Nothing Special   »   [go: up one dir, main page]

JPH01185175A - Mechanical amplifier mechanism - Google Patents

Mechanical amplifier mechanism

Info

Publication number
JPH01185175A
JPH01185175A JP63007154A JP715488A JPH01185175A JP H01185175 A JPH01185175 A JP H01185175A JP 63007154 A JP63007154 A JP 63007154A JP 715488 A JP715488 A JP 715488A JP H01185175 A JPH01185175 A JP H01185175A
Authority
JP
Japan
Prior art keywords
spring
thermal expansion
lever arms
amplification mechanism
lever arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63007154A
Other languages
Japanese (ja)
Inventor
Mitsunori Sano
光範 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63007154A priority Critical patent/JPH01185175A/en
Publication of JPH01185175A publication Critical patent/JPH01185175A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • H02N2/043Mechanical transmission means, e.g. for stroke amplification

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To eliminate a drift due to temperature change by constituting an apparatus by the use of a spring having an elongation due to thermal expansion equal to the variation due to thermal expansion of an arm tip. CONSTITUTION:A mechanical amplifier mechanism has a structure, where a pair of lever arms 4 respectively connected with the displacement transmission system 2 and base 3 facing each other of a piezoelectric element 1 and a spring 5 supported by said lever arms in the manner of being held between them are connected with each other. In consideration of thermal expansion coefficients of said lever arms 4 and spring 5, materials are combined with each other so that the variation due to thermal expansion of the tip of said lever arm 4 is equal to the elongation due to thermal expansion of the central part of said spring 5. Thus, a drift due to temperature change can be eliminated and the same correct output as that at an ordinary temperature can be obtained even if this apparatus is operated at a high temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気9機械変換素子の運動全拡大して駆動する
機械的増幅機構に関し、特に電歪あるいは圧電素子を駆
動源とし変位増幅を行う機械的増幅機構の構造に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a mechanical amplification mechanism that fully amplifies and drives the motion of an electromechanical transducer, and in particular uses an electrostrictive or piezoelectric element as a drive source to amplify displacement. Concerning the structure of a mechanical amplification mechanism.

〔従来の技術〕[Conventional technology]

従来、この種の機械的増幅機構の一例を第5図を参照し
て説明する。これは縦効果歪を利用した積層形圧電素子
1f:駆動源に使用した構成の機械的増幅機構であ夛、
圧電素子10対向する変位伝達系2′と基板3′にそれ
ぞれ接続した一対のレバーアーム4′と、このレバーア
ーム4′で挾むように支持された変位伝達手段としての
ばね5が接続された構造になっている。圧電素子1以外
の個所の材料としては、弾性係数が19,000〜21
.OOOkgf/mm”と大きく、そのはね性の良いS
US材を用いていた。この機械的増幅機構の形状は、縦
25mm、横32mm、厚み3mmとなっている。
An example of a conventional mechanical amplification mechanism of this type will be explained with reference to FIG. This is a multilayer piezoelectric element 1f that utilizes longitudinal effect strain: a mechanical amplification mechanism configured to be used as a drive source.
The piezoelectric element 10 has a structure in which a pair of lever arms 4' are respectively connected to a displacement transmission system 2' and a substrate 3' facing each other, and a spring 5 as a displacement transmission means supported by the lever arms 4' is connected. It has become. The material for parts other than the piezoelectric element 1 has an elastic modulus of 19,000 to 21.
.. OOOkgf/mm" and has a large S with good springiness.
US material was used. The shape of this mechanical amplification mechanism is 25 mm long, 32 mm wide, and 3 mm thick.

この機械的増幅機構を60℃まで加熱した後、室温まで
冷して形状の変化を観測した。その結果、常温時の形状
と60℃の高温時における形状を比較すると、熱膨張に
よってレバーアーム4′の先端は外側Aに広がり、それ
に伴ってはね5の両端は引っばられる。このばね5も熱
膨張によって伸びるが、その量がレバーアーム4′先端
の変化量より小さいために、出力端であるばね5中央部
は内側Bに引込むことになる。
After heating this mechanical amplification mechanism to 60°C, it was cooled to room temperature and changes in shape were observed. As a result, when comparing the shape at room temperature and the shape at a high temperature of 60° C., the tip of the lever arm 4' expands outward A due to thermal expansion, and both ends of the spring 5 are pulled accordingly. This spring 5 also expands due to thermal expansion, but since the amount of expansion is smaller than the amount of change at the tip of the lever arm 4', the central portion of the spring 5, which is the output end, is retracted into the inside B.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように機械的増幅機構の出力性能は、ばね5の初期
たわみに影響され易いことから、温度変化による熱膨張
によるばね5の中央部の変化は取りも直さずばねの初期
たわみの形状変化であり、その結果、出力性能が変わっ
てしまう。なお、5US304などのSUB材の熱膨張
係数は、lO〜17X10/℃程度である。
In this way, the output performance of the mechanical amplification mechanism is easily affected by the initial deflection of the spring 5, so changes in the center of the spring 5 due to thermal expansion due to temperature changes are simply due to changes in the shape of the spring's initial deflection. As a result, the output performance will change. Note that the thermal expansion coefficient of SUB material such as 5US304 is about 10 to 17×10/°C.

この従来の機械的増幅機構は、どんな形状でも5US3
04材で構成されていて、熱膨張に対する考慮がされて
いなかったので、温度が変化するとげね5の出力端が変
化してしまう欠点があった。
This conventional mechanical amplification mechanism can be used in any shape with 5US3
Since it was made of 04 material and no consideration was given to thermal expansion, there was a drawback that the output end of the barb 5 changed when the temperature changed.

本発明の目的は、°このような欠点を除き、レバーアー
ムとばねとの熱膨張率の異なる材料を用いることにより
、ばねの出力端の温度変化によるドリフトを零に近づけ
た機械的増幅機構全提供することにある。
The object of the present invention is to eliminate such drawbacks and to create a complete mechanical amplification mechanism in which the drift due to temperature changes at the output end of the spring approaches zero by using materials with different coefficients of thermal expansion for the lever arm and the spring. It is about providing.

〔問題点を解決するための手段〕 本発明の構成は、電歪素子あるいは圧電素子の伸縮動作
を伝達し増幅する二本のレバーアームと、これらレバー
アームで挾むように支持された変位増幅手段のばねとを
有する機械的増幅機構において、前記レバーアーム先端
の熱膨張による変化量と前記ばねの中央部の熱膨張によ
る伸び量が等しいような組合せの材料によりこれらレバ
ーアームとばねとを形成したことを特徴とする。
[Means for Solving the Problems] The configuration of the present invention includes two lever arms that transmit and amplify the expansion and contraction motion of an electrostrictive element or piezoelectric element, and a displacement amplifying means supported so as to be sandwiched between these lever arms. In the mechanical amplification mechanism having a spring, the lever arm and the spring are formed of a combination of materials such that the amount of change due to thermal expansion at the tip of the lever arm is equal to the amount of elongation due to thermal expansion at the center of the spring. It is characterized by

〔実施例〕〔Example〕

次に、図面によシ本発明の詳細な説明する。 Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例の平面図である。本実施例は
、圧電素子1の対向する変位伝達系2と基板3にそれぞ
れ接続した一対のレバーアーム4と、このレバーアーム
4で挾むように支持された変位伝達手段としてのばね5
が接続された構造となっている。
FIG. 1 is a plan view of one embodiment of the present invention. This embodiment includes a pair of lever arms 4 connected to a displacement transmission system 2 and a substrate 3 facing each other of a piezoelectric element 1, and a spring 5 as a displacement transmission means supported between the lever arms 4.
It has a connected structure.

本実施例は、レバーアーム4とはね5の熱膨張係数を考
慮した材料の組み合せ方が重要であり、次の第1表に示
す組合せで実験を行った。
In this example, it is important to combine materials in consideration of the thermal expansion coefficients of the lever arm 4 and spring 5, and experiments were conducted using the combinations shown in Table 1 below.

第1表 この機械的増幅機構t−60′cまで加熱した後、室温
まで冷して形状の変化を観測した。
Table 1 This mechanical amplification mechanism After heating to t-60'c, the sample was cooled to room temperature and changes in shape were observed.

第2図はこの実験における機械的増幅機構の出力端の温
度特性図である。図から判るように、Ni系合金の42
Nieレバーアームに用いた場合は温度変化による変形
がない。また、Nov 、 Inv t−レバーアーム
に用いた場合には多少変形するが、その程度は5U83
04に比して遥かに小さかった。
FIG. 2 is a temperature characteristic diagram at the output end of the mechanical amplification mechanism in this experiment. As can be seen from the figure, 42
When used in Nie lever arms, there is no deformation due to temperature changes. Also, when used for Nov, Inv t-lever arm, it will deform to some extent, but the degree of deformation is similar to that of 5U83.
It was much smaller than 04.

第3図は本発明の第2の実施例の正面図で、この機械的
増幅機構の形状は縦35mm、横35mm。
FIG. 3 is a front view of the second embodiment of the present invention, and the shape of this mechanical amplification mechanism is 35 mm in length and 35 mm in width.

厚さ4mmである。第4図は第3図の第1の実施例と同
様の実験を行った温度特性図である。本実施例は、圧電
素子60対向する変位伝達系7と基板8にそれぞれ接続
した一対のレバーアーム9と、このレバーアーム9で挾
むように支持された変位伝達手段としてのはね5が接続
された構造である。
The thickness is 4 mm. FIG. 4 is a temperature characteristic diagram obtained by conducting an experiment similar to that of the first embodiment shown in FIG. In this embodiment, a pair of lever arms 9 are connected to a displacement transmission system 7 and a substrate 8 which face a piezoelectric element 60, and a spring 5 as a displacement transmission means is connected to the lever arms 9 so as to be sandwiched therebetween. It is a structure.

この場合も、第4図から判るように、レバーアーム9に
42Ni、ばね5にYNiC(熱膨張係数8.1X10
 /C) t−用いた場合が、温度変化による変形が少
なく、またレバーアーム9に5US304 。
In this case as well, as can be seen from Fig. 4, the lever arm 9 is made of 42Ni, and the spring 5 is made of YNiC (thermal expansion coefficient 8.1X10
/C) When using t-, there is less deformation due to temperature changes, and the lever arm 9 is made of 5US304.

ばね5に8US631(熱膨張係数11JXIO−’/
C)を用いた場合でも温度変化による変形が少なかった
Spring 5 has 8US631 (thermal expansion coefficient 11JXIO-'/
Even when C) was used, there was little deformation due to temperature changes.

このレバーアーム9の先端の熱膨張による変化量は、レ
バーアームの材質、機械的増幅機構の形状に依存するが
、形状の定まった機械的増幅機構においてはレバーアー
ムの材質を先に決めて、レバーアーム先端の熱膨張によ
る変化量に等しい熱膨張による伸びを有するばね5の材
質を選別する方法と、ばねの材質を先に決めて、ばねの
熱膨張による伸びに等しい熱膨張による変化量を有する
レバーアームの材質を選別する方法とがある。
The amount of change due to thermal expansion at the tip of the lever arm 9 depends on the material of the lever arm and the shape of the mechanical amplification mechanism, but in the case of a mechanical amplification mechanism with a fixed shape, the material of the lever arm is determined first. A method of selecting a material for the spring 5 that has an elongation due to thermal expansion equal to the amount of change due to thermal expansion of the tip of the lever arm, and a method of selecting a material for the spring 5 that has an elongation due to thermal expansion equal to the amount of change due to thermal expansion of the spring. There is a method of selecting the material of the lever arm.

〔発明の効果〕 以上説明したように本発明は、アーム先端の熱膨張によ
る変化量と等しθ熱膨張による伸び金有するばねで構成
することにより、高温下において動作させても温度変化
によるドリフトをなくし常温時と同じ出力性能が得られ
るという効果がある。
[Effects of the Invention] As explained above, the present invention is constructed with a spring having an elongation due to θ thermal expansion that is equal to the amount of change due to thermal expansion at the end of the arm, thereby preventing drift due to temperature changes even when operated at high temperatures. The effect is that the same output performance as at room temperature can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の機械的増幅機構の正面図、
第2図は第1図の実施例の機械的増幅機構の出力端にお
ける温度特性図、第3図は本発明の第2の実施例の正面
図、第4図は第2図の出力端における温度特性図、第5
図は従来の機械的増幅機構の変形を説明する正面図であ
る。 l・・・・・・圧電素子、2,7・・・・・・変位伝達
系、3゜8・・・・・・基板、4 、9・・・・・・レ
バーアーム、5・・・・・・ばね。 代理人 弁理士  内 原   晋
FIG. 1 is a front view of a mechanical amplification mechanism according to an embodiment of the present invention;
2 is a temperature characteristic diagram at the output end of the mechanical amplification mechanism of the embodiment shown in FIG. 1, FIG. 3 is a front view of the second embodiment of the present invention, and FIG. Temperature characteristic diagram, 5th
The figure is a front view illustrating a modification of a conventional mechanical amplification mechanism. l...Piezoelectric element, 2,7...Displacement transmission system, 3゜8...Substrate, 4,9...Lever arm, 5... ...Spring. Agent Patent Attorney Susumu Uchihara

Claims (1)

【特許請求の範囲】[Claims] 電歪素子あるいは圧電素子の伸縮動作を伝達し増幅する
二本のレバーアームと、これらレバーアームで挾むよう
に支持された変位増幅手段のばねとを有する機械的増幅
機構において、前記レバーアーム先端の熱膨張による変
化量と前記ばねの中央部の熱膨張による伸び量が等しい
ような組合せの材料によりこれらレバーアームとばねと
を形成したことを特徴とする機械的増幅機構。
In a mechanical amplification mechanism that includes two lever arms that transmit and amplify the expansion and contraction motion of an electrostrictive element or a piezoelectric element, and a spring that is a displacement amplification means that is supported so as to be sandwiched between these lever arms, the heat at the tip of the lever arm is A mechanical amplification mechanism characterized in that the lever arm and the spring are formed of a combination of materials such that the amount of change due to expansion is equal to the amount of elongation due to thermal expansion of the central portion of the spring.
JP63007154A 1988-01-14 1988-01-14 Mechanical amplifier mechanism Pending JPH01185175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63007154A JPH01185175A (en) 1988-01-14 1988-01-14 Mechanical amplifier mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63007154A JPH01185175A (en) 1988-01-14 1988-01-14 Mechanical amplifier mechanism

Publications (1)

Publication Number Publication Date
JPH01185175A true JPH01185175A (en) 1989-07-24

Family

ID=11658151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63007154A Pending JPH01185175A (en) 1988-01-14 1988-01-14 Mechanical amplifier mechanism

Country Status (1)

Country Link
JP (1) JPH01185175A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006349A3 (en) * 2002-07-03 2004-05-27 Viking Technologies Lc Temperature compensating insert for a mechanically leveraged smart material actuator
US6979933B2 (en) 2002-09-05 2005-12-27 Viking Technologies, L.C. Apparatus and method for charging and discharging a capacitor
US7021191B2 (en) 2003-01-24 2006-04-04 Viking Technologies, L.C. Accurate fluid operated cylinder positioning system
US7190102B2 (en) 2002-09-05 2007-03-13 Viking Technologies, L.C. Apparatus and method for charging and discharging a capacitor to a predetermined setpoint

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288782A (en) * 1985-06-13 1986-12-18 Nec Kansai Ltd Displacement enlarging device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288782A (en) * 1985-06-13 1986-12-18 Nec Kansai Ltd Displacement enlarging device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006349A3 (en) * 2002-07-03 2004-05-27 Viking Technologies Lc Temperature compensating insert for a mechanically leveraged smart material actuator
JP2006507663A (en) * 2002-07-03 2006-03-02 バイキング テクノロジィーズ エル.シー. Temperature compensation insert for leverage smart material actuators
US7132781B2 (en) 2002-07-03 2006-11-07 Viking Technologies, L.C. Temperature compensating insert for a mechanically leveraged smart material actuator
JP4919450B2 (en) * 2002-07-03 2012-04-18 バイキング テクノロジィーズ エル.シー. Temperature compensation insert for leverage smart material actuators
US6979933B2 (en) 2002-09-05 2005-12-27 Viking Technologies, L.C. Apparatus and method for charging and discharging a capacitor
US7190102B2 (en) 2002-09-05 2007-03-13 Viking Technologies, L.C. Apparatus and method for charging and discharging a capacitor to a predetermined setpoint
US7021191B2 (en) 2003-01-24 2006-04-04 Viking Technologies, L.C. Accurate fluid operated cylinder positioning system
US7353743B2 (en) 2003-04-04 2008-04-08 Viking Technologies, L.C. Multi-valve fluid operated cylinder positioning system

Similar Documents

Publication Publication Date Title
US5471721A (en) Method for making monolithic prestressed ceramic devices
US5405337A (en) Spatially distributed SMA actuator film providing unrestricted movement in three dimensional space
JP2001326399A (en) Actuator device
US5103361A (en) Magnetic head apparatus having non-magnetic metal interposed between piezoelectric members
JPH10105243A (en) Positioning feature, positioning device and information recorder
JPH01185175A (en) Mechanical amplifier mechanism
JPS6142284A (en) Displacement increasing device
US5781646A (en) Multi-segmented high deformation piezoelectric array
US7579754B2 (en) Piezoelectric actuator
US6111967A (en) Multi-segmented high deformation piezoelectric array
US8237334B2 (en) Piezo actuator
JPH0455355B2 (en)
JPH0223035B2 (en)
JPS59175386A (en) Mechanical amplifying mechanism
JP3428773B2 (en) Bimorph piezoelectric element and method of manufacturing the same
JPS5919383A (en) Piezoelectric bimorph
JPS60245481A (en) Piezoelectric element actuator
JPS6153467A (en) Form memory actuating body
JPH0438152B2 (en)
Smits et al. Equations of state including the thermal domain of piezoelectric and pyroelectric heterogeneous bimorphs
JPH04179283A (en) Piezoelectric element displacement amplifying mechanism
JPS62272575A (en) Piezoelectric actuator
JPH02201977A (en) Method of driving piezoelectric actuator
JPS63260085A (en) Piezoelectric actuator
JPH0438177A (en) Piezo-electric actuator