JPH0991037A - Fault diagnostic device - Google Patents
Fault diagnostic deviceInfo
- Publication number
- JPH0991037A JPH0991037A JP24729295A JP24729295A JPH0991037A JP H0991037 A JPH0991037 A JP H0991037A JP 24729295 A JP24729295 A JP 24729295A JP 24729295 A JP24729295 A JP 24729295A JP H0991037 A JPH0991037 A JP H0991037A
- Authority
- JP
- Japan
- Prior art keywords
- diagnosis
- diagnostic
- cdm
- failure
- knowledge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
- Y04S10/52—Outage or fault management, e.g. fault detection or location
Landscapes
- Testing And Monitoring For Control Systems (AREA)
- Safety Devices In Control Systems (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば火力、原子
力、上下水道、化学、冷熱などの各種プラント及び機器
等の故障を診断する故障診断装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a failure diagnosing device for diagnosing failures of various plants and equipment such as thermal power, nuclear power, water and sewage, chemicals, and cold heat.
【0002】[0002]
【従来の技術】従来、例えば火力、原子力、上下水道、
化学、冷熱などの各種プラント及び機器等の故障を診断
する故障診断装置として実用化されている主な診断法に
は、故障木診断法とマトリックス診断法がある。故障木
診断法は、「蒸発器圧力低」というトップ現象と観測事
象「フロート室冷媒の有無」などの観測データから「フ
ロート室冷媒なし」という値に基づいて、順に故障原因
を絞り込んで行くものである。そのフローのサンプル図
には、図9に示すようなものがある。図9は、冷凍機の
診断例を示したもので、故障木解析で使われる故障木と
類似しているが、トップから原因に向かってのツリー分
岐に必ず観測事象の値、例えば「フロート室冷媒の有
無」がYes(成立)かNo(不成立)のような形で場
合を分けて絞り込んでいる。この故障木診断法の場合、
診断知識となるフローチャートは、設計者が予め、故障
木解析などの知識を基に作成する必要があり、手間のか
かる作業となる。しかし、作成された知識は論理的であ
るため、診断結果の説明としては解りやすいという特徴
を持っている。2. Description of the Related Art Conventionally, for example, thermal power, nuclear power, water and sewerage,
The main diagnosis methods that have been put into practical use as failure diagnosis devices for diagnosing failures of various plants and equipment such as chemistry and cold heat include a failure tree diagnosis method and a matrix diagnosis method. The failure tree diagnosis method is to narrow down the cause of failure in order based on the value of "no refrigerant in the float chamber" based on the observation data such as the top phenomenon "low evaporator pressure" and the observation event "presence or absence of refrigerant in the float chamber". Is. A sample diagram of the flow is shown in FIG. FIG. 9 shows an example of diagnosing a refrigerator, which is similar to the fault tree used in the fault tree analysis, but the value of the observed event is always found in the tree branch from the top toward the cause, for example, “float room”. The presence / absence of refrigerant is narrowed down in different cases such as Yes (established) or No (not established). In the case of this fault tree diagnosis method,
The flowchart, which is the diagnostic knowledge, needs to be created by the designer based on the knowledge such as the failure tree analysis in advance, which is a troublesome work. However, since the created knowledge is logical, it has a characteristic that it is easy to understand as an explanation of the diagnosis result.
【0003】一方、マトリックス診断法は、図10に示
すように観測事象を縦軸に、原因候補を横軸にし両者を
例えば「0−100」(0:相関がない。100:完全
に相関がある。50:どちらともいえない。)で表した
CDM(Cause Diagnosis Matrix)に基づいて原因候補
を求めるものである。On the other hand, in the matrix diagnostic method, as shown in FIG. 10, the observed event is on the vertical axis and the cause candidate is on the horizontal axis, and both are, for example, "0-100" (0: no correlation. 100: completely correlated. 50: Neither can be said.) The cause candidate is obtained based on the CDM (Cause Diagnosis Matrix).
【0004】この診断法の特徴は、経験的な知識を比較
的定式化しやすいところにある。即ち、「故障原因がこ
のようにものの時にはこのような観測事象が観測され
た。」といった経験知識を集め、相関度を過去の経験に
基づき当てはめていくものである。The characteristic of this diagnostic method is that it is relatively easy to formulate empirical knowledge. That is, empirical knowledge such as "when such a cause of failure is such an observed event was observed" is collected, and the degree of correlation is applied based on past experience.
【0005】経験的知識が豊富であれば、比較的容易に
診断知識を作成できる。しかし、相関係数は、経験的な
ものがベースであるから必ずしも論理的ではなく、作成
知識の検証という面では故障木に比べると劣っている。With abundant empirical knowledge, diagnostic knowledge can be created relatively easily. However, the correlation coefficient is not necessarily logical because it is empirical, and it is inferior to the failure tree in terms of verification of created knowledge.
【0006】以上をまとめると、故障木診断では、知識
の作成が難しいが、できた知識の検証や、説明機能は優
れている。マトリックス診断は、知識の作成は比較的容
易であるが、知識の検証、説明機能という点で問題があ
る。In summary, although it is difficult to create knowledge in the fault tree diagnosis, the knowledge verification and the explanation function are excellent. Although matrix diagnosis is relatively easy to create knowledge, it has a problem in terms of knowledge verification and explanation function.
【0007】図11(a)は故障木ベース診断装置、図
11(b)はCDMベース診断装置の構成例を示したも
のである。図11(a)に示す故障木ベース診断装置
は、プラント1からの「蒸発器圧力低」といった警報に
より診断装置2が起動され、故障木選択手段3に入力さ
れる。プラント1からの警報にはどの故障木を用いて診
断するかのテーブルがあり、それに基づいて故障木診断
手段4を起動する。この故障木診断手段4は、プラント
1からのデータとオペレータからの観測結果に基づき故
障木診断知識5を用いて診断を行ない、表示手段6に結
果を表示する。FIG. 11 (a) shows a configuration example of a fault tree-based diagnostic device, and FIG. 11 (b) shows a configuration example of a CDM-based diagnostic device. In the fault tree-based diagnostic device shown in FIG. 11 (a), the diagnostic device 2 is activated by an alarm such as “low evaporator pressure” from the plant 1, and is input to the fault tree selection means 3. The alarm from the plant 1 has a table indicating which fault tree is used for diagnosis, and the fault tree diagnosis means 4 is activated based on the table. The failure tree diagnosis means 4 makes a diagnosis using the failure tree diagnosis knowledge 5 based on the data from the plant 1 and the observation result from the operator, and displays the result on the display means 6.
【0008】図11(b)に示すCDMベース診断装置
は、プラント1からの警報により診断装置2′が起動さ
れ、CDM選択手段3′に入力される。このCDM選択
手段3′は、警報に含まれるテーブルに基づいてCDM
診断手段4′を起動する。このCDM診断手段4′は、
プラント1からのデータとオペレータからの観測結果に
基づきCDM診断知識5′を用いて診断を行ない、表示
手段6′に結果を表示する。In the CDM-based diagnostic device shown in FIG. 11B, the diagnostic device 2'is activated by an alarm from the plant 1 and is input to the CDM selecting means 3 '. The CDM selecting means 3'uses the CDM based on the table included in the alarm.
The diagnostic means 4'is activated. This CDM diagnostic means 4'is
Based on the data from the plant 1 and the observation result from the operator, the CDM diagnosis knowledge 5'is used for diagnosis, and the result is displayed on the display means 6 '.
【0009】上記表示手段6,6′による表示例を図1
2に示す。画面の上部に観測事象(兆候データ)の入力
部があり、下部は原因候補を確信度と共に表示するよう
になっている。センサにより観測事象の値が決められる
ものは自動で入力されている。A display example by the display means 6 and 6'is shown in FIG.
It is shown in FIG. At the top of the screen, there is an observation event (symptom data) input section, and at the bottom, the cause candidates are displayed together with the certainty factor. If the value of the observation event is determined by the sensor, it is automatically input.
【0010】[0010]
【発明が解決しようとする課題】上記したように故障木
診断装置は、作成された知識は論理的であり、診断結果
の説明としては解りやすいという特徴を持っているが、
診断知識となるフローチャートは、設計者が予め故障木
解析などの知識を基に作成する必要があり、作業が非常
に面倒であるという問題がある。As described above, the fault tree diagnostic device is characterized in that the created knowledge is logical and is easy to understand as the explanation of the diagnostic result.
There is a problem in that the flowchart, which is diagnostic knowledge, needs to be created by a designer in advance based on knowledge such as failure tree analysis, and the work is very troublesome.
【0011】また、CDM診断装置は、経験的知識が豊
富であれば、比較的容易に診断知識を作成できるという
利点があるが、相関係数は経験的なものがベースである
から必ずしも論理的ではなく、作成知識の検証、説明機
能という点で故障木に比較して劣るという問題がある。Further, the CDM diagnostic apparatus has an advantage that the diagnostic knowledge can be created relatively easily if the empirical knowledge is abundant, but since the correlation coefficient is empirical, it is not always logical. However, there is a problem that it is inferior to the failure tree in terms of verification of created knowledge and explanation function.
【0012】本発明は上記の課題を解決するためになさ
れたもので、警報毎に故障木診断法あるいはCDM診断
法の何れか適した診断方法を選択でき、CDM診断法の
知識の検証、説明機能という点で劣っている点を解決
し、診断作成時間の低減と共に、診断結果がCDM診断
方法の場合でも故障木形式で原因を追及でき、診断結果
を容易に確認し得る故障診断装置を提供することを目的
とする。The present invention has been made in order to solve the above-mentioned problems, and it is possible to select either a failure tree diagnosis method or a CDM diagnosis method suitable for each alarm, and verify and explain the knowledge of the CDM diagnosis method. Provides a fault diagnostic device that solves the inferior point in terms of function, reduces the diagnostic creation time, and can investigate the cause in the fault tree format even when the diagnostic result is the CDM diagnostic method and can easily confirm the diagnostic result. The purpose is to do.
【0013】[0013]
【課題を解決するための手段】本発明に係る故障診断装
置は、故障診断対象から故障情報を受け、その故障情報
に対して故障木による故障診断を行なうかCDMによる
故障診断を行なうかを判定する知識選択手段と、故障木
診断手段と、故障木診断知識と、CDM診断手段と、C
DM診断知識と、CDM診断の過程を故障木の形式に変
換する故障木変換手段とを有することを特徴とする。A failure diagnosis apparatus according to the present invention receives failure information from a failure diagnosis target, and judges whether the failure information is to be subjected to failure diagnosis by a failure tree or CDM. Knowledge selection means, failure tree diagnosis means, failure tree diagnosis knowledge, CDM diagnosis means, C
It is characterized by having DM diagnosis knowledge and a fault tree conversion means for converting a CDM diagnosis process into a fault tree format.
【0014】(作用)知識選択手段は、プラントからの
警報により、その警報が故障木による診断知識か、CD
Mによる診断知識かを判定し、判定した診断方法により
診断を行ない、診断結果を表示手段に表示する。CDM
診断を選択したときは、その診断結果を故障木変換手段
を用いて故障木に変換した上で表示手段に表示する。(Operation) The knowledge selecting means receives an alarm from the plant and determines whether the alarm is diagnostic knowledge based on a fault tree or a CD.
It is determined whether or not it is the diagnostic knowledge by M, the diagnosis is performed by the determined diagnostic method, and the diagnostic result is displayed on the display means. CDM
When the diagnosis is selected, the diagnosis result is converted into a failure tree using the failure tree conversion means and then displayed on the display means.
【0015】[0015]
【発明の実施の形態】以下、図面を参照して本発明の一
実施形態を説明する。図1は、本発明の一実施形態に係
る故障診断装置の構成を示すブロック図である。プラン
ト1からの警報(故障情報)は診断装置10に送られ、
知識選択手段11に入力される。この知識選択手段11
は、プラント1からの故障情報に基づいて故障木による
故障診断を行なうか、CDMによる故障診断を行なうか
を判定し、その判定結果に基づいて故障木診断手段12
またはCDM診断手段21を起動する。故障木診断手段
12は、知識選択手段11により起動されると、故障木
診断知識13を参照して故障の診断を行ない、その診断
結果を表示手段14に表示する。CDM診断手段21
は、知識選択手段11により起動されると、CDM知識
診断知識22を参照して故障の診断を行ない、その診断
結果を故障木変換手段23に出力する。この故障木変換
手段23は、CDM診断の過程を故障木の形式に変換し
て表示手段14に表示する。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a failure diagnosis device according to an embodiment of the present invention. The alarm (fault information) from the plant 1 is sent to the diagnostic device 10,
It is input to the knowledge selecting means 11. This knowledge selection means 11
Determines whether to perform a fault diagnosis using a fault tree or a CDM based on the fault information from the plant 1, and the fault tree diagnosing means 12 based on the determination result.
Alternatively, the CDM diagnostic means 21 is activated. When activated by the knowledge selecting means 11, the failure tree diagnosing means 12 refers to the failure tree diagnosing knowledge 13 to diagnose a failure, and displays the diagnosis result on the displaying means 14. CDM diagnostic means 21
When activated by the knowledge selecting means 11, the CDM knowledge diagnosing knowledge 22 is referred to diagnose a failure, and the diagnosis result is output to the failure tree converting means 23. The fault tree conversion means 23 converts the CDM diagnosis process into a fault tree format and displays it on the display means 14.
【0016】次に上記実施形態の動作を説明する。プラ
ント1は、センサ検出信号が上限値を越えたときに警報
を発生する。この警報は、符号化された故障情報であ
り、例えば図2に示すようなデータファイルを構成して
いる。即ち、警報は、「診断タイプ」、「FT/CDM
番号」、「TAGNo」、「判定タイプ」、「質問文名
称」等からなり、行の先頭データである「診断タイプ」
が「F」で始まる場合は故障木診断を示し、「C」で始
まる場合はCDM診断を示している。上記プラント1で
発生した警報は、診断装置10へ入力される。Next, the operation of the above embodiment will be described. The plant 1 issues an alarm when the sensor detection signal exceeds the upper limit value. This alarm is coded failure information and constitutes a data file as shown in FIG. 2, for example. That is, the alarm is "diagnosis type", "FT / CDM
No. ”,“ TAG No ”,“ judgment type ”,“ question sentence name ”, etc., and is the head data of the line“ diagnosis type ”
Indicates a fault tree diagnosis if it starts with "F", and indicates CDM diagnosis if it starts with "C". The alarm generated in the plant 1 is input to the diagnostic device 10.
【0017】診断装置10は、図3のフローチャートに
示すようにプラント1が警報を発生すると(ステップA
1)、その警報の種別を知識選択手段11で判定し(ス
テップA2)、警報が故障木知識(FT)であるか、C
DM用のデータ(知識)であるかを警報の1文字目の
「F」または「C」で判定する(ステップA3)。知識
選択手段11は、警報の1文字目が「F」であれば、故
障木診断手段12を起動し(ステップA4)、1文字目
が「C」であればCDM診断手段21を起動する(ステ
ップA5)。故障木診断手段12が起動されると、故障
木診断知識13を参照して故障の診断を行ない、その診
断結果を表示手段14に表示する(ステップA7)。ま
た、CDM診断手段21が起動された場合は、CDM知
識診断知識22を参照して故障の診断を行ない、その診
断の過程を故障木変換手段23により故障木の形式に変
換して表示手段14に表示する(ステップA6,A
7)。As shown in the flow chart of FIG. 3, the diagnostic device 10 detects when the plant 1 issues an alarm (step A
1), the type of the alarm is determined by the knowledge selecting means 11 (step A2), and whether the alarm is the knowledge of the fault tree (FT) or C
Whether the data (knowledge) for DM is determined by the first letter "F" or "C" of the alarm (step A3). If the first character of the alarm is "F", the knowledge selecting means 11 activates the failure tree diagnosing means 12 (step A4), and if the first character is "C", activates the CDM diagnosing means 21 ( Step A5). When the failure tree diagnosis means 12 is activated, the failure tree diagnosis knowledge 13 is referred to diagnose the failure, and the diagnosis result is displayed on the display means 14 (step A7). When the CDM diagnosis means 21 is activated, the CDM knowledge diagnosis knowledge 22 is referred to diagnose a failure, the failure tree conversion means 23 converts the diagnosis process into a failure tree format, and the display means 14 is displayed. To be displayed (Steps A6, A
7).
【0018】上記故障木診断手段12による場合は、従
来から診断過程を故障木の形式で見ることができる。以
下、故障木診断法による原因の探索について、図4を例
として説明する。図4において、ANDはANDロジッ
ク、ORはORロジックである。また、miはObservat
ion 、XiはFault 、fiはFault rates である。In the case of the fault tree diagnosis means 12, the diagnosis process can be viewed in the form of a fault tree in the past. The search for the cause by the fault tree diagnosis method will be described below with reference to FIG. In FIG. 4, AND is AND logic, and OR is OR logic. Also, mi is Observat
ion and Xi are Fault, and fi is Fault rates.
【0019】(1) プラント警報より、頂上のm′F が成
立(mF が異常)、mE が成立(mE が正常)したとす
る。 (2) 次にm′B を評価し、m′B が成立(mB が異常)
であれば、更に下層へと原因を探索する。[0019] (1) from plant alarms, established atop m 'F (m F is abnormal), the established m E (m E is normal) was. (2) then 'evaluates B, m' m B is satisfied (m B is abnormal)
If so, the cause is searched further down.
【0020】(3) m′B が不成立(mB が正常)なら
ば、下層への探索は打ち切る。 (4) 上層の中間のxA ,xB またはmA の成立が不明の
場合は、その下層のxA やxB の成立も不明とする。[0020] (3) If m 'B is satisfied (m B is normal), the search for the underlying aborts. (4) If the formation of x A , x B, or m A in the middle of the upper layer is unknown, the formation of x A or x B in the lower layer is also unknown.
【0021】(5) m′B が不明で、mD が成立のとき
は、成立した中間のxC ,xD の方から先に探索する。 (6) m′B 及びm′D の両方とも不明のときは、それぞ
れ下層にある全ての故障事象の故障確率の和、すなわ
ち、fA +fB とfC +fD を比べ、大きい方から優先
して探索する。[0021] (5) m 'B is unknown, m D is the time of incorporation, enacted intermediate x C, searches ahead from the direction of x D. (6) When both m ′ B and m ′ D are unknown, the sum of the failure probabilities of all the failure events in the lower layer, that is, f A + f B and f C + f D are compared, and the larger one is prioritized. Then explore.
【0022】(7) 原因が1つも探索できないとき、ある
観測事象を1つだけ反転させ、故障確率の最も高い故障
事象が原因となる順に診断を行なう。 (8) 診断は、少なくとも1つの観測事象の成立または不
成立が入力されるタイミングで、オペレータの判断で繰
り返し診断を実行する。(7) When no cause can be searched for, only one observation event is inverted, and diagnosis is performed in the order in which the failure event with the highest failure probability is the cause. (8) Diagnosis is repeated at the operator's discretion at the timing when the establishment or non-establishment of at least one observation event is input.
【0023】(9) 不明な観測とは、未観測または観測し
たが成否の判定がつかない場合を意味する。 (10)原因の確からしさを計算する。(9) "Unknown observation" means unobserved or observed but the success or failure cannot be determined. (10) Calculate the probability of the cause.
【0024】(11)2重故障に対しては、信号の伝達の上
流の故障が先に探索される。しかし、迅速に原因を取り
除く保守を行なうことによって、再診断で2つ目の故障
も探索される。(11) For the double failure, the failure upstream of the signal transmission is searched first. However, the second failure is searched for in the re-diagnosis by performing maintenance for removing the cause promptly.
【0025】上記のようにして故障木診断法による原因
の探索が行なわれる。また、CDM知識診断知識22に
より診断が行なわれた場合は、故障木変換手段23によ
り故障木への変換が行なわれる。この故障木変換手段2
3による変換処理は、例えば図5に示すフローチャート
に従って行なわれる。故障木変換のアルゴリズムとして
は、情報エントロピEによるデータ分離を用いる。エン
トロピEとは、本来熱力学や統計物理の分野で定義され
た概念で、無秩序あるいは不規則さの順位や程度を表し
ているが、情報理論では未知の度合いを表す概念として
導入されたものである。情報エントロピEは、1回の試
行によって得られる情報量の期待値として定義される。
原因がXである生起確率をr(0≦r≦1.0)とする
とき、xの情報量I(r)=−log2r(単位ビット)。
その期待値(重み付平均)としてエントロピをf(r)
=−r log2 rで定義する。fは、「f(0)=0、f
(0.5)=0.5、f(1)=0」となる図6に示す
ような関数である。The cause is searched by the fault tree diagnosis method as described above. Further, when the diagnosis is made by the CDM knowledge diagnosis knowledge 22, the failure tree converting means 23 converts it into a failure tree. This fault tree conversion means 2
The conversion process by 3 is performed according to the flowchart shown in FIG. 5, for example. Data separation by information entropy E is used as the algorithm of the fault tree conversion. Entropy E is a concept originally defined in the fields of thermodynamics and statistical physics, and represents the order and degree of disorder or disorder, but was introduced as a concept of unknown degree in information theory. is there. The information entropy E is defined as the expected value of the amount of information obtained by one trial.
When the occurrence probability that the cause is X is r (0 ≦ r ≦ 1.0), the information amount I (r) of x = −log2r (unit bit).
Entropy is f (r) as its expected value (weighted average)
= −r log2 r f is “f (0) = 0, f
(0.5) = 0.5, f (1) = 0 ”, as shown in FIG.
【0026】r=1/e=0.368で最大値0.53
をとる。エントロピは乱雑さの程度を表す量であるか
ら、或る原因候補の集合に対して、その集合の持つエン
トロピが小さければ、確度が高い予測ができる。これは
エントロピが0になれば、原因候補が1つに絞られると
いうことを意味している。When r = 1 / e = 0.368, the maximum value is 0.53
Take Since entropy is a quantity indicating the degree of randomness, highly accurate prediction can be performed if the entropy of a certain cause candidate set is small. This means that if the entropy becomes 0, the cause candidates will be narrowed down to one.
【0027】故障木変換処理に際しては、まず、分離前
の情報エントロピを計算する(ステップB1)。故障木
診断手段12により例えば図7に示すようなCDM診断
の結果が得られた場合、分離前のエントロピEは、発生
頻度の正常、異常の比が3/8:5/8であるから、 E=f(3/8)+f(5/8) =(−3/8 log2 3/8)+(−5/8 log2 5/8) =0.9544(ビット) になる。In the fault tree conversion process, first, the information entropy before separation is calculated (step B1). When the result of the CDM diagnosis as shown in FIG. 7 is obtained by the failure tree diagnosing means 12, the entropy E before separation has a normal occurrence frequency / abnormality ratio of 3/8: 5/8. E = f (3/8) + f (5/8) = (− 3/8 log2 3/8) + (− 5/8 log2 5/8) = 0.9544 (bits).
【0028】次に観測事象Aiによる分離後のエントロ
ピEiを計算し(ステップB2)、最大のエントロピE
miniを探す(ステップB3)。そして、エントロピE
miniとなる観測事象で分離し(ステップB4)、未使
用観測事象が有るか否かをチェックし(ステップB
5)、未使用観測事象が有ればステップB1に戻って同
様の処理を繰り返して実行する。すなわち、各観測事象
で分離前と分離後のエントロピを比較し、最もエントロ
ピの小さくなる観測事象を選択する。観測事象が幾つか
の属性値を持っている場合には、それぞれのエントロピ
の重み付平均値で比較する。これを全ての観測事象につ
いて繰り返すことにより、故障木に変換する(ステップ
B6)。図8は、以上の変換結果例を示したものであ
る。このように故障木変換手段23により故障木への変
換処理を行なうことにより、CDM診断法の場合でも診
断結果の追及が可能となる。Next, the entropy Ei after separation by the observation event Ai is calculated (step B2), and the maximum entropy Ei is calculated.
Find mini (step B3). And entropy E
It separates by the observation event which becomes mini (step B4), and it is checked whether there is an unused observation event (step B4).
5) If there is an unused observation event, return to step B1 and repeat the same processing. That is, the entropy before and after separation is compared for each observation event, and the observation event with the smallest entropy is selected. When the observed event has several attribute values, the weighted average value of each entropy is compared. By repeating this for all the observation events, it is converted into a failure tree (step B6). FIG. 8 shows an example of the above conversion result. In this way, by performing the conversion processing into the failure tree by the failure tree conversion means 23, it becomes possible to pursue the diagnosis result even in the case of the CDM diagnosis method.
【0029】[0029]
【発明の効果】以上詳記したように本発明によれば、C
DM診断法(マトリックス診断法)の知識の検証、説明
機能という点で劣っていた点を解決し、かつ、故障木診
断法及びCDM診断法の何れかを問題毎に適した方を選
択でき、診断作成時間を低減できると共に、CDM診断
法の場合でも診断結果を追及できるようになり、診断結
果を容易に確認することができる。As described above in detail, according to the present invention, C
It is possible to solve the inferiority of the knowledge verification and the explanation function of the DM diagnosis method (matrix diagnosis method), and select one of the failure tree diagnosis method and the CDM diagnosis method for each problem, The diagnostic preparation time can be reduced, and the diagnostic result can be pursued even in the case of the CDM diagnostic method, so that the diagnostic result can be easily confirmed.
【図1】本発明の一実施形態に係る故障診断装置の構成
を示すブロック図。FIG. 1 is a block diagram showing a configuration of a failure diagnosis device according to an embodiment of the present invention.
【図2】同実施形態におけるプラントから出力される故
障情報の例を示す図。FIG. 2 is a diagram showing an example of failure information output from the plant in the same embodiment.
【図3】同実施形態における処理動作を示すフローチャ
ート。FIG. 3 is a flowchart showing a processing operation in the embodiment.
【図4】同実施形態における故障木診断法による原因の
探索例を説明するための図。FIG. 4 is a view for explaining an example of searching for a cause by the fault tree diagnosis method according to the same embodiment.
【図5】同実施形態における故障木変換手段の処理例を
示すフローチャート。FIG. 5 is a flowchart showing a processing example of a fault tree conversion unit in the same embodiment.
【図6】同実施形態における情報エントロピを示す図。FIG. 6 is a diagram showing information entropy in the same embodiment.
【図7】同実施形態におけるCDM診断による表示例を
示す図。FIG. 7 is a view showing a display example by CDM diagnosis in the same embodiment.
【図8】同実施形態における故障木変換手段の変換例を
示す図。FIG. 8 is a diagram showing a conversion example of a fault tree conversion unit in the same embodiment.
【図9】診断用故障木の例を示すフローチャート。FIG. 9 is a flowchart showing an example of a diagnostic fault tree.
【図10】CDM診断の例を示す図。FIG. 10 is a diagram showing an example of CDM diagnosis.
【図11】(a)は従来の故障木診断装置の構成例を示
す図、(b)は従来のCDM診断装置の構成例を示す
図。11A is a diagram showing a configuration example of a conventional fault tree diagnostic device, and FIG. 11B is a diagram showing a configuration example of a conventional CDM diagnostic device.
【図12】従来の故障診断装置の画面表示例を示す図。FIG. 12 is a diagram showing a screen display example of a conventional failure diagnosis device.
1 プラント 10 診断装置 11 知識選択手段 12 故障木診断手段 13 故障木診断知識 14 表示手段 21 CDM診断手段 22 CDM知識診断知識 23 故障木変換手段 1 Plant 10 Diagnostic Device 11 Knowledge Selection Means 12 Fault Tree Diagnosis Means 13 Fault Tree Diagnosis Knowledge 14 Display Means 21 CDM Diagnostic Means 22 CDM Knowledge Diagnostic Knowledge 23 Fault Tree Conversion Means
Claims (1)
故障情報に対して故障木による故障診断を行なうかCD
Mによる故障診断を行なうかを判定する知識選択手段
と、故障木診断手段と、故障木診断知識と、CDM診断
手段と、CDM診断知識と、CDM診断の過程を故障木
の形式に変換する故障木変換手段とを有することを特徴
とする故障診断装置。1. A CD for receiving failure information from a failure diagnosis target and performing failure diagnosis on the failure information using a failure tree?
Knowledge selecting means for deciding whether or not to carry out failure diagnosis by M, failure tree diagnosing means, failure tree diagnosing means, CDM diagnosing means, CDM diagnosing knowledge, and a failure converting the CDM diagnosing process into a failure tree format. A fault diagnosis device having a tree conversion means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24729295A JPH0991037A (en) | 1995-09-26 | 1995-09-26 | Fault diagnostic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24729295A JPH0991037A (en) | 1995-09-26 | 1995-09-26 | Fault diagnostic device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0991037A true JPH0991037A (en) | 1997-04-04 |
Family
ID=17161271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24729295A Pending JPH0991037A (en) | 1995-09-26 | 1995-09-26 | Fault diagnostic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0991037A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003099109A (en) * | 2001-09-20 | 2003-04-04 | Denso Corp | Assembly process design system |
WO2004029744A1 (en) * | 2002-09-27 | 2004-04-08 | Kabushiki Kaisha Toshiba | Abnormality-diagnosing system in plant control system, and abnormality-diagnosing method |
JP2004303247A (en) * | 2003-03-28 | 2004-10-28 | Fisher Rosemount Syst Inc | Functional block implementation of cause and effect matrix for use in process safety system |
CN118500538A (en) * | 2024-07-18 | 2024-08-16 | 茌平鲁环汽车散热器有限公司 | Method for monitoring working condition of automobile radiating fin |
-
1995
- 1995-09-26 JP JP24729295A patent/JPH0991037A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003099109A (en) * | 2001-09-20 | 2003-04-04 | Denso Corp | Assembly process design system |
JP4665369B2 (en) * | 2001-09-20 | 2011-04-06 | 株式会社デンソー | Assembly process design system |
WO2004029744A1 (en) * | 2002-09-27 | 2004-04-08 | Kabushiki Kaisha Toshiba | Abnormality-diagnosing system in plant control system, and abnormality-diagnosing method |
US7212952B2 (en) | 2002-09-27 | 2007-05-01 | Kabushiki Kaisha Toshiba | System and method for diagnosing abnormalities in plant control system |
JP2004303247A (en) * | 2003-03-28 | 2004-10-28 | Fisher Rosemount Syst Inc | Functional block implementation of cause and effect matrix for use in process safety system |
CN118500538A (en) * | 2024-07-18 | 2024-08-16 | 茌平鲁环汽车散热器有限公司 | Method for monitoring working condition of automobile radiating fin |
CN118500538B (en) * | 2024-07-18 | 2024-11-01 | 茌平鲁环汽车散热器有限公司 | Method for monitoring working condition of automobile radiating fin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Estivill-Castro et al. | Data mining techniques for autonomous exploration of large volumes of geo-referenced crime data | |
Zhu et al. | Spatial signatures for geographic feature types: Examining gazetteer ontologies using spatial statistics | |
CN115330268B (en) | Comprehensive emergency command method and system for coping with mine disasters | |
CN114484731A (en) | Method and device for diagnosing faults of central air conditioner based on stacking fusion algorithm | |
CN113032238A (en) | Real-time root cause analysis method based on application knowledge graph | |
CN116541510A (en) | Fault case recommendation method based on knowledge graph | |
Zhang et al. | Information fusion for automated post-disaster building damage evaluation using deep neural network | |
Loganathan et al. | Development of a Model to Prioritize Inspection and Condition Assessment of Gravity Sanitary Sewer Systems | |
CN106971027B (en) | Water chilling unit fault feature selection method based on DR-BN model | |
JPH0991037A (en) | Fault diagnostic device | |
CN117057480A (en) | Urban power distribution network fault prediction method and system under extreme weather | |
Priyanka et al. | Rank-based risk target data analysis using digital twin on oil pipeline network based on manifold learning | |
CN108829794A (en) | Alert analysis method based on interval graph | |
CN112949745B (en) | Fusion processing method and device for multi-source data, electronic equipment and storage medium | |
Niaki et al. | Bootstrap method approach in designing multi-attribute control charts | |
CN116778688B (en) | Machine room alarm event processing method, device, equipment and storage medium | |
Amaitik et al. | Developing a hierarchical fuzzy rule-based model with weighted linguistic rules: A case study of water pipes condition prediction | |
CN111723302A (en) | Recommendation method based on collaborative dual-model deep representation learning | |
CN114659037B (en) | Positioning method for pipe burst of urban water supply pipe network | |
CN116089894A (en) | Unknown fault diagnosis method for water chilling unit based on semi-supervised countermeasure variation automatic coding | |
CN115375968A (en) | Fault diagnosis method for planetary gearbox | |
CN115310704A (en) | Multi-dimensional fire safety assessment early warning system based on system safety model | |
CN113970073A (en) | ResNet-based water supply pipe network leakage accurate positioning method | |
US20210124780A1 (en) | Graph search and visualization for fraudulent transaction analysis | |
CN114943867A (en) | Anomaly detection algorithm based on self-supervision |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030902 |