Nothing Special   »   [go: up one dir, main page]

JPH01163677A - Signal addition system by optical element - Google Patents

Signal addition system by optical element

Info

Publication number
JPH01163677A
JPH01163677A JP62324865A JP32486587A JPH01163677A JP H01163677 A JPH01163677 A JP H01163677A JP 62324865 A JP62324865 A JP 62324865A JP 32486587 A JP32486587 A JP 32486587A JP H01163677 A JPH01163677 A JP H01163677A
Authority
JP
Japan
Prior art keywords
light
signal addition
phase
effect element
temperature compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62324865A
Other languages
Japanese (ja)
Inventor
Yasunori Takahashi
靖典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP62324865A priority Critical patent/JPH01163677A/en
Publication of JPH01163677A publication Critical patent/JPH01163677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To compensate a variation component due to the temperature of a polarization plane maintaining fiber for two light beams by detouring light for temperature compensation by an electrooptic effect element, entering light for signal addition into the electrooptic effect element, and converting those two light beams photoelectrically. CONSTITUTION:The circular polarized light lambda1 for signal addition and light lambda2 for temperature compensation are branched into two directions by a beam splitter 3 to guide the light lambda1 to a filter 4, a Pockels effect element 1a, and a beam splitter 5 and the light lambda2 to a filter 5, reflecting plates 7 and 8, and the splitter 5. Then the splitter 5 multiplexes the elliptic polarized light of the light lambda1 and light lambda2 and the composite wave is inputted to a reception part 9 through a B-phase addition part and a C-phase addition part and converted photoelectrically. The phase difference between the component of the light lambda1 and the component of the light lambda2 is detected according to the converted signal and only phase-modulated components which are added by the respective addition part are detected with high accuracy according to the phase difference.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、光学素子による信号加算方式に関し、さら
に詳細にいえば、透過光に測定電気量に応じた位相の変
化を与える電気光学効果素子を複数の測定点に配置し、
上記位相変化を偏波面保存ファイバーにより伝送して測
定電気量のベクトル和を求める信号加算方式に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a signal addition method using an optical element, and more specifically, an electro-optic effect element that changes the phase of transmitted light according to the amount of electricity measured. are placed at multiple measurement points,
The present invention relates to a signal addition method for transmitting the above-mentioned phase change through a polarization-maintaining fiber to obtain a vector sum of measured electrical quantities.

〈従来の技術〉 従来、配線から信号を取り出す場合は、トランスやコン
デンサが主に使用されていた。これらの機器は絶縁性に
問題があり、高電圧、大電力を取り扱う送配電部門にお
いては重大な問題である。
<Conventional technology> Conventionally, transformers and capacitors were mainly used to extract signals from wiring. These devices have problems with insulation, which is a serious problem in the power transmission and distribution sector, which handles high voltage and large amounts of power.

また、送配電系統の地絡検出、断線等の検出をする場合
において、零相成分が用いられる。この零相成分の測定
は、送配電線とトランスとの電磁誘導、或は送配電線と
コンデンサとの接続により各相成分を取り出し、下式[
I]に従って、零相電圧しかしながら、零相成分は定格
値に対して僅か0.01%程度であり、出力レベルが非
常に低く、加算する場合において誤差が発生する虞れが
あるとともに、測定値もバラツキがある。また、トラン
スは大型高重量になるから、柱上設置が困難となる欠点
がある。コンデンサは、送配電線と接続するから、系統
の静電容量増加、およびコンデンサの絶縁に基く問題が
ある。
Furthermore, the zero-phase component is used when detecting ground faults, disconnections, etc. in power transmission and distribution systems. To measure this zero-phase component, each phase component is extracted by electromagnetic induction between the power transmission and distribution line and the transformer, or by the connection between the power transmission and distribution line and the capacitor, and the following formula [
However, the zero-sequence component is only about 0.01% of the rated value, and the output level is very low. There are also variations. Further, since the transformer is large and heavy, it has the disadvantage that it is difficult to install it on a pole. Since capacitors are connected to power transmission and distribution lines, problems arise due to increased capacitance of the system and insulation of the capacitors.

そこで、送配電線と分離して各相成分を測定する手段と
して光学素子による信号加算方式が着目されてる。
Therefore, a signal addition method using optical elements is attracting attention as a means of measuring each phase component separately from the power transmission and distribution lines.

従来、光学素子による信号加算方式は、第2図に示され
るように、入射光(具体的には円偏光)を導く偏波面保
存ファイバー(10)と、該偏波面保存ファイバー(1
0)により直列に接続され、A、B。
Conventionally, the signal addition method using optical elements consists of a polarization-maintaining fiber (10) that guides incident light (specifically, circularly polarized light) and the polarization-maintaining fiber (10), as shown in FIG.
0) are connected in series by A, B.

に応じて入射光を位相変調するポッケルス効果素子(2
0)と、受信部(30)とから構成されている。
A Pockels effect element (2
0) and a receiving section (30).

上記信号加算方式の動作は、以下の通りである。The operation of the above signal addition method is as follows.

円偏光(Pl)が偏波面保存ファイバー(10)に導か
れて第1のポッケルス効果素子り20)に入射される。
Circularly polarized light (Pl) is guided to a polarization maintaining fiber (10) and input to a first Pockels effect element 20).

そして、第1のポッケルス効果素子(20)において、
円偏光にA相送配電線の電圧Vaに応じた位相差を加え
、楕円偏光(Pa)を生成し、偏波面保存ファイバー(
10)に入射する。次に、第2のポッケルス効果素子(
20)において、B相送配電線の電圧vbに応じて上記
第1のポッケルス効果素子(20)からの楕円偏光(P
a)に、位相差を加え、楕円偏光(pb)を生成し、偏
波面保存ファイバー(10)に入射する。
And in the first Pockels effect element (20),
A phase difference corresponding to the voltage Va of the A-phase transmission and distribution line is added to the circularly polarized light to generate elliptically polarized light (Pa), which is then transferred to a polarization-maintaining fiber (
10). Next, the second Pockels effect element (
20), the elliptically polarized light (P
A phase difference is added to a) to generate elliptically polarized light (pb), which is input to the polarization maintaining fiber (10).

次いで、第3のポッケルス効果素子(20)において、
C相送配電線の電圧Vcに応じて上記第1のポッケルス
効果素子(20)からの変調信号に、さらに位相差を加
えて楕円偏光(Pc)を生成し、偏波面保存ファイバー
(10)に入射する。
Next, in the third Pockels effect element (20),
A phase difference is further added to the modulated signal from the first Pockels effect element (20) according to the voltage Vc of the C-phase transmission and distribution line to generate elliptically polarized light (Pc), which is then transmitted to the polarization-maintaining fiber (10). incident.

そして、偏波面保存ファイバー(10)からの楕円偏光
(Pc)をホトダイオードにより光電変換する。
Then, the elliptically polarized light (Pc) from the polarization preserving fiber (10) is photoelectrically converted by a photodiode.

この変換信号を増幅器等に入力することによって、前記
(I)式に示す零相電圧V。に対応する零相電圧が抽出
される。
By inputting this converted signal to an amplifier or the like, the zero-sequence voltage V shown in equation (I) above is obtained. The zero-sequence voltage corresponding to is extracted.

〈発明が解決しようとする問題点〉 しかしながら、上記偏波面保存ファイバー(10)は温
度により位相角が大きく変動する。具体的には、1mの
偏波面保存ファイバー(10)は、1℃あたりπ(ラジ
アン)変動する。この変動成分により、各ポッケルス効
果素子(20)からの加算結果、即ち上記例では零相電
圧を高精度で検出することができないという問題がある
<Problems to be Solved by the Invention> However, the phase angle of the polarization preserving fiber (10) varies greatly depending on the temperature. Specifically, a 1 m long polarization maintaining fiber (10) fluctuates by π (radians) per 1°C. Due to this fluctuation component, there is a problem that the addition result from each Pockels effect element (20), that is, the zero-sequence voltage in the above example cannot be detected with high accuracy.

従って、この変動成分を補償する為に、従来の信号加算
方式では、偏波面保存ファイバー(10)の雰囲気温度
を一定に保つ、或は光電変換後において差動増幅器によ
り、偏波面保存ファイバー(10)の温度による変動成
分をキャンセルしようとしているのであるが、差動増幅
器のドリフト誤差等の問題があり、また、光信号は数千
オングストロームのオーダであり、光伝送の段階で発生
した誤差を単純に電気回路のみで防止することは不可能
である。
Therefore, in order to compensate for this fluctuation component, in the conventional signal addition method, the ambient temperature of the polarization preserving fiber (10) is kept constant, or after photoelectric conversion, a differential amplifier is used to compensate for the polarization preserving fiber (10). ), but there are problems such as drift errors in the differential amplifier, and optical signals are on the order of several thousand angstroms, so it is easy to cancel errors that occur during optical transmission. It is impossible to prevent this with electric circuits alone.

く目的〉 この発明は上記問題点に鑑みてなされたものであり、偏
波面保存ファイバーによる温度変動成分を高精度で補償
し、測定電圧の加算結果を高精度で検出することを可能
にする光学素子による信号加算方式を提供することを目
的とする。
Purpose of the Invention The present invention was made in view of the above problems, and provides an optical system that compensates for the temperature fluctuation component caused by the polarization preserving fiber with high precision and enables the addition result of measured voltages to be detected with high precision. The purpose of this invention is to provide a signal addition method using elements.

く問題点を解決するための手段および作用〉上記目的を
達成するためのこの発明の光学素子による信号加算方式
は、信号加算用および温度補償用の波長の異なる2つの
光を同一の偏波面保存ファイバーにより伝送し、電気光
学効果素子の入射口において信号加算用および温度補償
用の光を分岐し、信号加算用の光を電気光学効果素子に
入射するとともに、温度補償用の光を電気光学効果素子
から迂回させ、信号加算用の光と温度補償用の光とを光
電変換し、この変換値に基いて両光の位相差を検出し、
この位相差に基いて偏波面保存ファイバーの温度特性に
よる誤差を補償して電気光学素子による加算される位相
変化を検出するものである。
Means and operation for solving the above problems> In order to achieve the above object, the signal addition method using an optical element of the present invention is capable of maintaining two lights of different wavelengths for signal addition and temperature compensation in the same plane of polarization. The light for signal addition and temperature compensation is transmitted through a fiber, and the light for signal addition and temperature compensation is split at the entrance of the electro-optic effect element. The light for signal addition and the light for temperature compensation are photoelectrically converted by detouring from the element, and the phase difference between the two lights is detected based on this converted value.
Based on this phase difference, the error due to the temperature characteristics of the polarization preserving fiber is compensated for and the phase change added by the electro-optical element is detected.

さらに詳細に説明すれば、透過光に測定電気量に応じた
位相の変化を与える電気光学効果素子を複数の測定点に
配置し、上記位相変化を偏波面保存ファイバーにより伝
送して測定電気量のベクトル和を求める場合において、
信号加算用および補償用の波長の異なる2つの光を同一
の偏波面保存ファイバーから電気光学効果素子の入射口
に導き、信号加算用の光を電気光学素子に入射する。一
方、補償用の光は電気光学効果素子を迂回させられる。
More specifically, electro-optic effect elements that change the phase of transmitted light according to the amount of electricity to be measured are placed at multiple measurement points, and the phase change is transmitted through a polarization preserving fiber to change the amount of electricity to be measured. When calculating the vector sum,
Two lights of different wavelengths for signal addition and compensation are guided from the same polarization maintaining fiber to the entrance of the electro-optic effect element, and the signal addition light is made incident on the electro-optic element. On the other hand, the compensation light is made to bypass the electro-optic effect element.

即ち、信号加算用の光は偏波面保存ファイバーおよび電
気光学効果素子を透過するので、電気光学効果素子によ
り位相差が加えられるとともに、偏波面保存ファイバー
の雰囲気温度の影響により、位相が緩やかに変動する。
In other words, since the light for signal addition passes through the polarization-preserving fiber and the electro-optic effect element, a phase difference is added by the electro-optic effect element, and the phase changes gradually due to the influence of the ambient temperature of the polarization-preserving fiber. do.

補償用の光は、偏波面保存ファイバーを通過するのみで
あるから、雰囲気温度の影響により緩やかに位相が変動
する。
Since the compensation light only passes through the polarization maintaining fiber, the phase of the compensation light changes gradually due to the influence of the ambient temperature.

そして、例えば、2つの光を光電変換する等して、2つ
の光の位相差、即ち偏波面保存ファイバーの温度の影響
に基く変動成分(位相差)を検出することにより、上記
位相差に基いて偏波面保存ファイバーの温度特性による
誤差を補償することができる。
Then, by photoelectrically converting the two lights, for example, and detecting the phase difference between the two lights, that is, the fluctuation component (phase difference) based on the influence of the temperature of the polarization preserving fiber, It is possible to compensate for errors due to the temperature characteristics of the polarization preserving fiber.

従って、偏波面保存ファイバーの温度特性に基く変動を
補償することができ、信号加算用の光に対して高い精度
で位相差変調することができる。
Therefore, it is possible to compensate for fluctuations based on the temperature characteristics of the polarization-maintaining fiber, and it is possible to perform phase difference modulation with high precision on the light for signal addition.

〈実施例〉 以下、実施例を示す添付図面によって詳細に説明する。<Example> Hereinafter, embodiments will be described in detail with reference to the accompanying drawings showing examples.

第1図は、この発明の一実施例としての光学素子による
信号加算方式を示し、A、B、C各相ので入射光を位相
変調するポッケルス効果素子(1a)(1,b)(18
)を配置し、各相の信号加算部間を偏波面保存ファイバ
ー(2)により接続している。上記各相の信号加算部は
、同じ構成であり、A相について説明する。
FIG. 1 shows a signal addition system using optical elements as an embodiment of the present invention, in which Pockels effect elements (1a) (1, b) (18
), and the signal adders of each phase are connected by a polarization preserving fiber (2). The signal adders for each phase have the same configuration, and the A phase will be explained.

A相信号加算部は、信号加算用の光(波長λ1)および
温度補償用の光(波長λ2)からなる2つの光を導く偏
波面保存ファイバー(2)と、偏波面保存ファイバー(
2)からの2つの光を2方向に分岐する第1ビームスプ
リッタ−(3)と、第1ビームスプリッタ−(3)から
の2つの光の内、信号加算用の光(λ1)のみ透過させ
る第1フイルター(4)と、第1フイルター(4)から
の透過光に相電圧Vaに応じて位相変化を加え、楕円偏
光するポッケルス効果素子(1a)と、ポッケルス効果
素子(1a〉からの楕円偏光を2方向に分岐する第2ビ
ームスプリッタ−(5)と、上記第1ビームスプリッタ
−(3)からの2つの光の内、温度補償用の光(λ2)
のみ透過させる第2フイルター(6)と、第2フイルタ
ー(6)からの温度補償用の光(λ2)を反射する反射
板(7)と、反射板(7)からの温度補償用の光(λ2
)を上記第2ビームスプリッタ−(5)に反射する反射
板(8)と、B相、C相を透過後の合成波を受信する受
信部(9)とを有している。
The A-phase signal addition section includes a polarization-maintaining fiber (2) that guides two lights consisting of signal addition light (wavelength λ1) and temperature compensation light (wavelength λ2), and a polarization-maintaining fiber (
The first beam splitter (3) splits the two lights from 2) into two directions, and of the two lights from the first beam splitter (3), only the light for signal addition (λ1) is transmitted. A first filter (4), a Pockels effect element (1a) that applies a phase change to the transmitted light from the first filter (4) according to the phase voltage Va, and generates elliptically polarized light; and an ellipse from the Pockels effect element (1a). Of the two lights from the second beam splitter (5) that splits polarized light into two directions and the first beam splitter (3), the light for temperature compensation (λ2)
a second filter (6) that only transmits the temperature compensation light (λ2); a reflection plate (7) that reflects the temperature compensation light (λ2) from the second filter (6); λ2
) to the second beam splitter (5), and a receiving section (9) that receives the composite wave after passing through the B and C phases.

さらに詳細に説明すれば、上記ポッケルス効果素子(l
a) 、 (lb) 、 (lc)は、1次の電気光学
効果素子であり、信号加算用の円偏光(λ1)に電界を
作用させることにより楕円偏光するものである。そして
、A、B、C相の電圧Va、Vb、Vcに対応した電界
の作用を加えられ、信号加算用の光(λ1)に順番に位
相差が加えられる。
To explain in more detail, the Pockels effect element (l
a), (lb), and (lc) are first-order electro-optic effect elements, which apply an electric field to circularly polarized light (λ1) for signal addition to elliptically polarize it. Then, the effects of electric fields corresponding to the voltages Va, Vb, and Vc of the A, B, and C phases are applied, and a phase difference is sequentially added to the signal addition light (λ1).

偏波面保存ファイバー(2)は、入射端から出射端まで
、偏波が保存される単一モードのファイバーであり、上
記ポッケルス効果素子(1a)に信号加算用の円偏光(
λ1)を入射するとともに、各ポッケルス効果素子(L
a) 、(lb) 、 (lc)による変調後の楕円偏
光を次の相のポッケルス効果素子、或は受信部(9)に
偏波面を保存しつつ入射するものである。
The polarization-maintaining fiber (2) is a single-mode fiber in which polarization is preserved from the input end to the output end, and the Pockels effect element (1a) receives circularly polarized light (
λ1), and each Pockels effect element (L
The elliptically polarized light modulated by a), (lb), and (lc) is input to the Pockels effect element of the next phase or the receiving section (9) while preserving the plane of polarization.

第1ビームスプリッタ−(3)は、偏波面保存ファイバ
ー(2)からの2つの光を2方向に分岐している。
The first beam splitter (3) splits two lights from the polarization maintaining fiber (2) into two directions.

尚、ビームスプリッタ−に替えてハーフミラ−を使用す
ることも可能である。
Note that it is also possible to use a half mirror instead of the beam splitter.

第1フイルター(4)は、第1ビームスプリッタ−から
の2つの光の内、信号加算用の光(λ1)のみ透過させ
、第2フイルター(6)は、第1ビームスプリッタ−か
らの2つの光の内、温度補償用の光(λ2)のみ透過さ
せている。
The first filter (4) transmits only the signal addition light (λ1) of the two lights from the first beam splitter, and the second filter (6) transmits the two lights from the first beam splitter. Among the lights, only the temperature compensation light (λ2) is transmitted.

反射板(7)は、鏡を使用し、第2フイルター(6)か
= 10− らの温度補償用の光(λ2)を反射板(8)の方向に反
射するものであり、反射板(8)は反射板(7)からの
温度補償用の光(λ2)を第2ビームスプリッタ−(5
)に反射するものである。
The reflector (7) uses a mirror and reflects the temperature compensation light (λ2) from the second filter (6) in the direction of the reflector (8). 8) transfers the temperature compensation light (λ2) from the reflector (7) to the second beam splitter (5).
).

第2ビームスプリッタ−(5)は、上記第1ビームスプ
リッタ−(3)と同様なものを使用し、ポッケルス効果
素子(1a)からの信号加算用の楕円偏光(λ1)を透
過するとともに、反射板(8)からの温度補償用の光(
λ2)を反射し、上記偏波面保存ファイバー(2)に導
いている。
The second beam splitter (5) is similar to the first beam splitter (3), and transmits the elliptically polarized light (λ1) for signal addition from the Pockels effect element (1a), and also reflects it. Temperature compensation light from plate (8) (
λ2) is reflected and guided to the polarization maintaining fiber (2).

受信部(9)は、上記A相、B相、C相の信号加算部か
らの透過光を光電変換するホトディテクター(91)と
、ホトディテクター(91)からの信号から信号加算用
の光(λ1)の成分と、温度補償用の光(λ2)の成分
とに分離するフィルタ(92)と、この分離された信号
の位相差を逆相にして加算し、ポッケルス効果素子(l
a) (lb) (lc)による位相変化成分のみを検
出する加算回路(93)とを有している。
The receiving section (9) includes a photodetector (91) that photoelectrically converts the transmitted light from the A-phase, B-phase, and C-phase signal addition sections, and a photodetector (91) that converts the signals from the photodetector (91) into light for signal addition ( A filter (92) separates the temperature compensation light (λ1) component and the temperature compensation light (λ2) component, and the Pockels effect element (l
a) An adder circuit (93) that detects only phase change components due to (lb) and (lc).

上記構成の光学素子による信号加算方式の動作は、以下
の通りである。
The operation of the signal addition method using the optical element having the above configuration is as follows.

= 11− 信号加算用の円偏光(λ1)および温度補償用の光(λ
2)を、偏波面保存ファイバー(2)により第1ビーム
スプリッタ−(3)に導き、第1ビームスプリッタ−(
3)において2方向に分岐し、一方は、第1フイルター
(4)により信号加算用の光(λ1)のみが透過され、
ポッケルス効果素子(1a)によりA相の相電圧※aに
対応する位相差が加えられ、第2ビームスプリッタ−(
5)に導かれる。上記第1ビームスプリッタ−(3)に
より分岐された光は第2フイルター(6)により温度補
償用の光(λ2)のみが透過され、2つの反射板(7)
 (8)により第2ビームスプリッタ−(5)に導かれ
る。そして、第2ビームスプリッタ−(5)において信
号加算用の光(λ1)と温度補償用の光(λ2)が合成
されるとともに、偏波面保存ファイバー(2)に入射さ
れる。
= 11− circularly polarized light for signal addition (λ1) and light for temperature compensation (λ
2) is guided to the first beam splitter (3) through the polarization maintaining fiber (2), and the first beam splitter (
3), the light is split into two directions, and on one side, only the signal addition light (λ1) is transmitted through the first filter (4).
A phase difference corresponding to the phase voltage *a of the A phase is added by the Pockels effect element (1a), and the second beam splitter (
5). The light split by the first beam splitter (3) passes through the second filter (6), where only the temperature compensation light (λ2) is transmitted, and the light is passed through the two reflectors (7).
(8) leads to the second beam splitter (5). Then, the signal addition light (λ1) and the temperature compensation light (λ2) are combined in the second beam splitter (5) and are input into the polarization maintaining fiber (2).

次に、偏波面保存ファイバー(2)からの合成波はB相
の信号加算部に導かれ、ポッケルス効果素子(1b)に
よりB相の相電圧vbに対応する位相変化が加えられ、
さらにC相加算部においてC相の相電圧Vcに対応する
位相変化が加えられる。
Next, the composite wave from the polarization preserving fiber (2) is guided to the B-phase signal addition section, and a phase change corresponding to the B-phase voltage vb is added by the Pockels effect element (1b).
Furthermore, a phase change corresponding to the phase voltage Vc of the C phase is added in the C phase adder.

次いで、受信部(9)において、ホトディテクター(9
1)により、A相、B相、C相の信号加算部からの透過
光を光電変換し、フィルタ(92)によりホトディテク
ター(91)からの信号から信号加算用の光(λ1)の
成分と、温度補償用の光(λ2)の成分とに分離し、加
算回路(93)によりこの分離された信号の位相差を逆
相にして加算し、温度変化による偏波面保存ファイバー
(2)の緩やかな位相変動による影響を除去し、ポッケ
ルス効果素子(la) (lb) (IC)による位相
変化成分のみを検出する。
Next, in the receiving section (9), a photodetector (9
1) photoelectrically converts the transmitted light from the A-phase, B-phase, and C-phase signal addition sections, and converts the signal from the photodetector (91) into a light (λ1) component for signal addition using a filter (92). , and the temperature-compensating light (λ2) component, and the adder circuit (93) reverses the phase difference of the separated signals and adds them, thereby reducing the gradual polarization-preserving fiber (2) due to temperature changes. The influence of phase fluctuations is removed, and only the phase change component due to the Pockels effect element (la) (lb) (IC) is detected.

以上要約すれば、信号加算用の円偏光(λ1)および温
度補償用の光(λ2)を第1ビームスプリッタ−(3)
において2方向に分岐し、信号加算用の光(λ1)を第
1フイルター(4)→ポッケルス効果素子(1a)→第
2ビームスプリッター(5)と導くとともに、上記第1
ビームスプリッタ−(3)により分岐された光は第2フ
イルター(6)→反射板(7)−反射板(8)→第2ビ
ームスプリッター(5)と導く。そして、第2ビームス
プリッタ−(5)において信号加算用の光(λ1)の楕
円偏光と温度補償用の光(λ2)とを合一  13 − 成し、B相加算部−C相加算部−受信部(9)に入射し
、受信部(9)において、合成波を光電変換し、さらに
変換信号に基いて信号加算用の光(λ1)の成分と、温
度補償用の光(λ2)の成分との位相差を検出すること
ができるので、この位相差に基いて各加算部において加
えられた位相変調成分のみを高精度で検出することがで
きる。
To summarize the above, circularly polarized light (λ1) for signal addition and light (λ2) for temperature compensation are sent to the first beam splitter (3).
The light for signal addition (λ1) is split into two directions at the first filter (4) → Pockels effect element (1a) → second beam splitter (5).
The light split by the beam splitter (3) is guided through the second filter (6) -> the reflection plate (7) -> the reflection plate (8) -> the second beam splitter (5). Then, in the second beam splitter (5), the elliptically polarized light of the signal addition light (λ1) and the temperature compensation light (λ2) are combined 13 - into a B-phase adder - a C-phase adder - The synthesized wave is incident on the receiving section (9), where the synthesized wave is photoelectrically converted, and further, based on the converted signal, the components of the light (λ1) for signal addition and the light (λ2) for temperature compensation are converted. Since the phase difference with the component can be detected, only the phase modulation component added in each adder can be detected with high precision based on this phase difference.

以上零相電圧※。で説明したが、零相電流の場合でも同
様である。また、磁界、その他の電気量の場合にも適応
でき、その場合には、例えば、ファラデー回転子などの
電気光学素子を使用するものである。
or more zero-sequence voltage*. As explained above, the same applies to zero-sequence current. It is also applicable to magnetic fields and other quantities of electricity, in which case electro-optical elements such as Faraday rotators are used.

〈発明の効果〉 以上のようにこの発明の光学素子による信号加算方式に
よれば、偏波面保存ファイバーからの信号加算用の光と
温度補償用の光との合成波を分岐し、信号加算用の光を
電気光学効果素子に入射するとともに、温度補償用の光
を電気光学効果素子を迂回させ、2つの光を光電変換す
ることにより、2つの光の偏波面保存ファイバーの温度
による変動成分を検出することができ、この変動成分を
補償することにより、電気光学効果素子により加えられ
た位相変調成分を高精度で検出することができるという
特有の効果を奏する。
<Effects of the Invention> As described above, according to the signal addition method using the optical element of the present invention, the combined wave of signal addition light and temperature compensation light from the polarization preserving fiber is branched, and The light is incident on the electro-optic effect element, and the temperature-compensating light is bypassed through the electro-optic effect element, and the two lights are photoelectrically converted. By doing so, the fluctuation component of the two lights due to the temperature of the polarization-maintaining fiber is reduced. By compensating for this fluctuation component, the phase modulation component added by the electro-optic effect element can be detected with high precision, which is a unique effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施例としての電気光学素子によ
る信号加算方式の一実施装置図、第2図は、従来の電気
光学素子による信号加算方式説明図。 (la) 、 (lb) 、 (lc)−・・ポッケル
ス効果素子、(2)・・・偏波面保存ファイバー、 (3)・・・第1ビームスプリッタ−1(4)・・・第
1フイルター、 (5)・・・第2ビームスプリッタ−1(6)・・・第
2フイルター、 (7) (8)・・・反射板
FIG. 1 is a diagram of an apparatus for implementing a signal addition method using an electro-optical element as an embodiment of the present invention, and FIG. 2 is an explanatory diagram of a signal addition method using a conventional electro-optical element. (la), (lb), (lc) --- Pockels effect element, (2) --- polarization preserving fiber, (3) --- first beam splitter-1 (4) --- first filter , (5)...Second beam splitter-1 (6)...Second filter, (7) (8)...Reflection plate

Claims (1)

【特許請求の範囲】 1、透過光に測定電気量に応じた位相の変 化を与える電気光学効果素子を複数の測 定点に配置し、上記位相変化を偏波面保 存ファイバーにより伝送して測定電気量 のベクトル和を求める信号加算方式にお いて、信号加算用および温度補償用の波 長の異なる2つの光を同一の偏波面保存 ファイバーにより伝送し、電気光学効果 素子の入射口において信号加算用および 温度補償用の光を分岐し、信号加算用の 光を電気光学効果素子に入射するととも に、温度補償用の光を電気光学効果素子 から迂回させ、信号加算用の光と温度補 償用の光とを光電変換し、この変換値に 基いて両光の位相差を検出し、この位相 差に基いて偏波面保存ファイバーの温度 特性による誤差を補償して電気光学素子 により加算される位相変化を検出するこ とを特徴とする光学素子による信号加算 方式。[Claims] 1. Change in phase of transmitted light according to the amount of electricity measured We conducted multiple measurements of electro-optic effect elements that give Placed at a fixed point, the above phase change is maintained at a polarization plane. The amount of electricity is measured by transmitting it through existing fibers. The signal addition method that calculates the vector sum of waveforms for signal addition and temperature compensation. Preserves the same polarization plane for two lights with different lengths Transmitted by fiber, electro-optic effect For signal addition and Branch the light for temperature compensation and add the light for signal addition. When light enters the electro-optic effect element, The light for temperature compensation is converted into an electro-optic effect element. light and temperature compensation for signal addition. Photoelectrically convert the compensation light and convert it into this converted value. The phase difference between the two lights is detected based on the Temperature of polarization preserving fiber based on difference Electro-optical element by compensating for errors due to characteristics It is possible to detect the phase change added by Signal addition using an optical element characterized by method.
JP62324865A 1987-12-21 1987-12-21 Signal addition system by optical element Pending JPH01163677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62324865A JPH01163677A (en) 1987-12-21 1987-12-21 Signal addition system by optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324865A JPH01163677A (en) 1987-12-21 1987-12-21 Signal addition system by optical element

Publications (1)

Publication Number Publication Date
JPH01163677A true JPH01163677A (en) 1989-06-27

Family

ID=18170509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324865A Pending JPH01163677A (en) 1987-12-21 1987-12-21 Signal addition system by optical element

Country Status (1)

Country Link
JP (1) JPH01163677A (en)

Similar Documents

Publication Publication Date Title
US8861899B2 (en) Optical fiber current transformer with optical fiber temperature acquisition and temperature compensation
CN101957399B (en) Digital closed loop type optical fiber current sensor
US6122415A (en) In-line electro-optic voltage sensor
CN111277325B (en) An instantaneous frequency measurement method and system with adjustable measurement range based on polarization modulator
US5811964A (en) Method and device for measuring an electrical alternating quanity with temperature compensation
JP2000515979A (en) Optical fiber device and method for precision current sensing
CN104569544A (en) Faraday current and temperature sensors
CN104007297B (en) A kind of digital closed loop polarimeter type fibre optic current sensor
US6285182B1 (en) Electro-optic voltage sensor
Voges et al. Optical phase and amplitude measurement by single sideband homodyne detection
CN103698571B (en) There is current transformer arrangement and the bus current detection method of self energizing low-power consumption
US11143678B2 (en) Polarization optical detection with enhanced accuracy in the high-signal regime
CA2240523C (en) Optical measuring method and optical measuring arrangement for measuring a periodic quantity using intensity normalizaton
CN109212458A (en) A kind of Sagnac interference-type high current optical fiber current mutual inductor measurement method based on nonreciprocal phase shift equipment
Takahashi et al. Field test of DC optical current transformer for HVDC link
JPH01163677A (en) Signal addition system by optical element
WO2023158335A1 (en) Fibre-optic sensor for sensing megaampere range electric currents
KR100452301B1 (en) The Apparatus and Method for Simultaneous Measurement of Current and Voltage Using Optic Fiber
JPH01163675A (en) Multipoint measuring instrument by multiplexed wavelength
JPS60243573A (en) Optical measuring device
Cao et al. A Novel Design of Fiber-Optic Sagnac Current Sensor
SU917099A1 (en) Device for touch-free measuring of current
SU1019343A1 (en) Optical electronic measuring device
CN118584183A (en) An all-fiber current sensor for linear measurement based on wedge interferometry
JP3201729B2 (en) How to use the optical sensor system