Nothing Special   »   [go: up one dir, main page]

JPH01296627A - Film formation - Google Patents

Film formation

Info

Publication number
JPH01296627A
JPH01296627A JP12588888A JP12588888A JPH01296627A JP H01296627 A JPH01296627 A JP H01296627A JP 12588888 A JP12588888 A JP 12588888A JP 12588888 A JP12588888 A JP 12588888A JP H01296627 A JPH01296627 A JP H01296627A
Authority
JP
Japan
Prior art keywords
thin film
film
gas
silicon
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12588888A
Other languages
Japanese (ja)
Inventor
Yuko Hiura
樋浦 祐子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12588888A priority Critical patent/JPH01296627A/en
Publication of JPH01296627A publication Critical patent/JPH01296627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To enable a fine ruggedness to be flattened exercising no unfavorable effect on the electrical properties of a device by a method wherein the local selective etching process is performed by photoexcitation. CONSTITUTION:A CVD chamber 3 is simultaneously fed with disilane as a material for forming silicon thin film as well as Cl2 gas for etching silicon and then a substrate 1 is irradiated with the beams of an ArF laser 9 in parallel with the substrate 1 through a window 10 to decompose the disilane gas for forming a silicon thin film. At this time, an Al pattern 11 only is irradiated with the beams of an XeCl laser 7 through a pattern mask 6, a lens 5 and another window 4 to excite the Cl2 gas for etching the silicon thin film. Then, ozone gas is fed to the CVD chamber 3 to reform the silicon thin film into silicon oxide. Through these procedures, a fine ruggedness can be flattened exercising no unfavorable effect on the electrical properties of a device.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は成膜方法に関し′、ざらに詳しくは微細な凹凸
を平坦化できる成膜方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a film forming method, and more specifically to a film forming method capable of flattening minute irregularities.

[従来の技術と発明が解決しようとする課題]デバイス
の高集積化に伴う微細化と多層化の流れの中で、デバイ
スの平坦化が重要な課題となっている。例えば多層構造
のLSIを製造する場合、下層の金属配線による凹凸を
層間絶縁膜のCVDなどにより、平坦化することが望ま
れている。
[Prior Art and Problems to be Solved by the Invention] Amid the trend toward miniaturization and multilayering accompanying higher integration of devices, planarization of devices has become an important issue. For example, when manufacturing an LSI with a multilayer structure, it is desired to flatten unevenness caused by underlying metal wiring by CVD or the like of an interlayer insulating film.

アダムスらは、1981年ジャーナル・オブ・エレクト
ロケミカル・ソサイエティ誌、第128巻。
Adams et al., 1981, Journal of the Electrochemical Society, Vol. 128.

428頁(1981)に、エッチバックによる平坦化方
法を発表した。この方法は、金属配線による凹凸を有す
る基板上に、底部の膜厚か下層の金属配線における凸部
の膜厚より高くなる膜厚となるように起伏をもった5i
02膜を形成し、この5i02膜の起伏面に有機物を塗
布してこれを加熱溶融し、起伏面を平坦化した後、この
有機物と8102のエツチング速度が等しい反応性イオ
ンを選び、表面からエツチングして有機物が全部除去さ
れるまでエツチングすることによって凹凸基板を平坦化
するものである。
On page 428 (1981), he published a planarization method using etchback. In this method, a 5i film with undulations is formed on a substrate having unevenness due to metal wiring so that the film thickness at the bottom is higher than the film thickness at the convex part of the underlying metal wiring.
02 film is formed, an organic material is applied to the undulating surface of this 5i02 film, and it is heated and melted to flatten the undulating surface. Then, reactive ions with the same etching rate as that of the organic material and 8102 are selected, and etched from the surface. The uneven substrate is planarized by etching until all organic matter is removed.

しかし、この方法には、凹部が1柳以下の幅になると有
機物が入り込まなくなり、平坦化か不十分になるという
欠点がある。この欠点を克服した方法が、III中らに
より予稿集「1983年第44回応用物理学会」427
頁に発表されたバイアススパッタ法による平坦化である
。この方法は、スパッタの角度依存性を利用して平坦化
を行っているものであり、凸部が1脚の高さで1如以下
の幅であっても平坦化を行うことかできる。しかしこの
方法では荷電粒子の膜中トラップ等を生じるため電気的
不安定を(Cさヤすい。
However, this method has the disadvantage that when the width of the recess is less than one willow, organic matter cannot enter, resulting in insufficient flattening. A method to overcome this drawback was proposed by III Naka et al. in the proceedings of the 44th Japan Society of Applied Physics, 1983, 427.
This is planarization using the bias sputtering method published in p. This method uses the angular dependence of sputtering to perform flattening, and can perform flattening even if the convex portion has a height of one leg and a width of less than one leg. However, this method causes electrical instability due to trapping of charged particles in the film.

このように従来の方法では、電気的特性に支障を生じさ
せることなく、幅1μs以下の微細な金属配線等による
凹凸を平坦化することは極めて困難である。本発明はこ
のような従来方法の問題点を解決し、微細な凹凸をデバ
イスの電気特性に影響を与えることなく平坦化すること
のできる成膜方法を提供することを目的とする。
As described above, with the conventional method, it is extremely difficult to flatten unevenness caused by fine metal wiring or the like having a width of 1 μs or less without causing a problem in the electrical characteristics. It is an object of the present invention to solve the problems of the conventional methods and to provide a film forming method that can flatten fine irregularities without affecting the electrical characteristics of a device.

[課題を解決するための手段] 本発明は、表面にパターン状の第1の薄膜が形成された
基板上へ平坦な酸化膜を形成する成膜方法において、酸
化されて酸化膜の組成となる第2の薄膜を形成する原料
ガスと前記第2の薄膜を光励起によりエツチングするガ
スとを含む雰囲気中で、前記光をパターン状の第1の薄
膜上に選択的に照射しつつ前記第2の薄膜を形成する工
程と、該工程で形成された第2の薄膜を酸化する工程と
からなり、前記各工程を繰返し行って平坦な酸化膜面を
得ることを特徴とする成膜方法である。
[Means for Solving the Problems] The present invention provides a film forming method for forming a flat oxide film on a substrate having a patterned first thin film formed on the surface. In an atmosphere containing a source gas for forming a second thin film and a gas for etching the second thin film by photoexcitation, the light is selectively irradiated onto the patterned first thin film while etching the second thin film. This film forming method consists of a step of forming a thin film and a step of oxidizing the second thin film formed in the step, and is characterized in that each step is repeated to obtain a flat oxide film surface.

[作用] 薄膜を形成する原料ガスと、光で励起すると、この薄膜
をエツチングする[1貿を有する活性種を生じるガスと
を含む雰囲気中で、基板上の所望部分にのみ光を照射し
つつ成膜づると、光か照射された部分は選択的にエツチ
ングされ、光の照射されなかった部分は薄膜が形成され
る。
[Operation] In an atmosphere containing a raw material gas that forms a thin film and a gas that generates an active species that etches the thin film when excited by light, light is irradiated only onto desired areas on the substrate. When the film is formed, the areas irradiated with light are selectively etched, and the areas not irradiated with light form a thin film.

従ってパターン状の第1の薄膜−Fを、この第1の?N
 膜部にのみ光を照射しなから原料カスとエツチングガ
スの両方を流しつつ成膜を行うと、パターン化された第
1の薄膜の間隙の膜厚が大きく、第1の薄膜部の膜厚は
極めて小さく成膜される。
Therefore, the patterned first thin film -F is formed into this first thin film -F. N
If film formation is performed while flowing both raw material waste and etching gas without irradiating light only to the film part, the film thickness in the gaps of the patterned first thin film becomes large, and the film thickness of the first thin film part becomes large. is formed into an extremely small film.

また、上記で得られた薄膜が数原子程度に薄い薄膜の場
合には酸化工程により薄膜全体を酸化膜に改質すること
が可能でおる。
Further, when the thin film obtained above is a thin film as thin as a few atoms, it is possible to modify the entire thin film into an oxide film by an oxidation process.

以上の2工程を繰返すことにより基板表面を平坦化する
ことができる。
By repeating the above two steps, the substrate surface can be flattened.

本発明では上記の現象を利用して、例えば絶縁薄膜上に
パターン状の金属薄膜を有する凹凸表面の基板を絶縁膜
で平坦化することができる。この−例としては、例えば
、シリコンのエツチングガスとシリコン形成用の原料ガ
スの両方を流しつつ、シリコンのエツチングガスを励起
する波長の光を基板上の金属薄膜部に照射しながら絶縁
膜上に数原子層程度の厚みにシリコンの成膜を行う。金
属薄膜上ではシリコンの成膜と同時にエツチングも生じ
ているので、その膜厚は絶縁膜上の膜厚にくらべ、無視
できる程度に小さい。その後、このようにして形成した
シリコン薄膜をオゾンガスにより酸化して酸化シリコン
膜に改質する。この成膜と酸化の工程を酸化シリコンの
厚みが金属薄膜の膜厚とほぼ等しくなるまで繰返すこと
によって凹凸表面を平坦化することができる。
In the present invention, by utilizing the above-mentioned phenomenon, for example, a substrate having an uneven surface having a patterned metal thin film on an insulating thin film can be flattened with an insulating film. As an example of this, for example, while flowing both a silicon etching gas and a raw material gas for silicon formation, a metal thin film on a substrate is irradiated with light of a wavelength that excites the silicon etching gas, and an insulating film is etched. A silicon film is formed to a thickness of about several atomic layers. Since etching occurs on the metal thin film at the same time as the silicon film is formed, the film thickness is negligibly small compared to the film thickness on the insulating film. Thereafter, the silicon thin film thus formed is oxidized with ozone gas and modified into a silicon oxide film. By repeating this process of film formation and oxidation until the thickness of the silicon oxide becomes approximately equal to the thickness of the metal thin film, the uneven surface can be flattened.

[実施例] 以下、本発明の実施例について図面を参照して詳細に説
明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

本実施例では5i02膜上に0.5pm間隔てI 、I
s; #パターンを有する断面形状が凹凸の基板を、5
iO21PJによって平坦化する工程に適用した実施例
について説明する。
In this example, I, I
s; A substrate with an uneven cross-sectional shape having a # pattern is
An example applied to a planarization process using iO21PJ will be described.

第1図は本実施例に用いる成膜装置の概略構成図であり
、基板1はCVDVSO4−タ2に設置されている。基
板1の温度はオゾンによるシリコンの酸化か始まる30
0℃程度に設定する。
FIG. 1 is a schematic diagram of a film forming apparatus used in this embodiment, and a substrate 1 is installed in a CVDVSO 4-tar 2. As shown in FIG. The temperature of the substrate 1 reaches 30°C, where silicon oxidation by ozone begins.
Set to around 0℃.

まず第1の工程として、CVDVSO4リコン薄膜形成
用の原料ガスであるジシランとシリコン薄膜エツチング
用のCJ22ガスとを同時に流す。次いでArFレーザ
9の光を窓10を通して基板1にこれと平行に照射して
ジシランガスを分解し、シリコン薄膜を数蒸着に形成す
る。この時Nパターン11にのみXerUレーザ7の光
をパターンマスク6、レンズ5、窓4を通して照射し、
Ci2+カスを励起してシリコン薄膜をエツチングする
。この結果、Nパターン11の上にはシリコン薄膜が実
質的に堆゛積しない状態になる。
First, in the first step, disilane, which is a raw material gas for forming a CVDVSO4 silicon thin film, and CJ22 gas, which is used for etching a silicon thin film, are simultaneously flowed. Next, the light from the ArF laser 9 is irradiated onto the substrate 1 through the window 10 in parallel with the light to decompose the disilane gas, and a silicon thin film is formed in several evaporations. At this time, the light of the XerU laser 7 is irradiated only on the N pattern 11 through the pattern mask 6, lens 5, and window 4,
The silicon thin film is etched by exciting the Ci2+ scum. As a result, substantially no silicon thin film is deposited on the N pattern 11.

次の工程としてオゾン発生器8を通して、オゾンガスを
CVD室3に導入し、シリコン薄膜を酸化シリコンに改
質する。
In the next step, ozone gas is introduced into the CVD chamber 3 through the ozone generator 8 to reform the silicon thin film into silicon oxide.

以上の2工程を、堆積させる5i02膜厚がNパターン
11の膜厚に等しくなるまで繰返し、基板1を平坦化す
る。以上のようにして本実施例ではサブミクロンオーダ
の微細な凹凸を平坦化することができた。
The above two steps are repeated until the thickness of the deposited 5i02 film becomes equal to the thickness of the N pattern 11, and the substrate 1 is planarized. As described above, in this example, fine irregularities on the order of submicrons could be flattened.

また本実施例では荷電粒子等を一切使用していないので
、デバイスに電気的な不安定を招くこともなかった。さ
らに膜中に取り込まれるCJ12の濃度は極微量でデバ
イスの特性に影響を与えない程度であり、十分に低かっ
た。
Furthermore, since no charged particles or the like were used in this example, electrical instability was not caused in the device. Furthermore, the concentration of CJ12 incorporated into the film was extremely small and did not affect the characteristics of the device, and was sufficiently low.

なお、本実施例ではシリコン薄膜の形成にArFレーザ
を用いているが、必ずしもArFレーザである必要はな
く、数原子層レベルの膜厚制御が可能なエネルギー源な
らどのようなものでも構わない。
Although an ArF laser is used to form the silicon thin film in this embodiment, it does not necessarily have to be an ArF laser, and any energy source that can control the film thickness at the level of several atomic layers may be used.

例えばグロー敢電法、プラズマCVD法も本発明に適用
可能である。
For example, the glow discharge method and plasma CVD method are also applicable to the present invention.

[発明の効果] 以上説明したように、゛本発明によれば光励起による局
所選択エツチングを用いているので、レジスト等の有機
物を塗布する場合のように、微細な凹凸に有機物が入り
きらず平坦化可能な凹凸に限度が生じるということがな
く、例えばりブミクロンオーダの配線幅に対して配線膜
厚が1廟程度という微細な凹凸の平坦化が可能である。
[Effects of the Invention] As explained above, ``According to the present invention, locally selective etching by optical excitation is used, so unlike when applying an organic substance such as a resist, the organic substance does not completely enter into minute irregularities, resulting in flattening. There is no limit to the possible unevenness, and for example, it is possible to flatten minute unevenness such that the wiring film thickness is about one layer for a wiring width on the order of a micron.

また、従来のバイアススパッタ法のように荷電粒子を膜
内に取り込むこともないのでデバイスの電気的特性に悪
影響を及ぼすことなく平坦化できる。
Further, unlike conventional bias sputtering methods, charged particles are not introduced into the film, so planarization can be achieved without adversely affecting the electrical characteristics of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に用いる成膜装置の概略構成
図である。
FIG. 1 is a schematic diagram of a film forming apparatus used in an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)表面にパターン状の第1の薄膜が形成された基板
上へ平坦な酸化膜を形成する成膜方法において、酸化さ
れて酸化膜の組成となる第2の薄膜を形成する原料ガス
と前記第2の薄膜を光励起によりエッチングするガスと
を含む雰囲気中で、前記光をパターン状の第1の薄膜上
に選択的に照射しつつ前記第2の薄膜を形成する工程と
、該工程で形成された第2の薄膜を酸化する工程とから
なり、前記各工程を繰返し行つて平坦な酸化膜面を得る
ことを特徴とする成膜方法。
(1) In a film formation method for forming a flat oxide film on a substrate on which a patterned first thin film is formed, a source gas that is oxidized to form a second thin film having the composition of an oxide film; forming the second thin film while selectively irradiating the patterned first thin film with the light in an atmosphere containing a gas that etches the second thin film by photoexcitation; A film forming method comprising a step of oxidizing the formed second thin film, and comprising repeating each of the above steps to obtain a flat oxide film surface.
JP12588888A 1988-05-25 1988-05-25 Film formation Pending JPH01296627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12588888A JPH01296627A (en) 1988-05-25 1988-05-25 Film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12588888A JPH01296627A (en) 1988-05-25 1988-05-25 Film formation

Publications (1)

Publication Number Publication Date
JPH01296627A true JPH01296627A (en) 1989-11-30

Family

ID=14921404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12588888A Pending JPH01296627A (en) 1988-05-25 1988-05-25 Film formation

Country Status (1)

Country Link
JP (1) JPH01296627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763327B2 (en) * 1996-04-22 2010-07-27 Micron Technology, Inc. Methods using ozone for CVD deposited films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763327B2 (en) * 1996-04-22 2010-07-27 Micron Technology, Inc. Methods using ozone for CVD deposited films
US8420170B2 (en) 1996-04-22 2013-04-16 Micron Technology, Inc. Methods of forming glass on a substrate

Similar Documents

Publication Publication Date Title
KR100188508B1 (en) Reduction of reflection by amorphous carbon
JP3286103B2 (en) Method and apparatus for manufacturing exposure mask
US20090246706A1 (en) Patterning resolution enhancement combining interference lithography and self-aligned double patterning techniques
JPS62115166A (en) Photomask and manufacture thereof
JP4782010B2 (en) Method for forming TEOS cap layer at low temperature and low deposition rate
JPH01296627A (en) Film formation
JP2003179064A (en) Method of forming wiring pattern
JPS629673B2 (en)
US5509995A (en) Process for anisotropically etching semiconductor material
JP2739228B2 (en) Method for manufacturing semiconductor device
WO2005024922A1 (en) A method of forming a teos cap layer at low temperature and reduced deposition rate
JPH0156525B2 (en)
JPH0670954B2 (en) Method for manufacturing semiconductor device
JPH03105919A (en) Manufacture of semiconductor device
JP2890617B2 (en) Thin film formation method
JP2968138B2 (en) Dry etching method
JPH10321625A (en) Manufacture of semiconductor device
JP2006294909A (en) Method of manufacturing semiconductor device
JPH05211139A (en) Electromagnetic wave excitation plasma etching method
JPS5976428A (en) Formation of fine pattern
JPS59114824A (en) Flattening method of semiconductor device
JPH02152236A (en) Formation of wiring
JPH02181428A (en) Forming method of thin-film
JPS61134026A (en) Manufacture of semiconductor device
WO1998059380A1 (en) Dry-etching of thin film layers