JPH02159927A - High temperature superconducting current limiter - Google Patents
High temperature superconducting current limiterInfo
- Publication number
- JPH02159927A JPH02159927A JP63313967A JP31396788A JPH02159927A JP H02159927 A JPH02159927 A JP H02159927A JP 63313967 A JP63313967 A JP 63313967A JP 31396788 A JP31396788 A JP 31396788A JP H02159927 A JPH02159927 A JP H02159927A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- liquid nitrogen
- current
- current limiting
- limiting element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 66
- 239000007788 liquid Substances 0.000 claims abstract description 33
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 33
- 238000009835 boiling Methods 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 abstract description 3
- 230000008020 evaporation Effects 0.000 abstract description 3
- 239000002360 explosive Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 230000007704 transition Effects 0.000 abstract description 3
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 abstract 1
- 239000002887 superconductor Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は短絡電流を抑制する限流素子として液体窒素温
度以上で超電導となる物質を用いた高温超電導限流装置
に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a high-temperature superconducting current limiting device that uses a substance that becomes superconducting above the temperature of liquid nitrogen as a current limiting element for suppressing short circuit current.
(従来の技術)
限流装置は電力の送電、配電系統において短絡電流を抑
制し、機器を保護するための装置である。(Prior Art) A current limiting device is a device for suppressing short-circuit current and protecting equipment in power transmission and distribution systems.
限流装置として様々な方式が開発されており、液体窒素
温度以上で超電導となる物質を限流素子として用いた限
流装置も既に公知である。Various systems have been developed as current limiting devices, and current limiting devices using a material that becomes superconducting at a temperature higher than liquid nitrogen temperature as a current limiting element are already known.
液体窒素温度以上で超電導となる物質としてはY−Ba
−Cu−0,Ba−ca−8r−o、Tn−Ba−Ca
−Cu−0等の多数の組成のものが発見されている。こ
れらの超電導体は臨界温度以下でも、ある一定収上の電
流が流れると常電導状態に転移し、抵抗体となる。この
状態をクエンチという。またこの電流値を臨界電流(1
o)という。Y-Ba is a substance that becomes superconducting above liquid nitrogen temperature.
-Cu-0, Ba-ca-8r-o, Tn-Ba-Ca
Many compositions such as -Cu-0 have been discovered. Even below the critical temperature, these superconductors transition to a normal conductive state when a certain amount of current flows through them, and become resistors. This state is called quench. In addition, this current value is calculated as the critical current (1
o).
限流装置は高温超電導体のこのような性質を利用したも
のである。即ち通常の電流値を臨界電流(Ic)以下と
し、短絡電流が流れた時、限流素子に臨界電流(Ic)
を越すような電流が流れるようにしておく。このように
すると限流素子は通常は超電導状態で抵抗が無く、短絡
事故が発生ずると抵抗体となり、短絡電流を抑制する。Current limiting devices utilize these properties of high-temperature superconductors. In other words, when the normal current value is set below the critical current (Ic) and a short circuit current flows, the critical current (Ic) is applied to the current limiting element.
Make sure that a current that exceeds the current flows. In this way, the current limiting element is normally in a superconducting state and has no resistance, but when a short circuit accident occurs, it becomes a resistor and suppresses the short circuit current.
第4図には限流装置の構成図を示す。第4図においては
1は限流素子で液体窒素2中に置かれている。液体窒素
2は熱の侵入や限流中の発熱によって蒸発するが冷却器
3によって再び液化される。FIG. 4 shows a configuration diagram of the current limiting device. In FIG. 4, 1 is a current limiting element placed in liquid nitrogen 2. The liquid nitrogen 2 evaporates due to heat intrusion or heat generation during current limiting, but is liquefied again by the cooler 3.
液体窒素2の爆発的な蒸発による容器4の破壊を防ぐた
めに所定の圧力以上になると安全弁5が開き、容器4内
の圧力を低下せしめる。この容器4は断熱のために真空
層6に包まれている。In order to prevent the container 4 from being destroyed due to explosive evaporation of the liquid nitrogen 2, the safety valve 5 opens when the pressure exceeds a predetermined value to reduce the pressure inside the container 4. This container 4 is surrounded by a vacuum layer 6 for heat insulation.
(発明が解決しようとする課題)
ところで送配電系統では保護リレーシステムが短絡電流
を検出するために短絡電流を一定時間以上流し続けなけ
ればならないという制約がある。(Problem to be Solved by the Invention) However, in power transmission and distribution systems, there is a restriction that the short-circuit current must continue to flow for a certain period of time or more in order for the protective relay system to detect the short-circuit current.
この時間は現在、最短で0.3秒でおる。限流装置にも
短絡電流が流れ続けるので限流素子はその開発熱し、温
度も上昇していく。限流装置が用いられる送配電系統で
は雷による瞬時短絡のように短絡状態が直ぐに復旧する
場合には短絡電流が遮断された直後(約0.2秒後)に
通常状態に復帰しなければならない。ところが高温超電
導体を用いた従来の限流素子では温度が高くなり過ぎて
しまい短絡電流遮断後0.2秒では超電導状態に復帰し
ないばかりでなく、限流素子が数回の限流動作で破壊さ
れてしまうという問題点があった。This time is currently 0.3 seconds at the shortest. As the short circuit current continues to flow through the current limiting device, the current limiting element is under development and its temperature rises. In power transmission and distribution systems that use current-limiting devices, if a short-circuit condition is quickly restored, such as an instantaneous short-circuit caused by lightning, normal conditions must be restored immediately after the short-circuit current is interrupted (approximately 0.2 seconds later). . However, with conventional current-limiting elements using high-temperature superconductors, the temperature becomes too high and not only does it not return to the superconducting state within 0.2 seconds after the short-circuit current is interrupted, but the current-limiting element breaks down after several current-limiting operations. There was a problem that it could be done.
第5図には高温超電導体を用いた従来の限流素子の温度
変化を示す。第5図は短絡電流を0.1秒間流し、その
後02秒間冷却した場合の限流素子の温度変化である。FIG. 5 shows the temperature change of a conventional current limiting element using a high temperature superconductor. FIG. 5 shows the temperature change of the current limiting element when a short circuit current is passed for 0.1 seconds and then cooled for 02 seconds.
限流素子の温度は温度上昇ΔTが40Kを越してから急
激に上昇していく。これは限流素子から液体窒素への熱
伝達がこの温度で大きく変化していることに起因する。The temperature of the current limiting element increases rapidly after the temperature rise ΔT exceeds 40K. This is due to the fact that the heat transfer from the current limiting element to the liquid nitrogen changes significantly at this temperature.
第6図には液体窒素中にある物体から液体窒素への熱伝
達の温度変化を示す。熱伝達は物体と液体窒素の温度差
が40に以上で大きく低下する。これは温度差が40に
程度までは核沸騰と呼ばれ液体窒素が物体に殆ど接して
いる状態だが、温度差がそれ以上になると膜沸騰と呼ば
れ、物体の表面に気体窒素の膜が生じ熱伝達が阻害され
るためである。FIG. 6 shows the temperature change of heat transfer from an object in liquid nitrogen to liquid nitrogen. Heat transfer decreases significantly when the temperature difference between the object and liquid nitrogen exceeds 40 degrees. This is called nucleate boiling when the temperature difference is about 40°C, in which liquid nitrogen is almost in contact with the object, but when the temperature difference exceeds this, it is called film boiling, and a film of gaseous nitrogen forms on the surface of the object. This is because heat transfer is inhibited.
また液体窒素の温度は77にで、高温超電導体のうち例
えばY−Ba−Cu−0の臨界温度は約90になので八
Tは10に程度以下にならないと超電導状態に復帰しな
い。第5図の例では短絡電流遮断後0.2秒冷却しても
限流素子のΔ丁は100に程度あるので超電導状態に復
帰せず、したがって短絡事故が解除されても通常の状態
に復旧しない。Further, the temperature of liquid nitrogen is 77, and the critical temperature of Y-Ba-Cu-0 among high-temperature superconductors, for example, is about 90, so that the superconducting state will not be restored unless 8T is reduced to about 10 or less. In the example shown in Figure 5, even if the current limiting element is cooled down for 0.2 seconds after interrupting the short circuit current, the current limiting element does not return to the superconducting state because the ΔT is approximately 100, and therefore the normal state will be restored even if the short circuit accident is resolved. do not.
以上述べたように高温超電導体を用いた限流素子では限
流中の温度上昇を小さくし、冷却効率の高い核沸騰状態
を維持し、短絡電流遮断俊所定の時間内に超電導状態に
復帰させることが必要となる。またこれは素子の熱衝撃
による破壊を防ぐことにもなる。As mentioned above, current limiting elements using high-temperature superconductors reduce the temperature rise during current limiting, maintain a nucleate boiling state with high cooling efficiency, and return to a superconducting state within a predetermined time when short-circuit current is interrupted. This is necessary. This also prevents the element from being destroyed by thermal shock.
本発明は液体窒素の沸騰特性に注目することにより、限
流素子の温度上昇を十分小さくするより短絡電流遮断後
、所定の時間以内に超電導状態に復帰させることができ
、熱衝撃による破壊を防ぐことのできる高温超電導限流
装置を得ることを目的とする。By focusing on the boiling characteristics of liquid nitrogen, the present invention makes it possible to return to the superconducting state within a predetermined time after interrupting the short circuit current by sufficiently reducing the temperature rise of the current limiting element, thereby preventing destruction due to thermal shock. The objective is to obtain a high-temperature superconducting current limiting device that can
(発明の構成)
(課題を解決するための手段および作用)本発明におい
ては上記の課題を解決するために液体窒素の核沸騰領域
で温度上昇が飽和するように限流素子を設計することを
特徴とする。(Structure of the Invention) (Means and Effects for Solving the Problems) In order to solve the above problems, the present invention proposes to design a current limiting element so that the temperature rise is saturated in the nucleate boiling region of liquid nitrogen. Features.
(実施例)
本発明の実施例を第1図、第2図及び第3図を参照して
説明する。(Example) An example of the present invention will be described with reference to FIGS. 1, 2, and 3.
限流素子の温度上昇Δ丁は素子の組成、臨界電流密度が
同一の場合は素子長に依存する。第1図には素子長と最
大湿度上昇の関係を示す。素子長がおる長さ以下になる
と最大温度上昇は急激に大きくなる。これは第6図に示
すように温度上昇が液体窒素の膜沸騰への還移温度(こ
の例では40K >以上になると熱伝達が急減するため
でおる。即ち、素子長が短くなるにしたがって温度は高
くなるが40Kを越す長さ以下になると液体窒素による
冷却が急減するので温度は急上昇する。このように素子
長を適当に設計すると最大温度上昇が液体窒素の膜沸騰
への還移温度以下とすることができる。The temperature rise ΔT of the current limiting element depends on the composition of the element and, if the critical current density is the same, the length of the element. FIG. 1 shows the relationship between element length and maximum humidity increase. When the element length becomes less than the length of the element, the maximum temperature rise increases rapidly. This is because, as shown in Figure 6, when the temperature rise exceeds the film boiling transition temperature of liquid nitrogen (40K in this example), heat transfer rapidly decreases.In other words, as the element length becomes shorter, the temperature increases. However, when the length exceeds 40K, the cooling by liquid nitrogen decreases rapidly, so the temperature rises rapidly.If the element length is designed appropriately in this way, the maximum temperature rise will be below the reduction temperature of liquid nitrogen to film boiling. It can be done.
第2図は本発明による限流素子の温度変化である。第2
図は第5図と同様に短絡電流を0.1秒間流した俊に電
流が遮断され、その後0.2秒間冷却した時の限流素子
の温度上昇へTの変化を示している。この例ではΔ丁は
20に程度で飽和し、その後0.2秒間でΔ王は殆どO
Kにまで冷却され、限流素子は超電導状態に復帰する。FIG. 2 shows the temperature change of the current limiting element according to the present invention. Second
Similar to FIG. 5, the figure shows the change in T as the temperature of the current-limiting element rises when the short-circuit current is passed for 0.1 seconds, the current is immediately cut off, and the current is then cooled for 0.2 seconds. In this example, ΔK reaches saturation at about 20, and after that, ΔK reaches almost 0 in 0.2 seconds.
The current limiting element is cooled down to K and returns to the superconducting state.
膜沸騰への還移温度は冷却条件によって大きく変化する
。例えば液体窒素をファン等を用いて強制循環させるこ
とにより、膜沸騰に還移する温度−を高くすることがで
きる。また限流素子の線径にも依存し、線径か細い方が
還移温度は高くなり、冷却効率も高くなる。The reduction temperature to film boiling varies greatly depending on the cooling conditions. For example, by forcibly circulating liquid nitrogen using a fan or the like, the temperature at which it returns to film boiling can be increased. It also depends on the wire diameter of the current limiting element; the smaller the wire diameter, the higher the reflux temperature and the higher the cooling efficiency.
第3図にはファンを用いた強制循環方式の限流装置の構
成図を示す。第3図において1は限流素子で液体窒素2
によって冷却されている。熱の侵入や限流中の発熱によ
って液体窒素2は蒸発するが冷却器3によって再び液化
される。液体窒素の爆発的な蒸発による容器4の破壊を
防ぐために安全弁5が取り付けられている。また容器4
は真空層6に包まれている。液体窒素を強制的に循環さ
せるためにファン7が取り付けられている。FIG. 3 shows a configuration diagram of a forced circulation type current limiting device using a fan. In Figure 3, 1 is a current limiting element and liquid nitrogen 2
is cooled by. The liquid nitrogen 2 evaporates due to heat intrusion and heat generation during current limiting, but is liquefied again by the cooler 3. A safety valve 5 is installed to prevent destruction of the container 4 due to explosive evaporation of liquid nitrogen. Also container 4
is surrounded by a vacuum layer 6. A fan 7 is installed to forcefully circulate liquid nitrogen.
以上述べたように本発明によれば液体窒素温度以上で超
電導となる物質を限流素子として用いた高温超電導限流
装置において、温度上昇を膜沸騰への還移温度以下に抑
えることにより、短絡電流遮断後、所定の時間以内に超
電導状態に復帰させることができ、また限流素子への熱
衝撃による破壊を防ぐことができる。As described above, according to the present invention, in a high-temperature superconducting current limiting device that uses a material that becomes superconducting above the liquid nitrogen temperature as a current limiting element, short circuits can be achieved by suppressing the temperature rise to below the reflux temperature to film boiling. After the current is interrupted, the superconducting state can be restored within a predetermined time, and damage to the current limiting element due to thermal shock can be prevented.
第1図は限流素子の長さと最大温度上昇の関係を示すグ
ラフ、第2図は本発明における限流素子の温度変化特性
図で、温度上昇が膜沸騰まで至らない場合、第3図は本
発明における限流装置の構成図、第4図は高温超電導体
を用いた従来の限流装置の構成図、第5図は従来の限流
素子の温度変化特性図で、温度上昇が膜沸騰の還移温度
以上になる場合、第6図は液体窒素中にある物体から液
体窒素への熱伝達の温度変化特性図である。
1・・・限流素子 2・・・液体窒素3・・・
冷却器 4・・・容器5・・・安全弁
6・・・真空層7・・・ファン
代理人 弁理士 則 近 憲 侑
同 第子丸 健
!
丁艮胤素子の長さCP、u)
12θ /80 24θ 3θO
晴間(凰S)
第2図
第1図
第
図
時間(yn−5)
第
図
第
図
第
図Figure 1 is a graph showing the relationship between the length of the current-limiting element and the maximum temperature rise, and Figure 2 is a temperature change characteristic diagram of the current-limiting element in the present invention. Fig. 4 is a block diagram of a conventional current limiting device using a high-temperature superconductor, and Fig. 5 is a temperature change characteristic diagram of a conventional current limiting device. FIG. 6 is a temperature change characteristic diagram of heat transfer from an object in liquid nitrogen to liquid nitrogen. 1... Current limiting element 2... Liquid nitrogen 3...
Cooler 4... Container 5... Safety valve
6...Vacuum layer 7...Fan agent Patent attorney Nori Chika Ken Yudo Daikomaru Ken! Length CP, u) of Ding-yang element
Claims (1)
以上で超電導となる物質を用いた高温超電導限流装置に
おいて、限流素子の最高温度上昇の液体窒素の核沸騰領
域もしくはそれに準する熱電導率が得られる温度領域以
下としたことを特徴とする高温超電導限流装置。(1) In a high-temperature superconducting current limiting device that uses a substance that becomes superconducting above the liquid nitrogen temperature as a current limiting element to suppress short-circuit current, the maximum temperature rise of the current limiting element is in the nucleate boiling region of liquid nitrogen or equivalent to that temperature. A high-temperature superconducting current limiting device characterized in that the temperature is below a temperature range in which conductivity is obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63313967A JPH02159927A (en) | 1988-12-14 | 1988-12-14 | High temperature superconducting current limiter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63313967A JPH02159927A (en) | 1988-12-14 | 1988-12-14 | High temperature superconducting current limiter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02159927A true JPH02159927A (en) | 1990-06-20 |
Family
ID=18047639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63313967A Pending JPH02159927A (en) | 1988-12-14 | 1988-12-14 | High temperature superconducting current limiter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02159927A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008503884A (en) * | 2004-06-24 | 2008-02-07 | シーメンス アクチエンゲゼルシヤフト | Current limiting device with superconducting switching element |
WO2012157494A1 (en) * | 2011-05-18 | 2012-11-22 | 住友電気工業株式会社 | Fault current limiter |
JP2014179592A (en) * | 2013-02-13 | 2014-09-25 | Furukawa Electric Co Ltd:The | Superconducting fault current limiter and cooling method of superconducting element in superconducting fault current limiter |
JP2014179591A (en) * | 2013-02-13 | 2014-09-25 | Furukawa Electric Co Ltd:The | Superconducting fault current limiter and cooling method of superconducting element in superconducting fault current limiter |
EP2621043A3 (en) * | 2012-01-26 | 2017-09-06 | Rolls-Royce plc | Current Limiter |
-
1988
- 1988-12-14 JP JP63313967A patent/JPH02159927A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008503884A (en) * | 2004-06-24 | 2008-02-07 | シーメンス アクチエンゲゼルシヤフト | Current limiting device with superconducting switching element |
WO2012157494A1 (en) * | 2011-05-18 | 2012-11-22 | 住友電気工業株式会社 | Fault current limiter |
CN103548163A (en) * | 2011-05-18 | 2014-01-29 | 住友电气工业株式会社 | Fault current limiter |
JP5800018B2 (en) * | 2011-05-18 | 2015-10-28 | 住友電気工業株式会社 | Current limiter |
US9190838B2 (en) * | 2011-05-18 | 2015-11-17 | Sumitomo Electric Industries, Ltd. | Fault current limiter |
EP2621043A3 (en) * | 2012-01-26 | 2017-09-06 | Rolls-Royce plc | Current Limiter |
JP2014179592A (en) * | 2013-02-13 | 2014-09-25 | Furukawa Electric Co Ltd:The | Superconducting fault current limiter and cooling method of superconducting element in superconducting fault current limiter |
JP2014179591A (en) * | 2013-02-13 | 2014-09-25 | Furukawa Electric Co Ltd:The | Superconducting fault current limiter and cooling method of superconducting element in superconducting fault current limiter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910003660B1 (en) | Super conducting current limiting apparatus | |
US20070204632A1 (en) | Multi-bath apparatus and method for cooling superconductors | |
EP0761030B1 (en) | Current limiting device | |
JPH0138361B2 (en) | ||
JPS62138021A (en) | Ac current limiter | |
US8718733B2 (en) | Superconducting fault current limiter recovery system | |
JPH02159927A (en) | High temperature superconducting current limiter | |
US4486800A (en) | Thermal method for making a fast transition of a superconducting winding from the superconducting into the normal-conducting state, and apparatus for carrying out the method | |
JPH02174523A (en) | Fault current limiter | |
JPH01283020A (en) | Superconducting apparatus | |
JPH1131424A (en) | Superconducting current limiting cable | |
US7532443B2 (en) | Current-limiting device having a superconductive switching element | |
JPH01185128A (en) | Self-reset current limiter | |
JPS6086808A (en) | Protective device for superconducting device | |
JP2831823B2 (en) | Superconducting current limiter | |
JPS6026435Y2 (en) | current limiting fuse | |
JPH0554244B2 (en) | ||
JPS6352444B2 (en) | ||
JPH02269413A (en) | Current limiting device | |
JPS6156856B2 (en) | ||
JPH0223029A (en) | Current limiter | |
JPH02294222A (en) | Current-limiting apparatus | |
JPH01198229A (en) | Superconduction current limiter | |
JP2778040B2 (en) | Superconducting transformer | |
JPH01283019A (en) | Current limiter |