Nothing Special   »   [go: up one dir, main page]

JPH0139972B2 - - Google Patents

Info

Publication number
JPH0139972B2
JPH0139972B2 JP8908081A JP8908081A JPH0139972B2 JP H0139972 B2 JPH0139972 B2 JP H0139972B2 JP 8908081 A JP8908081 A JP 8908081A JP 8908081 A JP8908081 A JP 8908081A JP H0139972 B2 JPH0139972 B2 JP H0139972B2
Authority
JP
Japan
Prior art keywords
glass
furnace
zone
molten glass
laminar flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8908081A
Other languages
Japanese (ja)
Other versions
JPS57205328A (en
Inventor
Sakichi Nakajima
Shuichi Yamazaki
Hiroaki Shono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP8908081A priority Critical patent/JPS57205328A/en
Publication of JPS57205328A publication Critical patent/JPS57205328A/en
Publication of JPH0139972B2 publication Critical patent/JPH0139972B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/0275Shaft furnaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】 本発明は溶融ガラス自体に直接通電し、そのジ
ユール熱によつて原料ガラスバツチを溶融し、そ
の溶融ガラスを均質化及び清澄化する電気溶融
炉、特に溶融ガラスをスロート、ライザー及びフ
イーダーを経由せしめることなしに直接ガラス繊
維を紡糸する、そのような電気溶融炉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric melting furnace that applies electricity directly to the molten glass itself, melts a batch of raw glass by the heat of the molten glass, and homogenizes and clears the molten glass. The present invention relates to such an electric melting furnace that spins glass fibers directly without passing them through risers and feeders.

ガラス製品、例えばガラス繊維は工業的には一
般に粉末の原料ガラスバツチを耐火材料から構成
される溶融平炉において火炎により溶融、清澄化
し、その溶融ガラスをチヤンネルを介して耐火材
料より成るフオーハースに導びき、コンデイシヨ
ニングを行いつつそのフオーハースの底部に配設
された複数の白金製ブツシングからその構成白金
材料の通電による抵抗発熱によつて温度制御しつ
つ紡糸することによつて製造される(例えば、特
公昭39−5219号及び同46−34941号公報を参照)。
Glass products, such as glass fibers, are produced industrially by melting and clarifying powdered raw material glass batches with flame in an open hearth melting furnace made of a refractory material, and guiding the molten glass through a channel to a forehearth made of a refractory material. It is manufactured by spinning a plurality of platinum bushings arranged at the bottom of the fabric while conditioning and controlling the temperature by resistive heat generation by energizing the constituent platinum material (for example, (See Special Publication No. 39-5219 and Publication No. 46-34941).

このような溶融平炉とフオーハースより成る溶
融、清澄、成形系に対して、近年縦型の電気溶融
炉が開発された。この縦型電気溶融炉は電極を炉
の比較的上部に適正に配置し、炉内溶融ガラスに
直接通電するとき、溶融ガラスに適当な縦方向の
温度分布が生ずるとともに、そのとき炉内上方の
相対的に高温、低密度の溶融ガラスは下方の相対
的に低温、高密度の溶融ガラス領域には重力に逆
つてまでは混入し難いことから同一炉内の相対的
に上方においては溶融ガラスの加熱対流領域が、
一方相対的に下方においては溶融ガラスの層流清
澄領域が形成されるという単純な原理に基づくも
のである。このように、電気溶融炉はガラスバツ
チの溶融―撹拌―拡散を同一炉内で自然に、かつ
機能的に達成し、そして炉底近傍において均質、
清澄化された溶融ガラスを得るという従来の平炉
系には認められない溶融理論の明解さとプロセス
上の単純さを持ち、かくして装置の小型化と熱効
率の向上を達成している。電気エネルギーの使用
はかつてその効率を考慮に入れても化石燃料に比
較して割高であつたが、電気溶融炉におけるプロ
セスの単純性、高効率性は近年の化石燃料の高騰
とあいまつてその有利性を次第に高め、新しいガ
ラス溶融技術としてその地位を確立しつつある。
In contrast to such a melting, fining, and forming system consisting of an open hearth melting furnace and a steel melting furnace, a vertical electric melting furnace has recently been developed. In this vertical electric melting furnace, the electrodes are appropriately placed relatively at the upper part of the furnace, and when electricity is applied directly to the molten glass in the furnace, an appropriate vertical temperature distribution is generated in the molten glass, and at the same time, the electrodes are placed in the upper part of the furnace. The relatively high temperature, low density molten glass is difficult to mix into the relatively low temperature, high density molten glass region below, even against the force of gravity. The heating convection area is
On the other hand, it is based on the simple principle that a laminar clear region of molten glass is formed relatively below. In this way, the electric melting furnace naturally and functionally achieves melting, stirring, and diffusion of glass batches in the same furnace, and achieves homogeneous melting near the bottom of the furnace.
It has a clear melting theory and a simple process that are not found in conventional open hearth systems that produce clarified molten glass, and thus achieves miniaturization of equipment and improved thermal efficiency. The use of electrical energy used to be expensive compared to fossil fuels even when efficiency was taken into account, but the simplicity and high efficiency of the process in electric melting furnaces, combined with the recent rise in the price of fossil fuels, has given rise to its advantages. It is gradually improving its properties and establishing itself as a new glass melting technology.

このような電気溶融炉として、例えば特公昭52
−26884号公報は溶解タンクの上方部分内の少な
くとも1つの溶解帯域で少なくとも2つの複数レ
ベルにおいて溶融ガラスに通電することによつて
熱エネルギーを発生させ、それによつて前記複数
レベルにおいて方向が相反する溶融ガラスの循環
流を生成、維持する三相交流電極配置を持つ電気
溶融炉及び溶解方法を開示している。
As such an electric melting furnace, for example,
Publication No. 26884 generates thermal energy by energizing the molten glass at at least two levels in at least one melting zone in the upper part of a melting tank, such that the levels are opposite in direction. An electric melting furnace and method is disclosed having a three-phase AC electrode arrangement that creates and maintains a circulating flow of molten glass.

また、特開昭47−13618号公報は炉内複数平面
に電極群を持つガラス電気溶融炉において、1平
面の電極群の内端部をその上方及び下方の平面の
電極群の端部間の間隙に位置せしめ、かくして各
下位平面の上昇ガラス流を上位平面との境界面に
おいて各上位平面の下降ガラス流と会合させ、各
ガラス流が他方の平面内に浸入するのを阻止する
電気溶融炉と溶融方法を開示している。
In addition, Japanese Patent Application Laid-Open No. 47-13618 discloses that in a glass electric melting furnace having electrode groups on multiple planes in the furnace, the inner end of the electrode group on one plane is connected between the ends of the electrode groups on the plane above and below. an electric melting furnace located in the gap, thus causing the ascending glass stream of each lower plane to meet the descending glass stream of each upper plane at the interface with the upper plane, and preventing each glass stream from penetrating into the other plane; and a melting method.

さらに、特公昭56−9455号公報は電気溶融炉に
おいて溶融ガラスの上に堆積する未溶融のガラス
バツチあるいは不完全溶融バツチが電極付近の炉
壁に向つて対流するのを最小限に抑制するため
に、溶融ガラスに浸漬されている電極の上方で、
かつ溶融ガラスと接触しない位置において炉壁に
バツチ邪魔板手段を装着した電気溶融炉を開示し
ている。
Furthermore, Japanese Patent Publication No. 56-9455 discloses a method for minimizing convection of unmelted glass batches or incompletely melted glass batches deposited on molten glass in an electric melting furnace toward the furnace wall near the electrodes. , above an electrode that is immersed in molten glass,
Moreover, an electric melting furnace is disclosed in which a batch baffle plate means is attached to the furnace wall at a position where it does not come into contact with the molten glass.

これらの公報を含めて従来の電気溶融炉はその
水平断面形状としてn=2以上の正3n角形、普
通は6〜12角形、典形的には6角形の構造を取る
点で共通している。例えば、前記特公昭52−
26884号公報は6角形の上方垂直部とこれに連接
する倒立6角錐形の漏斗形底部から成る炉構造を
開示し、また前記特開昭47−13618号及び特公昭
56−9455号公報は共に6角形の角柱構造を開示し
ている。
Conventional electric melting furnaces, including these publications, have in common that their horizontal cross-sectional shape is a regular 3n square with n = 2 or more, usually a hexagon to a dodecagon, and typically a hexagon. . For example, the above-mentioned special public service
No. 26884 discloses a furnace structure consisting of a hexagonal upper vertical part and an inverted hexagonal pyramidal funnel-shaped bottom part connected thereto, and also discloses a furnace structure consisting of a hexagonal upper vertical part and an inverted hexagonal pyramidal funnel-shaped bottom part, and
56-9455 both disclose hexagonal prism structures.

ガラス溶融炉はガラスバツチの溶融に千数百度
の温度が必要とされることから、そのような温度
に耐え得る耐火レンガ等の耐火材料で構成される
が、これらの耐火材料は周知のように溶融ガラス
による侵蝕を避けられず、その耐用年数は2〜3
年程度といわれている。耐用年数経過後、炉は改
修を受け、あるいは新たに建造されるが、その炉
コストはガラス製品の生産コストのかなり大きな
部分を占める。一方、耐火材料の溶融ガラスによ
る侵蝕は操業初期には実際上問題にならないが、
操業後期に近ずくにつれて炉の安全操業にとつて
大きな問題になる。従つて、炉形態の単純さと炉
構造の安定さは炉建造、あるいは炉に対する支
持、補強工作の容易さを保証するのみならず、炉
の耐久性を高め、且つ炉の操業安全性を確保する
意味においても重要なフアクターである。これら
の観点から従来の電気溶融炉を検討すると、その
多角形態は炉建造の技術的困難さを増し、また外
部からの支持、補強工作を複雑、困難にするとと
もに、多角形態に基づく耐火材料相互間の接合目
地部の多さは溶融ガラスによる侵蝕がより激しく
進行する侵蝕部位の増大につながり、炉の深さが
平炉の数倍に及ぶことと相まつて炉の総合的な構
造安定性を阻害する要因となつている。
Glass melting furnaces require temperatures of over 1,000 degrees to melt glass batches, so they are constructed of refractory materials such as refractory bricks that can withstand such temperatures. Corrosion caused by glass cannot be avoided, and its service life is only 2 to 3 years.
It is said to be around 20 years old. At the end of their useful life, furnaces are refurbished or newly built, and the cost of the furnace represents a significant portion of the cost of producing glass products. On the other hand, corrosion of fireproof materials by molten glass is not a practical problem in the early stages of operation;
The safe operation of the furnace becomes a major problem as it approaches the latter stages of operation. Therefore, the simplicity of the furnace form and the stability of the furnace structure not only guarantee the ease of furnace construction, support and reinforcement work for the furnace, but also increase the durability of the furnace and ensure the operational safety of the furnace. It is also an important factor in meaning. When considering conventional electric melting furnaces from these viewpoints, the polygonal shape increases the technical difficulty of furnace construction, makes external support and reinforcement work complicated and difficult, and makes it difficult to use refractory materials based on the polygonal shape. The large number of joints between the two leads to an increase in the number of eroded areas where erosion by molten glass progresses more vigorously, and this, together with the fact that the depth of the furnace is several times that of an open hearth, impedes the overall structural stability of the furnace. This is a contributing factor.

従来の電気溶融炉に共通しているもう1つの点
は、溶融炉がスロート等の通路を介してライザー
あるいは他の流通路に接続され、順次成形装置に
接続されるか、あるいはさらにフイーダー、を介
して成形装置に接続されて用いられることであ
る。例えば前記特公昭52−26884号公報は溶融ガ
ラスを漏斗形底部の側壁に設けた栓付き開口に接
続される流通路にそのふん囲気と接して自由表面
を形成するように通し、溶融ガラスをコンデイシ
ヨニングしつつ成形機に送ることを教示し、また
特開昭47−13618号公報は、その炉底陥入出口は
スロートを介して直立したガラス通路(ライザ
ー)に通じ、溶融ガラスはこのライザーからフイ
ーダー通路あるいはフイーダーに送られ、温度制
御されて成形のために取り出されることを開示し
ている。
Another feature common to conventional electric melting furnaces is that the melting furnace is connected to a riser or other flow path through a passage such as a throat, and is connected to a sequential forming device or even a feeder. It is used by being connected to a molding device via a molding device. For example, in the above-mentioned Japanese Patent Publication No. 52-26884, molten glass is passed through a flow path connected to a stoppered opening provided in the side wall of a funnel-shaped bottom so as to form a free surface in contact with the surrounding air. JP-A No. 47-13618 teaches that the inlet and outlet of the furnace bottom communicate with an upright glass passage (riser) through a throat, and the molten glass is sent to the molding machine through a throat. It is disclosed that the material is sent from the riser to a feeder passage or feeder, temperature controlled, and removed for molding.

このような配置は最終製品に成形されるべき溶
融ガラスに各製品の成形条件に応じたリフアイニ
ングあるいは温度、粘度条件の調整のためのコン
デイシヨニング、さらには成形圧力に関連したガ
ラスレベルの調整などが必要になることに由来し
ているが、他方でこのような配置は本来的に次の
ような問題点あるいは矛盾点を内包している。
This arrangement is used to refine the molten glass to be molded into the final product according to the molding conditions of each product, or to condition it to adjust the temperature and viscosity conditions, as well as to adjust the glass level related to molding pressure. However, on the other hand, such an arrangement inherently includes the following problems or contradictions.

すなわち、ライザー、フイーダー等の付加設備
及びこれらにおけるリフアイニング及び/又はコ
ンデイシヨニングの必要は必然的に設備上、エネ
ルギー上のコスト増をもたらしている。このコス
ト増は生産規模が比較的小さい場合にその比重が
より高くなる。
That is, the need for additional equipment such as risers and feeders, and for refining and/or conditioning of these equipment, inevitably results in increased costs in terms of equipment and energy. This cost increase becomes more significant when the scale of production is relatively small.

また、電気溶融炉において、均質化及び清澄化
されたガラスがライザー、フイーダーの耐火材料
と接触することによつて耐火材料の溶出による汚
染や、特にフイーダー部におけるガラス成分、例
えばB2O3あるいはアルカリ金属酸化物の蒸発に
よつて新たに不均質化を受けるという問題もあ
る。
In addition, in an electric melting furnace, when the homogenized and clarified glass comes into contact with the refractory material of the riser and feeder, contamination due to elution of the refractory material and glass components such as B 2 O 3 or There is also the problem of additional heterogeneity caused by evaporation of alkali metal oxides.

ところで、原料ガラスバツチの溶融過程におい
て、溶融ガラスには周知のように気―液間に平衝
関係が成立し、溶解ガスが存在する。従つて、も
し温度が一定ならば圧力の変化は溶融ガラスにお
ける気泡の発生及び消失に大きな影響を及ぼすこ
とになる。一方、通常の縦型炉において溶融ガラ
スは一般に約1.5〜3mの深さを持ち、その表面
と底面の間には約0.38〜0.75Kg/cm2に相当する圧
力差が存在する。これは前記の気泡の発生及び消
失に影響を及ぼす十分な圧力である。かくして、
溶融ガラスをふん囲気との間で自由表面を形成さ
せつつ流通路を通し、あるいはライザーに通して
持ち上げることはガラスが受けていた圧力の解放
を意味し、清澄の完了した溶融ガラスに再び気泡
を発生させる状態に至らしめるという矛盾点を本
来的に持つていることになる。
By the way, during the melting process of raw glass batches, as is well known, an equilibrium relationship exists between gas and liquid, and dissolved gas is present in the molten glass. Therefore, if the temperature is constant, changes in pressure will have a significant effect on the generation and disappearance of bubbles in the molten glass. On the other hand, in a typical vertical furnace, the molten glass generally has a depth of about 1.5 to 3 m, and a pressure difference of about 0.38 to 0.75 Kg/cm 2 exists between the surface and the bottom. This is sufficient pressure to influence the generation and disappearance of the bubbles. Thus,
Lifting the molten glass through a flow path or through a riser while forming a free surface between it and the surrounding air means releasing the pressure on the glass and reintroducing air bubbles into the fined molten glass. This inherently has the paradox of bringing about the state in which it occurs.

本発明者は、ガラス繊維の製造において、縦型
電気溶融炉における層流清澄条件を適正に制御す
るとき、溶融ガラスをライザー、フイーダーを経
由せしめることなしに、従つて溶融ガラスの圧力
を解放することなしに直接電気溶融炉から紡糸す
ることができ、しかもガラス繊維の紡糸法として
見たとき、従来の電気溶融炉―フイーダー系ある
いは従来の平炉系によつては本来的に得られない
加圧紡糸を、何んらの付加手段も必要とせずに達
成できることを見い出して本発明を完成した。
In the production of glass fiber, the present inventor has discovered that when properly controlling the laminar flow fining conditions in a vertical electric melting furnace, the pressure of the molten glass can be released without passing the molten glass through a riser or feeder. It is possible to spin fibers directly from an electric melting furnace without any problems, and when viewed as a glass fiber spinning method, it is possible to pressurize fibers that cannot be obtained with the conventional electric melting furnace-feeder system or the conventional open hearth system. The present invention has been completed by discovering that spinning can be accomplished without the need for any additional means.

かくして、本発明はスロート、ライザー及びフ
イーダーを経由せしめることなしにガラス繊維を
紡糸することができる、炉底面にガラス繊維の紡
糸装置を直接有するガラスの縦型電気溶融炉を提
供することを目的とする。
Thus, an object of the present invention is to provide a vertical electric glass melting furnace having a glass fiber spinning device directly on the bottom of the furnace, which can spin glass fiber without passing through a throat, riser, or feeder. do.

本発明の他の目的はガラス繊維の紡糸装置の有
利な配置を可能にし、しかも構造安定性の高い、
炉底面にガラス繊維の紡糸装置を直接有するガラ
スの縦型電気溶融炉を提供することにある。
Another object of the present invention is to enable an advantageous arrangement of glass fiber spinning equipment and to provide a highly structurally stable spinning device.
An object of the present invention is to provide a vertical electric glass melting furnace having a glass fiber spinning device directly on the bottom of the furnace.

本発明によれば、基本的には、頂部に原料ガラ
スバツチの受容開口を有する原料ガラスバツチの
溶融対流区域と;炉底区域に溶融ガラスを取り出
すための開口を有すると共に前記溶融対流区域の
下方に連接し、前記溶融対流区域のガラスヘツド
が直接作用する関係にある溶融ガラスの層流清澄
区域と;前記溶融対流区域内の溶融ガラスに浸漬
される位置において該区域を画成している周壁に
貫通、配設されている、溶融ガラスに直接通電す
るための電極群とから成る電気溶融炉において: (イ) 前記溶融対流区域の下端において、該区域を
画成する周壁からそれより内部に向かう棚段が
延在し; (ロ) 前記層流清澄区域は前記棚段の周縁より垂直
下方に炉底まで延在し; (ハ) 溶融ガラスを取り出すための前記開口は炉底
に直接垂直に複数個形成され; (ニ) 前記各垂直開口の出口側に直接ガラス繊維の
紡糸装置を配設し;そして (ホ) 前記電極群は前記溶融対流区域のみに少なく
とも1つの水平レベルで配設され、一方前記層
流清澄区域には何んらの加熱手段も配設されて
いない ことを特徴とする、特に層流清澄区域における溶
融ガラスの均質、清澄化の過程において、ガラス
繊維の直接紡糸に必要な溶融ガラスの均質、清澄
状態とその紡糸に必要な温度―粘度条件を同時に
満足するのに十分な溶融ガラスの該区域における
滞留と該区域からの自然放熱を達成するガラス繊
維を直接紡糸するための電気溶融炉が提供され
る。
According to the invention, basically a melting convection zone for the raw glass batches has a receiving opening for the raw glass batches at the top; an opening for taking out the molten glass in the furnace bottom zone and is connected below said melting convection zone. a laminar flow clarification zone of molten glass in which the glass head of said molten convection zone is in direct acting relationship; a penetrating wall defining said zone at a location immersed in molten glass within said molten convection zone; In an electric melting furnace comprising a group of electrodes for directly applying electricity to the molten glass, the furnace includes: (a) At the lower end of the melting convection area, a shelf extending inward from the peripheral wall defining the area; (b) The laminar flow clarification zone extends vertically downward from the periphery of the tray to the furnace bottom; (c) The plurality of openings for taking out the molten glass are arranged directly perpendicular to the furnace bottom. (d) a glass fiber spinning device is disposed directly on the exit side of each of said vertical openings; and (e) said electrode group is disposed on at least one horizontal level only in said melt convection area, while The laminar flow clarification zone is characterized in that no heating means is provided, especially in the process of homogenizing and clarifying the molten glass in the laminar flow clarification zone, which is necessary for direct spinning of glass fibers. For direct spinning of glass fibers, sufficient retention of the molten glass in the area and natural heat dissipation from the area are achieved to simultaneously satisfy the homogeneity and clearness of the molten glass and the temperature-viscosity conditions necessary for its spinning. An electric melting furnace is provided.

この本発明の電気溶融炉によれば、溶融炉内で
溶融、均質化及び清澄化された溶融ガラスをライ
ザー及びフイーダーを経由せしめることなしに直
接炉底開口に接続された紡糸装置に供給し、ガラ
ス繊維に紡糸することができ、かくして前記の従
来電気溶融炉による成形の技術的、経済的問題点
及び矛盾点を解決するとともに、溶融炉における
加圧状態の溶融ガラスの成形装置への直接供給は
何んらの加圧手段も必要とせずに加圧成形を達成
する。この加圧成形、特にガラス繊維の加圧紡糸
は紡糸装置のオリフイスプレート又はノズルプレ
ートに設けられているオリフイスはチツプノズル
を通る溶融ガラスの流出性とオリフイス又はチツ
プノズル出口に形成される溶融ガラスコーンの分
離特性を著しく改良、向上せしめ、かくしてまた
オリフイス又はノズルの密接化、ひいては紡糸装
置の小型化、さらには電気溶融炉自体の小型化、
高効率化を可能にする。
According to the electric melting furnace of the present invention, the molten glass melted, homogenized, and clarified in the melting furnace is supplied directly to the spinning device connected to the bottom opening of the furnace without passing through the riser and the feeder, can be spun into glass fibers, thus solving the technical and economical problems and inconsistencies of conventional electric melting furnace forming, as well as supplying molten glass under pressure in the melting furnace directly to the forming equipment. achieves pressure forming without the need for any pressure means. This pressure forming, especially pressure spinning of glass fibers, is carried out in the orifice plate or nozzle plate of the spinning device. The characteristics are significantly improved and improved, and thus the orifice or nozzle becomes closer together, the spinning apparatus becomes smaller, and the electric melting furnace itself becomes smaller.
Enables high efficiency.

本発明は、特に好ましい態様として、前記本発
明のガラス繊維の直接紡糸用電気溶融炉におい
て、その溶融対流区域と層流清澄区域の各水平断
面形状を方形に形成したことを特徴とするガラス
繊維の直接紡糸のための電気溶融炉を提供する。
As a particularly preferred embodiment of the present invention, in the electric melting furnace for directly spinning glass fibers of the present invention, each horizontal cross-sectional shape of the melting convection zone and the laminar flow clarification zone is formed into a rectangular shape. provides an electric melting furnace for direct spinning of

この好ましい態様によれば、複数の紡糸装置の
電気溶融炉に対する経済的配置と紡糸作業を容易
にする効果的配置が可能になるとともに、この方
形断面構造は炉の建造とその支持、補強工作を容
易にし、また溶融ガラスによる侵蝕がより激しく
進行する耐火材料間の接合目地部を減少させ、か
くして炉の総合的な構造安定性を著しく向上させ
る。また、炉内溶融ガラスの良好なコンデイシヨ
ニングのための好適な自然放熱を達成させる。
According to this preferred embodiment, an economical arrangement of a plurality of spinning devices in the electric melting furnace and an effective arrangement to facilitate the spinning operation are possible, and the rectangular cross-sectional structure facilitates the construction of the furnace and its support and reinforcement work. This also reduces joints between refractory materials where erosion by molten glass is more severe, thus significantly improving the overall structural stability of the furnace. In addition, suitable natural heat dissipation for good conditioning of the molten glass in the furnace is achieved.

以上の本発明を添附図面を参照してさらに説明
する。しかし、図示電気溶融炉は本発明の好まし
い実施態様であつて、本発明はこれに限定されな
いことはもちろんである。
The present invention described above will be further explained with reference to the accompanying drawings. However, the illustrated electric melting furnace is a preferred embodiment of the present invention, and it goes without saying that the present invention is not limited thereto.

添附図面において、第1図及び第2図は本発明
による成形装置付き電気溶融炉に関し、そして第
1図はその正面縦断面図を、また第2図は第1図
の―面の横断面図をそれぞれ示す。
In the accompanying drawings, FIGS. 1 and 2 relate to an electric melting furnace with a forming device according to the present invention, and FIG. 1 is a front longitudinal sectional view thereof, and FIG. are shown respectively.

これらの図において、電気溶融炉1はその上部
を構成する溶融ガラスの溶融対流区域2とその下
部を構成する溶融ガラスの層流清澄区域3から成
り、そして溶融対流区域2には溶融ガラスに通電
するための電極4が配設されている。
In these figures, an electric melting furnace 1 consists of a melting convection zone 2 for molten glass constituting its upper part and a laminar flow fining zone 3 for molten glass constituting its lower part, and in the melting convection zone 2, an electric current is applied to the molten glass. An electrode 4 is provided for this purpose.

溶融対流区域2は耐火レンガから成る周壁5に
よつて画成され、その下端において同周壁より内
部に向けて棚段6が延在、形成され、またその頂
部は原料ガラスバツチを受容し、炉内溶融ガラス
7の上にガラスバツチの堆積層8を形成するため
に全解放されている。この頂部開放口の上方に
は、図示されないが、原料ガラスバツチの供給装
置が配置され、ガラスバツチがその開放口に連続
又は断続的に供給、好ましくは散布、供給される
ようになつている。この溶融対流区域2の大きさ
は原料ガラスバツチの処理量に主として依存する
が、公知の縦型電気溶融における常用設計値から
選ぶことができる。
The melting convection zone 2 is defined by a peripheral wall 5 made of refractory bricks, at the lower end of which a shelf 6 extends inward from the peripheral wall, the top of which receives raw glass batches and is placed inside the furnace. It is fully opened to form a deposited layer 8 of glass batches on top of the molten glass 7. Although not shown, a feeding device for raw glass batches is disposed above the top opening, and the glass batches are continuously or intermittently fed into the opening, preferably by being dispersed. The size of this melting convection zone 2 depends primarily on the throughput of the raw glass batch, but can be selected from customary design values for known vertical electric melting.

この溶融対流区域2においてガラスバツチが溶
融され、熱対流下である程度清澄、均質化が行わ
れる。また、棚段6は周壁5に沿う溶融ガラスの
もどし流を規制し、その汚染ガラスの層流清澄区
域への浸入を阻止するとともに、結果として層流
清澄区域3に均質、清澄化の機能を維持するのに
十分な面積を与えつつ上部溶融対流区域2の面積
を相対的に増大させ、かくしてガラスバツチの溶
融量を相対的に増し、且つ炉内温度を若干低下さ
せるという望ましい結果を生む。
In this melting convection zone 2, the glass batch is melted and to some extent clarified and homogenized under thermal convection. In addition, the tray 6 regulates the return flow of the molten glass along the peripheral wall 5, prevents the contaminated glass from entering the laminar flow clarification zone, and as a result imparts homogenization and clarification functions to the laminar flow clarification zone 3. The desirable result is to relatively increase the area of the upper melt convection zone 2 while still providing sufficient area to maintain the melting rate, thus relatively increasing the melting amount of the glass batch and reducing the furnace temperature slightly.

一方、層流清澄区域3は前記棚段6の周縁より
垂直下方に連接、延在する、同様に耐火レンガか
ら成る周壁9と炉底壁10によつて画成されてい
る。この層流清澄区域3において溶融対流区域2
から連続供給される溶融ガラスは実質的に完全に
均質化及び清澄化される。
On the other hand, the laminar flow clarification zone 3 is defined by a peripheral wall 9 and a hearth bottom wall 10, which are also made of firebrick and are connected and extend vertically downward from the periphery of the tray 6. In this laminar flow clearing zone 3, the melting convection zone 2
The molten glass continuously fed from the molten glass is substantially completely homogenized and refined.

層流清澄区域3において、その断面積は少なく
とも溶融ガラスが層流状態を維持して炉底方向に
流れるのに十分な広さでなければならない。この
層流状態を維持するのに必要な断面積は炉底から
の直接成形のための溶融ガラスの引出量に依存
し、従つて相対的である。このような断面積にお
いて、層流清澄区域3は溶融対流区域2に対して
約0.3〜0.9倍の断面積比を持つのが直接成形のた
めに好ましく、そして約0.5〜0.9倍の断面積比が
特に好ましい。この断面積比は溶融対流区域2の
寸法を常用設計値の範囲から選ぶ限り、炉底から
の溶融ガラスの引出量を考慮しても、この区域に
おける溶融ガラスに前記層流状態を維持するのに
十分な値である。さらに、この層流清澄区域3に
おいて、その深さはその層流清澄区域の最大幅に
対して約0.4〜1.0倍の値を持つのが好ましく、そ
して約0.5〜0.7倍の値を持つのがさらに好まし
い。これらの断面積及び深さは主として溶融ガラ
スのこの区域における帯留時間と炉壁からの放熱
量を規制するが、前記値の断面積と深さの組み合
わせは、この区域で行われる均質、清澄化の過程
において、溶融ガラスに層流状態を維持しつつ、
この発明の電気溶融炉による直接成形に適した溶
融ガラスの均質、清澄状態を達成し、同時に成形
に必要な温度―粘度条件を満足する、必要十分な
帯留時間と放熱量を特に良好に保証する。
In the laminar flow clarification zone 3, its cross-sectional area must be at least large enough to allow the molten glass to maintain a laminar flow state and flow toward the bottom of the furnace. The cross-sectional area required to maintain this laminar flow condition depends on the amount of molten glass withdrawn for direct forming from the furnace bottom and is therefore relative. In such cross-sectional areas, it is preferred for direct molding that the laminar flow clarification zone 3 has a cross-sectional area ratio of about 0.3 to 0.9 times to the melt convection zone 2, and a cross-sectional area ratio of about 0.5 to 0.9 times. is particularly preferred. This cross-sectional area ratio is such that as long as the dimensions of the molten convection zone 2 are selected from the range of commonly used design values, the molten glass in this zone can maintain the laminar flow state even when the amount of molten glass drawn out from the furnace bottom is considered. is of sufficient value. Further, in this laminar flow clearing zone 3, the depth preferably has a value of about 0.4 to 1.0 times the maximum width of the laminar flow clearing zone, and preferably has a value of about 0.5 to 0.7 times the maximum width of the laminar flow clearing zone. More preferred. These cross-sectional areas and depths primarily regulate the residence time of the molten glass in this area and the amount of heat dissipated from the furnace walls, but the combination of the above-mentioned values of cross-sectional areas and depths is important for the homogenization and fining that takes place in this area. In the process, while maintaining the laminar flow state in the molten glass,
Achieving a homogeneous and clear state of molten glass suitable for direct molding using the electric melting furnace of this invention, and at the same time ensuring particularly well the necessary and sufficient residence time and amount of heat dissipation to satisfy the temperature-viscosity conditions necessary for molding. .

前記炉底壁10には少なくとも1個、一般的に
は複数個の垂直開口11が形成され、そのそれぞ
れに直接ガラス繊維15を紡糸するためのブツシ
ング12が取り付けられている。これらのブツシ
ングによる全紡糸量は層流清澄区域における溶融
ガラスの層流状態を乱さないような量とすべきで
ある。ブツシング12は平炉系の場合と同様のも
のが用い得、またその取付けも平炉系の手段を応
用して行うことができる。
At least one, and generally a plurality of vertical openings 11 are formed in the bottom wall 10, each of which is fitted with a bushing 12 for directly spinning glass fibers 15 therein. The total amount of yarn spun by these bushings should be such that it does not disturb the laminar flow state of the molten glass in the laminar flow clarifying zone. The bushing 12 can be the same as in the case of the open hearth type, and its attachment can also be carried out by applying the means of the open hearth type.

垂直開口11にはその入口を囲んで炉底より炉
内に向けて突出する溶融ガラスの案内部13を設
け、炉の周壁を伝つて流れ落ちてくる溶出耐火材
料等で汚染されている溶融ガラスが直接開口11
からブツシング12に流入しないようにするのが
好ましい。この案内部13は耐蝕性の耐火材料で
構成することができるが、他の手段、例えばブツ
シング壁を構成する白金合金板を延長し、開口1
1から炉内に突出せしめて形成することもでき
る。また、前記耐蝕性耐火材料から成る案内部1
3に対してブツシングの白金合金板を延長、被覆
することもできる。一方、汚染ガラス及び溶出耐
火材料等による沈積物は炉底10の略中央部に形
成したドレン口14から逐次抜き取ることができ
る。
The vertical opening 11 is provided with a molten glass guide part 13 that surrounds the inlet and protrudes from the bottom of the furnace into the furnace, so that the molten glass contaminated with eluted refractory materials flowing down along the peripheral wall of the furnace can be removed. Direct opening 11
It is preferable to prevent it from flowing into the bushing 12 from the outside. This guide part 13 can be constructed of a corrosion-resistant and fire-resistant material, but other means can be used, for example, by extending the platinum alloy plate constituting the bushing wall and by extending the opening 1.
It can also be formed by protruding into the furnace from 1. Further, the guide portion 1 made of the above-mentioned corrosion-resistant and fire-resistant material
3. It is also possible to extend and cover the platinum alloy plate of the bushing. On the other hand, deposits such as contaminated glass and eluted refractory materials can be successively removed from a drain port 14 formed approximately in the center of the furnace bottom 10.

図示電気溶融炉1は方形横断面構造を取る溶融
炉を示す。この方形炉において、その横断面形状
は長方形及び正方形を取り得る。長方形の横断面
形状を取る場合、その短辺対長辺の長さの比は大
幅に変えることができ、例えば短辺を長辺の1/3
又はそれ以下にすることもできる。これは通電さ
れる溶融ガラスの電気電導度がガラス組成によつ
てかなり大幅に変わることなどによる。このよう
な方形炉の場合の層流清澄区域の深さは前記規定
からその長辺(両辺が等しい場合を含む)に対し
て約0.4〜1.0倍、好ましくは約0.4〜0.7倍の値を
取るのが望ましい。このような方形断面構造は放
熱に基づく溶融ガラスの良好なコンデイシヨニン
グ、あるいは炉の建造、及び支持、補強の容易
さ、炉の構造安定性の向上、あるいはまた紡糸装
置の配置の観点から特に好ましい態様として推奨
されるものであるが、しかし本発明は従来のn=
2以上の正3n角形の構造の採用を除外するもの
ではない。
The illustrated electric melting furnace 1 shows a melting furnace having a rectangular cross-sectional structure. In this rectangular furnace, its cross-sectional shape can be rectangular or square. When taking a rectangular cross-sectional shape, the ratio of the length of the short side to the long side can vary considerably, for example, the short side is 1/3 of the long side.
Or it can be less than that. This is because the electrical conductivity of the molten glass to which electricity is applied varies considerably depending on the glass composition. In the case of such a rectangular furnace, the depth of the laminar flow clarification zone is approximately 0.4 to 1.0 times, preferably approximately 0.4 to 0.7 times, the long side (including the case where both sides are equal) according to the above regulations. is desirable. Such a rectangular cross-sectional structure is advantageous from the viewpoint of good conditioning of the molten glass based on heat dissipation, ease of furnace construction, support and reinforcement, improvement of the structural stability of the furnace, and also from the viewpoint of the arrangement of spinning equipment. This is recommended as a particularly preferred embodiment, but the present invention does not apply to the conventional n=
This does not exclude the adoption of a structure of two or more regular 3n polygons.

この方形炉を含めて本発明の電気溶融炉におい
て、棚段6は一般に周壁5の全周面に形成される
が、場合によつては電極が取り付けられる周壁5
のみに形成することができる。例えば、方形炉に
おいて棚段6を対向する1組の周壁だけに形成
し、その周壁に電極を配置し、一方棚段を持たな
い他の対向する周壁5は層流清澄区域3の周壁9
と連続形成することができる。これらの棚段6の
延在幅は前記の溶融対流区域と層流清澄区域との
断面積比によつて規定される値を持つのが好まし
い。この棚段幅は後記の周壁5に沿う溶融ガラス
のもどし流を規制するのに好ましい値である。
In the electric melting furnace of the present invention including this rectangular furnace, the shelves 6 are generally formed on the entire circumferential surface of the peripheral wall 5, but in some cases, the peripheral wall 5 to which electrodes are attached
can only be formed. For example, in a rectangular furnace, trays 6 are formed only on one set of opposing peripheral walls, and electrodes are arranged on the peripheral walls, while the other opposing peripheral wall 5 without trays is the peripheral wall 9 of the laminar flow clarification zone 3.
It can be formed continuously. The extension width of these trays 6 preferably has a value determined by the cross-sectional area ratio of the melting convection zone and the laminar flow clarification zone. This shelf width is a preferable value for regulating the return flow of molten glass along the peripheral wall 5, which will be described later.

本発明の電気溶融炉1において、電極群4は溶
融対流区域2のみに、その中の溶融ガラスに浸漬
される位置に配設される。これらの電極群4によ
つて炉内溶融ガラスに直接通電し、発生するジユ
ール熱で溶融ガラス上のガラスバツチ層8のガラ
スバツチを溶融ガラスとの接触界面において順次
溶融、ガラス化し、かつ溶融ガラスに熱対流を引
き起す。これら電極群4の適正配置によつて、周
知のように、炉内溶融ガラスに炉上方において対
流領域が、炉下方において層流領域が形成され
る。これら両領域はそれぞれ電気溶融炉1の溶融
対流区域2及び層流清澄区域3に対応する。
In the electric melting furnace 1 of the present invention, the electrode group 4 is arranged only in the melting convection zone 2 at a position where it is immersed in the molten glass therein. Electricity is applied directly to the molten glass in the furnace through these electrode groups 4, and the generated Joule heat sequentially melts and vitrifies the glass batches in the glass batch layer 8 on the molten glass at the contact interface with the molten glass, and heats the molten glass. cause convection. As is well known, by properly arranging these electrode groups 4, a convection region is formed in the molten glass in the furnace above the furnace, and a laminar flow region is formed below the furnace. These two regions correspond respectively to the melt convection zone 2 and the laminar flow clarification zone 3 of the electric melting furnace 1.

電極群4は常法に従つて少なくとも1つの水平
レベルにおいて周壁5に貫通、配設されるが、特
に方形炉の場合は全周壁に配設する必要はなく、
1組の対向する周壁だけに配設してもよい。図は
対向する短辺側周壁に電極を配設した例である
が、中型あるいは大型の方形炉の場合は長辺側周
壁に電極を配設するのが好ましい。またこのよう
に対向壁に電極を配設する場合、電極は線対称に
配設するのが好ましい。電極は棒状電極又は板状
電極のどちらでもよい。また電源はR.S.Tの相を
持つ三相電源を用いるのが普通で、かつ好ましい
が、特に小型方形炉の場合は単相電源を用いるの
が好ましい。
The electrode group 4 is penetrated and arranged in the peripheral wall 5 in at least one horizontal level in accordance with conventional methods, but in particular in the case of rectangular furnaces it is not necessary to arrange it on the entire peripheral wall;
They may be provided only on one set of opposing peripheral walls. Although the figure shows an example in which electrodes are arranged on the opposing short side peripheral walls, in the case of a medium-sized or large rectangular furnace, it is preferable to arrange the electrodes on the long side peripheral walls. Further, when the electrodes are disposed on the opposing wall in this manner, it is preferable that the electrodes be disposed line-symmetrically. The electrode may be either a rod-shaped electrode or a plate-shaped electrode. Although it is normal and preferable to use a three-phase power source with an RST phase as the power source, it is particularly preferable to use a single-phase power source in the case of a small rectangular furnace.

本発明の電気溶融炉において、層流清澄区域3
は何んらの加熱手段も持たず、かくしてこの区域
における紡糸に必要な溶融ガラスの均質、清澄化
は実質的に炉底10の垂直開口11からの溶融ガ
ラスの引出流のみの存在下において達成され、ま
た成形温度―粘度条件はその周壁9からの熱伝導
に基づく自然放熱によつて達成される。
In the electric melting furnace of the present invention, the laminar flow clarification zone 3
does not have any heating means, and thus the homogenization and clarification of the molten glass necessary for spinning in this zone is achieved essentially only in the presence of the withdrawal flow of the molten glass from the vertical opening 11 in the furnace bottom 10. In addition, the molding temperature-viscosity conditions are achieved by natural heat radiation based on heat conduction from the peripheral wall 9.

上記本発明の電気溶融炉において、原料ガラス
バツチは炉の頂部開放口に散布、供給され、炉内
溶融ガラス7の上に堆積してバツチ層8を形成す
る。このバツチ層8は炉内溶融ガラスからの放熱
を遮断する。層8のガラスバツチは溶融ガラスと
の接触面において、順次に、電極4からの直接通
電によつて加熱され、高温になつている熱を受け
て徐々に溶融及びガラス化される。このとき発生
するガラス化反応による分解ガスは大部分バツチ
層を抜け、大気中に逸散する。
In the electric melting furnace of the present invention, raw glass batches are dispersed and supplied to the open top of the furnace, and are deposited on the molten glass 7 in the furnace to form a batch layer 8. This batch layer 8 blocks heat radiation from the molten glass in the furnace. The glass batches of the layer 8 are successively heated at the contact surface with the molten glass by direct current flow from the electrode 4, and are gradually melted and vitrified by the high temperature heat. Most of the decomposition gas generated by the vitrification reaction at this time escapes through the batch layer and dissipates into the atmosphere.

ガラス化によつて生成した粗溶融ガラスは溶融
対流区域2内の溶融ガラス中に存在する溶融ガラ
スの激しい循環流Aにまき込まれ、循環する。こ
の循環流Aは電極4による加熱によつて起される
溶融ガラスの熱対流である。この対流、循環によ
つてガラスの不均質部分は引き伸ばされ、物理的
混合及び拡散を受けて均質混合が進むとともに、
バツチ層近傍で脱泡されなかつた残存ガスがこの
循環中に浮上、脱気される。
The crude molten glass produced by vitrification is entrained in a vigorous circulating flow A of molten glass present in the molten glass in the melting convection zone 2 and circulates. This circulating flow A is a thermal convection of the molten glass caused by heating by the electrode 4. Due to this convection and circulation, the heterogeneous portion of the glass is stretched, and homogeneous mixing progresses through physical mixing and diffusion.
During this circulation, residual gas that has not been defoamed near the batch layer is floated and degassed.

この溶融対流区域2における溶融ガラスには一
般に、さらに炉壁に沿つて下降する、相対的に汚
染されている未清澄ガラスのもどし流Bが存在す
る。このもどし流は層流清澄区域3に侵入し易
く、その層流状態を乱し、また均質、清澄化され
た溶融ガラスを再汚染する危険がある。本発明に
おいて、このもどし流Bは溶融対流区域2の下端
に設けられた棚段6によつて反転され、再び主循
環流Aにもどされ、均質混合に付される。このも
どし流の反転に関し、前記規定の棚段幅はこの反
転を可能にする好ましい値である。
The molten glass in this melt convection zone 2 generally has a return stream B of relatively contaminated unfined glass that also descends along the furnace wall. This return flow is likely to invade the laminar flow clarification zone 3, disturbing the laminar flow state and risking re-contaminating the homogeneous and clarified molten glass. In the present invention, this return flow B is reversed by a tray 6 provided at the lower end of the melting convection zone 2, returned to the main circulating flow A, and subjected to homogeneous mixing. Regarding this reversal of the return flow, the predetermined shelf width is a preferable value that enables this reversal.

この溶融対流区域2において溶融、混合された
ガラスはかなりの程度まで清澄化されているが、
しかしなお若干の泡、不均一な脈理及び温度むら
が存在し、今だ未完成の状態である。未完成ガラ
スは次に順次層流清澄区域3に移行し、炉底まで
進む間に完壁な均質、清澄化と紡糸に必要な温度
―粘度条件が達成される。
The glass melted and mixed in this melting convection zone 2 is clarified to a considerable extent;
However, there are still some bubbles, non-uniform striae, and temperature unevenness, and it is still in an unfinished state. The unfinished glass then passes successively into the laminar flow fining zone 3, during which time it reaches the bottom of the furnace, where perfect homogeneity, temperature-viscosity conditions necessary for fining and spinning are achieved.

すなわち、層流清澄区域3における溶融ガラス
には大量の溶融ガラスに対して十分に少ない紡糸
のためのガラス引出量に基づいて下方に向う極め
て緩慢な、層流としての流れCのみが存在してい
る。溶融対流区域2からの溶融ガラスはこの層流
Cに乗つて層流清澄区域3に長時間滞在し、下方
に移行する間に拡散及び熱伝導に基づく炉壁から
の自然放熱のみによつて不均質部分と温度むらが
解消され、同時に自然な温度降下が行われ、紡糸
に必要な温度―粘度条件が達成される。また、溶
融対流区域2からの溶融ガラス中に残存する小泡
のうちランプ(Lamp)の式 V=g・d2ρ/12η (式中、Vは層流Cの流速であり、 gは重力加速度であり、 dは泡の径であり、 ρは溶融ガラスの密度であり、そして ηは溶融ガラスの粘度である) で与えられる径より大きいものは溶融ガラスが層
流清澄区域を移行する間に上方に浮上、脱泡さ
れ、一方それ以下の微小な泡はガラスが下方に進
むにつれて増加する圧力を受けて、気―液平衝の
法則に従いその大半がガラス中に溶け込む。実
際、炉底において溶融ガラスには気泡は実質的に
存在しないことが見い出されている。かくして、
炉底近傍には化学組成的に、及び熱的に均一で、
且つ泡のない、実質的に完全に均質、清澄化され
た加圧状態の溶融ガラスが存在する。この加圧状
態の溶融ガラスは炉内溶融ガラスの液深に相当す
る圧力を持つが、工業的に通常用いられている縦
型炉の大きさを採用するとき、その圧力は略0.4
〜0.8Kg/cm2である。
That is, in the molten glass in the laminar flow clarification zone 3, there is only a very slow laminar flow C flowing downward based on the amount of glass drawn out for spinning, which is sufficiently small for a large amount of molten glass. There is. The molten glass from the molten convection zone 2 rides this laminar flow C and stays in the laminar flow clarification zone 3 for a long time, and while moving downward, it is cooled only by natural heat radiation from the furnace wall based on diffusion and heat conduction. Homogeneous areas and temperature unevenness are eliminated, and at the same time a natural temperature drop occurs to achieve the temperature-viscosity conditions necessary for spinning. In addition, among the small bubbles remaining in the molten glass from the melting convection zone 2, the lamp equation V = g・d 2 ρ/12η (where, V is the flow velocity of the laminar flow C, and g is the gravity is the acceleration, d is the diameter of the bubble, ρ is the density of the molten glass, and η is the viscosity of the molten glass). On the other hand, smaller bubbles are subjected to increasing pressure as the glass moves downward, and most of them dissolve into the glass according to the law of gas-liquid equilibrium. In fact, it has been found that there are virtually no air bubbles in the molten glass at the bottom of the furnace. Thus,
Near the bottom of the furnace, there is a chemically and thermally uniform
There is a bubble-free, substantially completely homogeneous, clarified, pressurized molten glass. This pressurized molten glass has a pressure equivalent to the liquid depth of the molten glass in the furnace, but when adopting the size of a vertical furnace commonly used in industry, the pressure is approximately 0.4
~0.8Kg/ cm2 .

本発明によれば、この加圧状態の溶融ガラス
は、そのまゝ炉底に取り付けられた紡糸装置によ
り直接ガラス繊維に紡糸されるが、その圧力はブ
ツシングのオリフイスプレート又はチツプノズル
プレートにおけるオリフイス又はチツプノズルを
通る溶融ガラスの流出性を著しく改良、向上させ
るとともに、オリフイス又はチツプノズルの出口
に形成される溶融ガラスコーンの分離特性、すな
わちオリフイス又はチツプノズルを流出した溶融
ガラスがプレート材料を濡らして溢出することな
しに独立のコーンを形成する性質を著しく改良
し、ガラス繊維の形成を容易にする。このコーン
の分離特性の改良はまたオリフイス又はチツプノ
ズルの密接化、高密度化を可能にする。
According to the present invention, this pressurized molten glass is directly spun into glass fibers by a spinning device attached to the bottom of the furnace, but the pressure is applied to the orifice in the orifice plate of the bushing or the tip nozzle plate. Significantly improves and increases the outflow of the molten glass through the tip nozzle, as well as the separation properties of the molten glass cone formed at the outlet of the orifice or tip nozzle, i.e. the molten glass flowing out of the orifice or tip nozzle wets the plate material and spills over. It significantly improves the properties of forming independent cones without the need for glass fibers and facilitates the formation of glass fibers. This improvement in the separation properties of the cone also allows for closer and more dense orifices or tip nozzles.

次に、本発明の縦型電気溶融炉によるガラス繊
維の直接紡糸の例を実施例によつて示す。しか
し、本発明はこの実施例によつて限定されないこ
とはもちろんである。
Next, an example of direct spinning of glass fiber using the vertical electric melting furnace of the present invention will be shown by way of example. However, it goes without saying that the present invention is not limited to this example.

実施例 対向する短辺の炉壁上方に単相電源に接続され
る線対称に配設された200×250×10mmのモリブデ
ン板電極を2対有し、そして炉底に垂直開口を介
して2基の、800ホールのブツシングを備える、
炉底の略中央部にドレン口を有する、次の寸法 溶融対流区域 1600mm長さ ×600mm幅 ×720mm深さ 棚 段 幅200mm 層流清澄区域 1400mm長さ ×400mm幅 ×600mm深さ を持つ耐火レンガより成る電気溶融炉を用いてア
ルカリ金属酸化物含量7.5重量%のC―ガラスの
バツチを溶融及び均質、清澄化し、そしてブツシ
ングより直接加圧紡糸した。この加圧紡糸によつ
てガラス繊維は非常に良好に製造することができ
た。炉条件及び紡糸条件は次の通りである。
Example: Two pairs of molybdenum plate electrodes of 200 x 250 x 10 mm are connected to a single-phase power source above the furnace wall on the opposite short sides, and are arranged symmetrically. Equipped with a basic 800-hole bushing,
A refractory brick with a drain port approximately in the center of the hearth bottom and having the following dimensions: Melt convection area: 1600mm length x 600mm width x 720mm depth Shelf Step width: 200mm Laminar flow clarification area: 1400mm length x 400mm width x 600mm depth A batch of C-glass with an alkali metal oxide content of 7.5% by weight was melted, homogenized, and clarified using an electric melting furnace consisting of the following: and pressure-spun directly from the bushing. Glass fibers could be produced very well by this pressure spinning. The furnace conditions and spinning conditions are as follows.

炉内温度:溶融対流区域中心部 1410℃ 層流清澄区域中心部 1280℃ ブツシング導入部 1260℃ 使用エネルギー:1.6KWH/Kg―ガラス 紡糸条件:ブツシング温度 1200℃ 巻取速度 1600m/分 繊維径 14μ Furnace temperature: 1410℃ in the center of the melting convection area Center of laminar clear zone 1280℃ Bushing introduction part 1260℃ Energy used: 1.6KWH/Kg - Glass Spinning conditions: Bushing temperature 1200℃ Winding speed 1600m/min Fiber diameter 14μ

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炉の対向する短辺側炉壁に線対称に配
設された電極を有し、かつ炉底にガラス繊維の紡
糸用ブツシングを備える本発明による長方形の横
断面構造を持つ電気溶融炉の正面縦断面図を示
し、そして第2図は第1図の―面の横断面図
である。 1……電気溶融炉、2……溶融対流区域、3…
…層流清澄区域、4……電極、5,9……周壁、
6……棚段、7……溶融ガラス、8……ガラスバ
ツチ堆積層、10……炉底壁、11……垂直開
口、12……ブツシング、13……案内部、14
……ドレン口、15……ガラス繊維、A……溶融
ガラスの循環流、B……溶融ガラスのもどし流、
C……溶融ガラスの引出流。
FIG. 1 shows an electric melting machine having a rectangular cross-sectional structure according to the present invention, which has electrodes disposed line-symmetrically on the opposite short sides of the furnace wall and a bushing for spinning glass fibers at the bottom of the furnace. A front longitudinal cross-sectional view of the furnace is shown, and FIG. 2 is a cross-sectional view taken along the plane of FIG. 1...Electric melting furnace, 2...Melting convection area, 3...
... Laminar flow clearing area, 4 ... Electrode, 5, 9 ... Peripheral wall,
6... Shelf, 7... Molten glass, 8... Glass batch deposited layer, 10... Furnace bottom wall, 11... Vertical opening, 12... Bushing, 13... Guide part, 14
...Drain port, 15... Glass fiber, A... Circulating flow of molten glass, B... Return flow of molten glass,
C... Drawing flow of molten glass.

Claims (1)

【特許請求の範囲】 1 頂部に原料ガラスバツチの受容開口を有する
原料ガラスバツチの溶融対流区域と;炉底区域に
溶融ガラスを取り出すための開口を有すると共に
前記溶融対流区域の下方に連接し、前記溶融対流
区域のガラスヘツドが直接作用する関係にある溶
融ガラスの層流清澄区域と;前記溶融対流区域内
の溶融ガラスに浸漬される位置において該区域を
画成している周壁に貫通、配設されている、溶融
ガラスに直接通電するための電極群とから成る電
気溶融炉において: (イ) 前記溶融対流区域の下端において、該区域を
画成する周壁からそれより内部に向かう棚段が
延在し; (ロ) 前記層流清澄区域は前記棚段の周縁より垂直
下方に炉底まで延在し; (ハ) 溶融ガラスを取り出すための前記開口は炉底
に直接垂直に複数個形成され; (ニ) 前記各垂直開口の出口側に直接ガラス繊維の
紡糸装置を配設し;そして (ホ) 前記電極群は前記溶融対流区域のみに少なく
とも1つの水平レベルで配設され、一方前記層
流清澄区域には何んらの加熱手段も配設されて
いない ことを特徴とする、特に層流清澄区域における溶
融ガラスの均質、清澄化の過程において、ガラス
繊維の直接紡糸に必要な溶融ガラスの均質、清澄
状態とその紡糸に必要な温度―粘度条件を同時に
満足するのに十分な溶融ガラスの該区域における
滞留と該区域からの自然放熱を達成するガラス繊
維を直接紡糸するための電気溶融炉。 2 層流清澄区域の断面積が溶融対流区域の断面
積の0.3〜0.9倍であり、且つ層流清澄区域の深さ
がその最大幅の0.4〜1.0倍である前記特許請求の
範囲第1項に記載の電気溶融炉。 3 層流清澄区域の断面積が溶融対流区域の断面
積の0.5〜0.9倍であり、且つ層流清澄区域の深さ
がその最大幅の0.5〜0.7倍である前記特許請求の
範囲第2項に記載の電気溶融炉。 4 炉の横断面形状が方形をなしている前記特許
請求の範囲第1項から第3項のいずれか1項に記
載の電気溶融炉。 5 電極群が炉の対向する1組の周壁に線対称に
配設されている前記特許請求の範囲第4項に記載
の電気溶融炉。 6 炉底に形成された垂直開口にその入口を囲ん
で炉底より炉内に向けて突出する溶融ガラスの案
内部が形成されている前記特許請求の範囲第1項
から第5項のいずれか1項に記載の電気溶融炉。 7 炉底の略中央部に汚染ガラスの引き抜き用ド
レン口が形成されている前記特許請求の範囲第1
項から第6項のいずれか1項に記載の電気溶融
炉。
[Scope of Claims] 1. A convection area for melting raw glass batches having an opening for receiving the raw glass batches at the top; having an opening for taking out the molten glass in the bottom area and connected to the lower part of the convection area for receiving the raw glass batches; a laminar flow clarification zone of the molten glass in which the glass head of the convection zone is in direct working relationship; a laminar flow clarification zone of the molten glass in which the glass head of the convection zone is in direct working relationship; (b) At the lower end of the melting convection area, a shelf extends inward from the peripheral wall defining the area. (b) The laminar flow clarification zone extends vertically downward from the periphery of the tray to the furnace bottom; (c) A plurality of the openings for taking out the molten glass are formed directly perpendicular to the furnace bottom; ( d) a glass fiber spinning device is disposed directly on the exit side of each of said vertical openings; and (e) said electrode group is disposed on at least one horizontal level only in said melt convection zone, while said Homogenization of the molten glass, especially in the laminar flow clarification zone, characterized in that the zone is not equipped with any heating means, homogeneity of the molten glass required for direct spinning of glass fibers during the clarification process , an electric melting furnace for direct spinning of glass fibers, which achieves retention of sufficient molten glass in said zone and natural heat dissipation from said zone to simultaneously satisfy the fining state and the temperature-viscosity conditions necessary for its spinning. 2. Claim 1, wherein the cross-sectional area of the laminar flow clarification zone is 0.3 to 0.9 times the cross-sectional area of the melt convection zone, and the depth of the laminar flow clarification zone is 0.4 to 1.0 times its maximum width. Electric melting furnace described in. 3. The cross-sectional area of the laminar flow clarification zone is 0.5 to 0.9 times the cross-sectional area of the melt convection zone, and the depth of the laminar flow clarification zone is 0.5 to 0.7 times its maximum width. Electric melting furnace described in. 4. The electric melting furnace according to any one of claims 1 to 3, wherein the cross-sectional shape of the furnace is rectangular. 5. The electric melting furnace according to claim 4, wherein the electrode groups are disposed line-symmetrically on a pair of opposing peripheral walls of the furnace. 6. Any one of claims 1 to 5 above, wherein a molten glass guide part is formed in the vertical opening formed in the furnace bottom, surrounding the inlet and protruding from the furnace bottom toward the inside of the furnace. The electric melting furnace according to item 1. 7. Claim 1, wherein a drain port for drawing out contaminated glass is formed approximately at the center of the furnace bottom.
The electric melting furnace according to any one of Items 6 to 6.
JP8908081A 1981-06-10 1981-06-10 Electrically melting furnace for directly forming glass product Granted JPS57205328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8908081A JPS57205328A (en) 1981-06-10 1981-06-10 Electrically melting furnace for directly forming glass product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8908081A JPS57205328A (en) 1981-06-10 1981-06-10 Electrically melting furnace for directly forming glass product

Publications (2)

Publication Number Publication Date
JPS57205328A JPS57205328A (en) 1982-12-16
JPH0139972B2 true JPH0139972B2 (en) 1989-08-24

Family

ID=13960877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8908081A Granted JPS57205328A (en) 1981-06-10 1981-06-10 Electrically melting furnace for directly forming glass product

Country Status (1)

Country Link
JP (1) JPS57205328A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3320480C2 (en) * 1983-06-07 1986-08-07 Aug. Horn Söhne Inh. Helmut Horn KG, 8591 Plößberg Glass melting furnace

Also Published As

Publication number Publication date
JPS57205328A (en) 1982-12-16

Similar Documents

Publication Publication Date Title
KR920003938B1 (en) Process and device for melting fining and homogenizing glass
US4816056A (en) Heating and agitating method for multi-stage melting and refining of glass
KR920003221B1 (en) Energy saving method for melting glass and glass melting furnace for the practice of the method
US4929266A (en) Method of manufacturing glass
US4818265A (en) Barrier apparatus and method of use for melting and refining glass or the like
JP4708513B2 (en) Method for melting and clarifying vitrifiable substances and equipment therefor
US2122469A (en) Apparatus for making glass
US3057175A (en) Apparatus for mixing colorant in glass furnace forehearth
US3420653A (en) Glass melting furnace
US3305340A (en) Method and apparatus for generating currents in molten glass
US3331673A (en) Method and apparatus for improving homogeneity of viscous liquids
US4504302A (en) Homogenizing apparatus glass making furnace and method of homogenizing glass
US3328144A (en) Apparatus for melting and processing heat-softenable mineral materials
US3583861A (en) Method and apparatus for refining fusible material
US3556753A (en) Method for melting and processing heat-softenable mineral materials
US3401536A (en) Apparatus for melting and processing heat-softenable mineral materials
US1953034A (en) Shallow melting tank
US3811858A (en) Method and apparatus for mixing molten glass by bubbling
US2455908A (en) Method of making glass fibers
JPH0139972B2 (en)
JPS609971B2 (en) Glass melting method and melting furnace
JPH0139971B2 (en)
WO1982004246A1 (en) Process for producing molten glass
JPS5832030A (en) Electric melting furnace for glass
US3378618A (en) Electric glass furnace