向するものとしている。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems and achieve the objects, the present invention has the following structure. That is, in the present invention, when obtaining a signal at the array end of the vibrator, the ultrasonic reception direction is deflected outward.

(作用) これによって、端部走査においても、受信振動子数を大
幅に減らす必要がないため、分解能の低下がなく広い視
野幅をもった超音波断層像が得られる。
(Function) As a result, there is no need to significantly reduce the number of receiving transducers even in edge scanning, so an ultrasonic tomographic image with a wide field of view can be obtained without deterioration in resolution.

(実施例) 以下、本発明に係る超音波診断装置の一実施例を図面を
参照して説明する。先づ、実施例の説明に先き立ち、本
発明の詳細な説明する。
(Example) Hereinafter, an example of an ultrasonic diagnostic apparatus according to the present invention will be described with reference to the drawings. First, prior to explaining embodiments, the present invention will be explained in detail.

本発明の走査の模式図を図2に示す。本発明を実現する
には、従来でも広く用いられてきた受信ダイナミック収
束法が必要となる。受信ダイナミックフォーカス法とは
受信時刻にともなって収束点をプローブ(振動子)から
順次遠方に設定し、走査方向の反射波が常に収束され受
信する技術である。
A schematic diagram of the scanning of the present invention is shown in FIG. In order to realize the present invention, a reception dynamic convergence method that has been widely used in the past is required. The reception dynamic focus method is a technique in which the convergence point is set successively farther away from the probe (oscillator) according to the reception time, and the reflected waves in the scanning direction are always converged and received.

本発明では、断層像の中心分では従来と同様に第2図(
a)のように、振動子配列方向と直角方向において超音
波の送受信がおこなわれる。第2図(a)における斜線
部は、分解能の劣化が生じる部分を示している。一方、
端部での走査では、第2図(b)のように、超音波は外
側方向に向けて送受信がおこなわれる。リニアアレイ型
プローブの振動子数をNとし、1回の超音波の送受信に
使用される素子数をMとする。この場合、1枚の断層像
はn回の走査によって作られ、最も端部のn番目の走査
は、前記アレイ型プローブの1−(N−M+1)から1
−NまでのM本の振動子を用いて行なわれる。
In the present invention, the central part of the tomographic image is as shown in Fig. 2 (
As shown in a), ultrasonic waves are transmitted and received in a direction perpendicular to the direction in which the transducers are arranged. The shaded area in FIG. 2(a) indicates the area where the resolution deteriorates. on the other hand,
In scanning at the end, ultrasonic waves are transmitted and received outward, as shown in FIG. 2(b). The number of transducers of the linear array probe is N, and the number of elements used for one transmission and reception of ultrasound is M. In this case, one tomographic image is created by n scans, and the n-th scan at the end is from 1-(N-M+1) to 1
This is done using M vibrators up to -N.

すなわち、n番目の走査方向を微小区間に分割し、その
各々の区間内で前記M本の振動子による超音波ビームを
収束させ、この収束部分からの受信信号のみを抽出して
前記微小部分の画素を構成する。n−1番目の走査でも
同様である。すなわち、n−1番目のトランスデユーサ
の走査方向をn番目の走査方向と同様に微小区間に分割
し、アレイ型プローブの振動子1−(N−M+1)から
1−Nを用い、前記微小区間にビーム収束を行なう。−
同様な動作は、n/2番目の走査まで繰返され、(n/
2+1)番目の走査においては、1−2から1−(M+
1)の振動子が使用されて従来と同様に使用されるM本
の振動子の中心と走査位置とが一致するようになる。以
上は右端部について述べたが左端部においても同様であ
るため、説明は省略する。
That is, the n-th scanning direction is divided into minute sections, the ultrasonic beams from the M transducers are converged within each section, and only the received signal from this converged section is extracted. Configure pixels. The same holds true for the (n-1)th scan. That is, the scanning direction of the (n-1)th transducer is divided into minute sections in the same way as the n-th scanning direction, and using the transducers 1-(N-M+1) to 1-N of the array type probe, Beam convergence is performed in the section. −
Similar operations are repeated until the n/2nd scan, and (n/
In the 2+1)th scan, 1-2 to 1-(M+
When the vibrator of 1) is used, the center of the M vibrators used in the same way as in the conventional case coincides with the scanning position. Although the right end portion has been described above, the same applies to the left end portion, so the explanation will be omitted.

本発明によって得られる端部の超音波画像は、受信の指
向性によって決定されるもので与り、送信時には弱い指
向性をもった超音波ビームで走査してやればよく、例え
ば、従来のように振動子の数を少なくして送信を行なっ
てよい。ただし、この場合、振動子数が減少したことに
よって送信パワーが減りS/N劣化を招く。この問題点
を解決するために、端部における送信では、振動子の駆
動電圧を大きくしてやる方法でもよい。端部の画像を得
る場合、超音波の送信方向は、振動子配列方向と直角の
方向でもよいし多少外側に偏向していてもよいが、偏向
させる場合には、1回の送信ではあらゆる深さで送信感
度を許容範囲内に抑えることは困難であるため、偏向角
を変えた複数の送信を行なってもよい。
The ultrasonic image of the end obtained by the present invention is determined by the directivity of reception, and when transmitting, it is sufficient to scan with an ultrasonic beam with weak directionality. Transmission may be performed with fewer children. However, in this case, the transmission power decreases due to the decrease in the number of oscillators, resulting in S/N deterioration. In order to solve this problem, a method may be adopted in which the driving voltage of the vibrator is increased in transmission at the end. When obtaining an image of the edge, the ultrasound transmission direction may be perpendicular to the transducer arrangement direction or may be deflected slightly outward; however, when deflecting the ultrasound, one transmission can cover all depths. Since it is difficult to suppress the transmission sensitivity within an allowable range in such a case, multiple transmissions may be performed with different deflection angles.

ところで、本発明を実現するためには受信時のダイナミ
ックフォーカスの精度(すなわち間隔)を従来以上に細
かくとることが必要となる。理想的には超音波画像のビ
クセルサイズと同程度が望ましい。また端部にビームを
収束させるためには長時間遅延が要求される。このため
、従来のアナログ遅延回路では十分な遅延特性を得るこ
とが、困難となり、デジタル遅延回路の使用が望ましい
By the way, in order to realize the present invention, it is necessary to make the precision (that is, the interval) of dynamic focus during reception finer than before. Ideally, it is desirable to have a vixel size similar to that of an ultrasound image. Also, a long delay is required to converge the beam at the end. For this reason, it is difficult to obtain sufficient delay characteristics with conventional analog delay circuits, and it is desirable to use digital delay circuits.

第1図は、本発明の一実施例として受信回路をディジタ
ル化(ディジタル整相加算方式)した超音波診断装置の
ブロック図である。先づ超音波断層像を表示する場合の
回路構成について説明する。
FIG. 1 is a block diagram of an ultrasonic diagnostic apparatus in which a receiving circuit is digitalized (digital phasing and addition method) as an embodiment of the present invention. First, a circuit configuration for displaying an ultrasonic tomographic image will be explained.

装置の基本構成は、リニアアレイ型プローブ1と、送信
系2と、ディジタル受信系10と、Bモード処理系8と
、映像系6とからなる。
The basic configuration of the apparatus includes a linear array probe 1, a transmission system 2, a digital reception system 10, a B-mode processing system 8, and an image system 6.

以下ディジタル化に関連した部分のみにつき説明する。Below, only the parts related to digitization will be explained.

ディジタル受信系10は、プリアンプ10A(IOA−
1〜l0A−N)と、A/D変換器10C(IOC−1
〜10 C−N)と受信遅延回路をなすRAM (ラン
ダム・アクセス−メモリまたはシフトレジスタ)IOD
 (IOD−1〜10 D −N)と、加算器7Eとか
らなる。プリアンプIOAは、アレイプローブ1の各振
動子1−1〜1−Nからのエコー信号を受け、これを後
段の適当なレベルまで増幅する。A/D変換器10Cは
プリアンプ出力をディジタル信号化する。受信遅延回路
をなすRAMl0Dは、A/D変換器10Cからのチャ
ンネルごとの出力を一時保持した後、所定時間遅延して
出力する。加算器7Eは、遅延制御後の各チャンネルの
エコー信号をディジタル加算し、この加算出力はディジ
タル化Bモード処理系8に送られる。ディジタル化Bモ
ード処理系8は絶対値回路およびローパスフィルタから
なる包路線検波回路8Aと、ROM等からなる対数変換
テーブル8Bとからなる。包絡線検波回路8Aは、エコ
ー加算出力の包路線を検出する。対数変換テーブル8B
は包絡線検波回路8Aの出力信号振幅を対数変換して、
映像系6の画像メモリ6Aにストアする。
The digital receiving system 10 includes a preamplifier 10A (IOA-
1 to 10A-N) and A/D converter 10C (IOC-1
~10 C-N) and the RAM (Random Access - Memory or Shift Register) IOD that forms the receive delay circuit
(IOD-1 to 10D-N) and an adder 7E. The preamplifier IOA receives echo signals from each of the transducers 1-1 to 1-N of the array probe 1, and amplifies them to an appropriate level for the subsequent stage. A/D converter 10C converts the preamplifier output into a digital signal. The RAM 10D, which serves as a reception delay circuit, temporarily holds the output for each channel from the A/D converter 10C, and then outputs the output after a predetermined time delay. The adder 7E digitally adds the echo signals of each channel after delay control, and the output of this addition is sent to the digitizing B-mode processing system 8. The digitization B-mode processing system 8 includes an envelope detection circuit 8A consisting of an absolute value circuit and a low-pass filter, and a logarithmic conversion table 8B consisting of a ROM or the like. The envelope detection circuit 8A detects the envelope of the echo addition output. Logarithmic conversion table 8B
is the logarithmic transformation of the output signal amplitude of the envelope detection circuit 8A,
It is stored in the image memory 6A of the video system 6.

次に、ディジモり化Dモード処理系9について説明する
Next, the digitalization D mode processing system 9 will be explained.

ディジモり化Dモード処理系9は、ディジタル方式で直
交位相検波を実現するりサンプル回路9Aa、9Abと
、クラッタ成分除去のためのMTIフィルタ98a、9
Bbと、血流データを算出するためのFFT演算部やC
FM像を算出するための相関演算部等を有する演算回路
9Cとからなる。リサンプル回路9Aa、9Abは、エ
コー加算出力に対し、π/2位相の異なる2つのサンプ
リングパルスによって2つの直交位相検波出力を得る。
The digitalization D-mode processing system 9 includes sampling circuits 9Aa and 9Ab for realizing orthogonal phase detection in a digital manner, and MTI filters 98a and 9 for removing clutter components.
Bb, an FFT calculation unit for calculating blood flow data, and C
It consists of an arithmetic circuit 9C having a correlation arithmetic section and the like for calculating an FM image. The resampling circuits 9Aa and 9Ab obtain two orthogonal phase detection outputs from the echo addition output using two sampling pulses having different phases by π/2.

MTIフィルタ98a、9Bbは、2つの直交位相検波
出力中のドプラ偏移信号に含まれている心臓や血管の壁
の動きに伴うクラッタ成分を除去する。演算回路9Cは
、血流の平均速度、分散等の血流データをFFT演算部
により周波数解析することにより算出して画像メモリ’
6 Aにストアし、また、血流の速度、方向及びその位
置を相関演算部により自己相関方式等により算出し、カ
ラー処理してCFM像データを得る、これを画像メモリ
6Aにストアする。
The MTI filters 98a and 9Bb remove clutter components associated with the movement of the heart and blood vessel walls contained in the Doppler shift signals in the two orthogonal phase detection outputs. The arithmetic circuit 9C performs frequency analysis on blood flow data such as the average velocity and variance of blood flow using an FFT arithmetic unit, and stores the calculated data in an image memory'.
Furthermore, the velocity, direction, and position of the blood flow are calculated by a correlation calculating section using an autocorrelation method, etc., and color processing is performed to obtain CFM image data, which is stored in the image memory 6A.

上記の構成の下で、本発明の制御、つまり、端部画像を
得る場合、受信指向性を外側に向けながらダイナミック
フォーカスする制御は、送信系2゜振動子選択スイッチ
11.ディジタル受信系10により行なう。また、前記
受信指向性を外側に向ける場合、その偏向角度を収束点
の深度に伴って減少させる制御についても同様であり、
さらに、前記受信指向性を外側に向ける場合、送信指向
性を振動子面に対してほぼ垂直方向に設定する制御も同
様である。
Under the above configuration, the control of the present invention, that is, the control of dynamic focusing while directing the reception direction outward when obtaining an edge image, is performed by the transmission system 2° transducer selection switch 11. This is done by the digital receiving system 10. In addition, when the reception directivity is directed outward, the same applies to the control to decrease the deflection angle with the depth of the convergence point,
Furthermore, when the receiving directivity is directed outward, control for setting the transmitting directivity in a direction substantially perpendicular to the transducer surface is also the same.

以上はリニア走査の場合について述べてきたが、近年セ
クタ走査、リニア走査と並び広く用いられるようになっ
た走査方法にコンベックス走査がある。セクタ走査、リ
ニア走査に用いられるプローブは、平面状の支持体上に
振動子を一列に配列したものを用いているのに対して、
コンベックス走査用のプローブは、凸面状の支持体上に
振動子を配列したものを用いている。このコンベックス
走査によって得られる断層像は扇状のものとなるが、走
査時の振動子駆動法はリニア電子走査法と同じであり、
・送受信方向は同時に駆動される振動子群(例えばM本
の振動子)のうち中心の振動子面に対してほぼ垂直な方
向で行なわれる。従って、リニア走査時同様に、従来法
では端部の画質は劣化していたが、この場合にも本発明
の適用は可能であり、コンベックス走査によって得られ
る、扇状視野の端部の画質を大幅に改善することができ
る。
Although the case of linear scanning has been described above, convex scanning is a scanning method that has become widely used along with sector scanning and linear scanning in recent years. Probes used for sector scanning and linear scanning use transducers arranged in a row on a flat support.
A probe for convex scanning uses a probe in which vibrators are arranged on a convex support. The tomographic image obtained by this convex scanning is fan-shaped, but the transducer driving method during scanning is the same as the linear electronic scanning method.
- The transmission and reception direction is substantially perpendicular to the plane of the central vibrator of a group of vibrators (for example, M vibrators) driven simultaneously. Therefore, as with linear scanning, the image quality at the edges deteriorates in the conventional method, but the present invention can be applied to this case as well, and the image quality at the edges of the fan-shaped field of view obtained by convex scanning can be greatly improved. can be improved.

以上は断層像用信号を得る場合について述べたが、血流
速度を測定するための超音波ドプラ法についても水洗は
適用可能である。ただし、この場合の測定値は角度依存
性があるため受信ビームの偏向角が大きいときはその補
正を行なえばより正確な値を得ることができる。
Although the case of obtaining tomographic signals has been described above, water washing can also be applied to the ultrasonic Doppler method for measuring blood flow velocity. However, since the measured value in this case is angularly dependent, if the deflection angle of the receiving beam is large, a more accurate value can be obtained by correcting it.

[発明の効果] 以上のように本発明では、振動子の配列端部の信号を得
る場合、超音波の受信指向性を外側に偏向することによ
り、端部走査においても、受信振動子数を大幅に減らさ
ないで、分解能の低下がなく且つ広い視野幅の画像を得
ることを可能とした超音波診断装置を提供できる。
[Effects of the Invention] As described above, in the present invention, when obtaining a signal at the end of the array of transducers, the receiving directivity of the ultrasonic waves is deflected outward, thereby reducing the number of receiving transducers even in end scanning. It is possible to provide an ultrasonic diagnostic apparatus that can obtain images with a wide field of view without deteriorating resolution without significantly reducing the number of images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超音波診断装置の一実施例を示す
ブロック図、第2図は本発明の原理を示す図、第3図は
一般的な電子リニア走査型超音波診断装置のブロック図
である。 1・・・アレイプローブ、2・・・送信系、2A・・・
パルス発生器、2B・・・送信遅延回路、2c・・・パ
ルサ、6・・・映像系、6A・・・画像メモリ、6B・
・・TVモニタ、7E・・・加算器、8・・・ディジタ
ル化Bモード処理系、8A・・・包絡線検波回路、8B
・・・対数変換テーブル、9・・・ディジタルDモード
処理系、9Aa。 9Ab・・・リサンプル回路、9Ba、9Bb・・・M
TIフィルタ、10・・・ディジタル受信系、10A・
・・プリアンプ、IOB・・・A/D変換器(A/D−
C) 、I OC・・・シフトレジスタ。 出願人代理人  弁理士 鈴江武彦
FIG. 1 is a block diagram showing an embodiment of an ultrasound diagnostic device according to the present invention, FIG. 2 is a diagram showing the principle of the invention, and FIG. 3 is a block diagram of a general electronic linear scanning ultrasound diagnostic device. It is. 1...Array probe, 2...Transmission system, 2A...
Pulse generator, 2B... Transmission delay circuit, 2c... Pulser, 6... Video system, 6A... Image memory, 6B...
...TV monitor, 7E...Adder, 8...Digitalization B-mode processing system, 8A...Envelope detection circuit, 8B
. . . Logarithmic conversion table, 9 . . . Digital D mode processing system, 9Aa. 9Ab...Resample circuit, 9Ba, 9Bb...M
TI filter, 10...Digital reception system, 10A.
...Preamplifier, IOB...A/D converter (A/D-
C), IOC...shift register. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims]  配列型超音波振動子のうち一部の振動子群をシフトさ
せつつ選択駆動することによって生体内を走査し、少な
くとも超音波断層像情報及び血流速度情報の一方を得る
超音波診断装置において、前記振動子の配列端部の画像
を得る場合に、受信指向性を外側に向けることを特徴と
する超音波診断装置。
An ultrasonic diagnostic apparatus that scans the inside of a living body by selectively driving a group of transducers while shifting some of the array-type ultrasonic transducers, and obtains at least one of ultrasonic tomographic image information and blood flow velocity information, An ultrasonic diagnostic apparatus characterized in that when obtaining an image of an array end of the transducers, reception directivity is directed outward.
JP1034414A 1989-02-14 1989-02-14 Ultrasonic diagnostic equipment Expired - Lifetime JPH0798042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1034414A JPH0798042B2 (en) 1989-02-14 1989-02-14 Ultrasonic diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1034414A JPH0798042B2 (en) 1989-02-14 1989-02-14 Ultrasonic diagnostic equipment

Publications (2)

Publication Number Publication Date
JPH02213330A true JPH02213330A (en) 1990-08-24
JPH0798042B2 JPH0798042B2 (en) 1995-10-25

Family

ID=12413537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1034414A Expired - Lifetime JPH0798042B2 (en) 1989-02-14 1989-02-14 Ultrasonic diagnostic equipment

Country Status (1)

Country Link
JP (1) JPH0798042B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203037A (en) * 2010-03-25 2011-10-13 Toshiba Corp Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
JP2013215259A (en) * 2012-04-05 2013-10-24 Canon Inc Subject information acquisition apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555622A (en) * 1978-06-27 1980-01-16 Yokogawa Electric Works Ltd Ultrasoniccwave diagnosis device
JPS60158843A (en) * 1984-01-27 1985-08-20 横河メディカルシステム株式会社 Ultrasonic diagnostic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555622A (en) * 1978-06-27 1980-01-16 Yokogawa Electric Works Ltd Ultrasoniccwave diagnosis device
JPS60158843A (en) * 1984-01-27 1985-08-20 横河メディカルシステム株式会社 Ultrasonic diagnostic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203037A (en) * 2010-03-25 2011-10-13 Toshiba Corp Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
US9157896B2 (en) 2010-03-25 2015-10-13 Kabushiki Kaisha Toshiba Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
JP2013215259A (en) * 2012-04-05 2013-10-24 Canon Inc Subject information acquisition apparatus

Also Published As

Publication number Publication date
JPH0798042B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
US5172343A (en) Aberration correction using beam data from a phased array ultrasonic scanner
JP2777197B2 (en) Ultrasound diagnostic equipment
US5230340A (en) Ultrasound imaging system with improved dynamic focusing
JP4582827B2 (en) Ultrasonic diagnostic equipment
US5231573A (en) Method and system for acquiring flow velocities in ultrasound diagnosis apparatus
JPH09526A (en) Ultrasonic diagnostic device
JP3070133B2 (en) Ultrasound diagnostic equipment
US5406949A (en) Digital processing for steerable CW doppler
EP0406909B1 (en) Ultrasonic diagnosing apparatus
JPH0790026B2 (en) Ultrasonic diagnostic equipment
US5562097A (en) User control for steerable CW doppler
JPH03155843A (en) Ultrasonic diagnostic device
JP2004329609A (en) Ultrasonic diagnostic apparatus
JPH0614934B2 (en) Ultrasonic diagnostic equipment
JP4537280B2 (en) Ultrasonic diagnostic equipment
JP3180958B2 (en) Ultrasound diagnostic equipment
JPH0581141B2 (en)
JP2831719B2 (en) Ultrasound diagnostic equipment
JPH03261466A (en) Ultrasonic diagnostic device
JPH02213330A (en) Ultrasonic diagnostic apparatus
JPH0722582B2 (en) Ultrasonic diagnostic equipment
JP2010110642A (en) Ultrasonic diagnostic apparatus
JP2760558B2 (en) Ultrasound diagnostic equipment
JPH0467857A (en) Ultrasonic diagnostic device
KR910009411B1 (en) Ultrasonic imaging apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 14