JPH0987024A - Electrically conductive porous ceramic - Google Patents
Electrically conductive porous ceramicInfo
- Publication number
- JPH0987024A JPH0987024A JP7252134A JP25213495A JPH0987024A JP H0987024 A JPH0987024 A JP H0987024A JP 7252134 A JP7252134 A JP 7252134A JP 25213495 A JP25213495 A JP 25213495A JP H0987024 A JPH0987024 A JP H0987024A
- Authority
- JP
- Japan
- Prior art keywords
- conductive porous
- electrically conductive
- porous ceramic
- strength
- open porosity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Conductive Materials (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本願発明は導電性多孔質セラ
ミックス、特には固体電解質型燃料電池のカソード電極
材料とこれを用いた電極材としての導電性多孔質セラミ
ックスに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive porous ceramics, and more particularly to a cathode electrode material for a solid oxide fuel cell and a conductive porous ceramics as an electrode material using the same.
【0002】[0002]
【従来の技術】固体電解質型燃料電池のカソード電極材
料(空気極)には、高温導電性に優れているランタン系
複合酸化物であるランタン・マンガナイト(LaMnO3)な
どのセラミックス焼結体が使用されている(特開平6-20
6781号公報参照)。このような焼結体の電極材料は一般
的なセラミックスの公知の技術、および熔射などにより
製造されているが、いずれの場合にも酸化剤である空気
または酸素のガス透過をスムースにするために、特性と
して20%以上の開気孔率が必要とされている。2. Description of the Related Art As a cathode electrode material (air electrode) of a solid oxide fuel cell, a ceramic sintered body such as lanthanum-manganese (LaMnO 3 ) which is a lanthanum-based composite oxide excellent in high temperature conductivity is used. Used (Japanese Patent Laid-Open No. 6-20
(See Japanese Patent No. 6781). The electrode material of such a sintered body is manufactured by a known technique of general ceramics and by melting, etc., but in any case, in order to smooth gas permeation of air or oxygen which is an oxidant. In addition, as a characteristic, an open porosity of 20% or more is required.
【0003】ところが気孔(開/閉気孔を含む)を持つ
多孔質焼結体は気孔率の増大と共に強度が低下するとい
う問題があり、最近では割れに対する信頼性確保のため
に強度向上の要求が強く求められている。現在、その対
応としては、ランタン・マンガナイト粉末を微粉砕する
ことで焼結性を向上させたり、セラミックスの強化材と
して知られているウイスカー(繊維強化セラミックス)
の添加により脆性を克服する研究や、気孔を造る造孔材
の検討などが行なわれている。However, the porous sintered body having pores (including open / closed pores) has a problem that the strength decreases as the porosity increases, and recently, there is a demand for improving the strength to secure reliability against cracking. There is a strong demand. At present, whisker (fiber reinforced ceramics), which is known as a ceramics reinforcement material, is used to improve sinterability by finely pulverizing lanthanum and manganite powder.
Studies have been conducted to overcome brittleness by the addition of, and studies on pore-forming materials that create pores.
【0004】この気孔の場合、気孔径および気孔の形状
が強度に強く影響することはつぎのグリフィスの式 σf=K1c/Y・c1/2 σf:破壊強度、 K1c:破壊靭性、 Y:材料中の欠陥の形状に依存する定数、 c:欠陥の寸法 から容易に推定することができる。すなわち、この式か
ら所定の開気孔率を確保しながら強度を向上するには、
気孔径(欠陥の寸法)を小さくし、気孔形(欠陥の形
状)をV字型よりもU字型にすればよいことが理解され
る。In the case of these pores, the fact that the pore diameter and the shape of the pores strongly influence the strength is that the following Griffith equation σf = K 1c / Yc 1/2 σf: fracture strength, K 1c : fracture toughness, Y: It can be easily estimated from a constant depending on the shape of the defect in the material, c: the size of the defect. That is, from this equation, in order to improve the strength while ensuring a predetermined open porosity,
It is understood that the pore size (defect size) may be reduced and the pore shape (defect shape) may be U-shaped rather than V-shaped.
【0005】[0005]
【発明が解決しようとする課題】しかし、固体電解質型
燃料電池の酸化剤である空気または酸素のガス透過性に
必要な開気孔率と、信頼性に関係する強度および靭性
(破壊に対する抵抗)という互いに相反する特性の向上
を同時に満足させることは大変に難しく、解決すべき課
題が多い。しかしながら、開気孔率と強度の特性をバラ
ンスよく向上させることは可能であり、それには母材
(マトリックス)であるセラミックスと、気孔を形成す
る造孔材との組合せが特に重要と考えれるが、このとき
のマトリックスと造孔材を組み合わせる上で問題となる
のは、焼成温度と雰囲気、また結合強度や反応性があ
り、さらにはグリフィスの式からも明らかなように、造
孔材の粉末特性に負うところが大きい焼結体の母材中の
気孔の大きさと形状が挙げられる。However, the open porosity required for gas permeability of air or oxygen, which is an oxidizer of a solid oxide fuel cell, and strength and toughness (resistance to fracture) related to reliability. It is very difficult to satisfy the contradictory improvement of properties at the same time, and there are many problems to be solved. However, it is possible to improve the properties of open porosity and strength in a well-balanced manner, and it is considered that the combination of the ceramics that is the base material (matrix) and the pore-forming material that forms the pores is particularly important for that. The problems in combining the matrix and the pore-forming material at this time are the firing temperature and the atmosphere, bond strength and reactivity, and, as is clear from the Griffith equation, the powder characteristics of the pore-forming material. The size and shape of the pores in the base material of the sintered body, which bears a large amount of pressure, are mentioned.
【0006】[0006]
【課題を解決するための手段】本発明は上記の開気孔率
と強度の両特性の向上を達成するための導電性多孔質セ
ラミックスに関するもので、これは一般式ABO3 で表
わされるペロブスカイト型結晶構造を有するランタン系
複合酸化物から構成される導電性多孔質セラミックスに
おいて、開気孔率が20%以上で、かつ曲げ強度が50MP
a以上、導電率が 200S/m以上であることを特徴とす
るものである。SUMMARY OF THE INVENTION The present invention relates to a conductive porous ceramics for achieving the above-mentioned improvement of both open porosity and strength, which is a perovskite type crystal represented by the general formula ABO 3. Conductive porous ceramics composed of structured lanthanum-based composite oxides with open porosity of 20% or more and bending strength of 50MP
It is characterized in that the conductivity is a or more and the conductivity is 200 S / m or more.
【0007】以下に本発明を詳細に説明する。本発明
は、固体電解質型燃料電池のカソード電極材料として用
いられる一般式ABO3 で表わされるペロブスカイト型
結晶構造を有するランタン系複合酸化物から構成される
導電性多孔質セラミックスにおいて、その開気孔率、曲
げ強度及び導電率を規定したもので、開気孔率は20%未
満であると上記電極材料において酸化剤としての空気や
酸素ガスの透過がスムースに行われないので、20%以上
とすることが必要であり、曲げ強度は50MPa未満であ
ると割れに対する信頼性が低く実用上問題があるので50
MPa以上とすることが必要であり、また導電率は200
S/m未満ではカソード電極材料として充分な作用効果
が得られないので 200S/m以上とすることが必要であ
る。The present invention will be described in detail below. The present invention provides a conductive porous ceramics composed of a lanthanum-based composite oxide having a perovskite type crystal structure represented by the general formula ABO 3, which is used as a cathode electrode material of a solid oxide fuel cell, and has an open porosity, Bending strength and conductivity are specified, and if the open porosity is less than 20%, air or oxygen gas as an oxidant will not permeate smoothly in the above electrode material, so it should be 20% or more. If the bending strength is less than 50 MPa, the reliability against cracking is low and there is a practical problem.
It is necessary to make it above MPa, and the conductivity is 200
If it is less than S / m, a sufficient function and effect as a cathode electrode material cannot be obtained, so it is necessary to set it to 200 S / m or more.
【0008】本発明者は上記した開気孔率と強度の両特
性の向上を達成する方法について鋭意検討したところ、
これについては可能な限り微細な粉末状のランタン・マ
ンガナイトを使用し、造孔材としては低温で均一な酸化
反応が進行して気孔を形成しやすい、微粉状で比表面積
(BET法)の大きい炭素粉末を使用することがよいと
いうことを見出した。The present inventor diligently studied a method for achieving the above-mentioned improvement in both open porosity and strength.
For this, lanthanum manganite in the finest possible powder is used, and as a pore-forming material, it is easy to form pores due to the progress of a uniform oxidation reaction at a low temperature, which is a fine powder and has a specific surface area (BET method). We have found that it is better to use large carbon powders.
【0009】したがって、これは 1,000〜 1,300℃で焼
成したペロブスカイト型結晶構造を有する、平均粒径が
1〜5μmのランタンストロンチウムマンガナイト粉末
(LaSrMnO3)と、平均粒径が1〜10μmで比表面積が 2
00m2/g以上の炭素粉末とを、結合剤であるポリビニルア
ルコール(PVA)などとボールミルで混合スラリーと
し、公知の技術で造粒すると、このボールミル混合では
凝集している炭素粉末が均一に分散されるので、安定し
た開気孔率と均一で、かつ気孔径の小さいシャープな気
孔径分布をもつものが得られる。Therefore, this is a lanthanum strontium manganite powder (LaSrMnO 3 ) having a perovskite type crystal structure calcined at 1,000 to 1,300 ° C. and an average particle size of 1 to 5 μm, and a specific surface area of 1 to 10 μm. Is 2
Carbon powder of 00m 2 / g or more is mixed with polyvinyl alcohol (PVA) which is a binder in a ball mill to form a slurry, and when granulated by a known technique, the carbon powder agglomerated in the ball mill is uniformly dispersed. As a result, a stable open porosity, a uniform pore size and a sharp pore size distribution with a small pore size can be obtained.
【0010】このようにして得られた多孔質セラミック
スは炭素粉末の均一性を図ることによって強度の向上が
達成されるが、ここに得られた造粒粉は均一な組成を有
しているので、これを金型プレスで一次成形し、ついで
等方等圧のCIP(ラバープレス)で二次成形するとよ
り一層均一な組成の成形体とすることができる。この成
形体はつぎに酸化性雰囲気で焼結することによって導電
性を有するLaSrMnO3組成の多孔質セラミックスの平板と
されるが、この焼結温度は 1,300℃未満では気孔率はよ
いが気孔径が大きく、焼結体の密度も低いために強度が
低下し、これを 1,500℃より高くすると強度は増加する
が開気孔率が低下するので、これは 1,300〜 1,500℃の
温度とすることが必要とされる。なお、このようにして
得られた導電性多孔質セラミックスは開気孔率が25%、
気孔径は1μmで、曲げ強度が60MPa、導電率が 200
S/m(1,000 ℃)という目的とする物性を有するもの
になる。In the porous ceramics thus obtained, the strength is improved by making the carbon powder uniform, but the granulated powder obtained here has a uniform composition. By subjecting this to a primary molding with a die press and then a secondary molding with an isotropic and isobaric CIP (rubber press), a molded product having a more uniform composition can be obtained. The compact is then sintered in an oxidizing atmosphere to form a flat plate of conductive LaSrMnO 3 porous ceramics. If the sintering temperature is less than 1,300 ° C, the porosity is good but the pore size is large. However, since the density of the sintered body is low, the strength decreases, and if it is higher than 1,500 ℃, the strength increases but the open porosity decreases, so it is necessary to set the temperature to 1,300 to 1,500 ℃. It The conductive porous ceramics thus obtained had an open porosity of 25%,
Pore diameter is 1μm, bending strength is 60MPa, conductivity is 200
It will have the desired physical properties of S / m (1,000 ° C).
【0011】[0011]
【発明の実施の形態】つぎに本発明の実施の態様を実施
例、比較例で説明する。ここで、開気孔率は水銀圧入法
により、曲げ強度は3点曲げ試験法により、また導電率
は直流4端子法により測定した。BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described with reference to Examples and Comparative Examples. Here, the open porosity was measured by the mercury penetration method, the bending strength was measured by the three-point bending test method, and the conductivity was measured by the direct current four-terminal method.
【0012】[0012]
実施例1 ペロブスカイト構造に合成された平均粒径 3.5μmのLa
SrMnO3粉末75重量%と、造孔材としての平均粒径が 5.9
μmで比表面積が 210m2/gの炭素粉末23重量%、および
結合剤としてのポリビニルアルコール(PVA)2重量
%を混合し、造粒、成形したのち、酸化性雰囲気で 1,4
50℃に加熱して焼結したところ、直径 205mm、厚さ2mm
の平板型の多孔質セラミックスが得られた。このように
して得た多孔質セラミックスの物性をしらべたところ、
これは開気孔率が25%、曲げ強度が60MPaであり、導
電率は 200S/mであった。Example 1 La with an average particle size of 3.5 μm synthesized in a perovskite structure
75% by weight of SrMnO 3 powder with an average particle size of 5.9
23% by weight of carbon powder with a specific surface area of 210 m 2 / g in μm and 2% by weight of polyvinyl alcohol (PVA) as a binder were mixed, granulated and molded, and then 1,4 in an oxidizing atmosphere.
When heated to 50 ℃ and sintered, the diameter is 205mm and the thickness is 2mm.
The flat plate-shaped porous ceramic of was obtained. When the physical properties of the porous ceramics thus obtained were investigated,
It had an open porosity of 25%, a bending strength of 60 MPa and an electrical conductivity of 200 S / m.
【0013】実施例2 ペロブスカイト構造に合成された平均粒径 2.0μmのLa
SrMnO3粉末72重量%、造孔材としての平均粒径が 1.0μ
mで比表面積が 290m2/gのカーボンブラック20重量%、
および結合剤としてのメチルセルロース(MC)8重量
%を混合し、造粒、成形したのち、酸化性雰囲気で 1,3
00℃に加熱して焼結したところ、直径 205mm、厚さ2mm
の平板型の多孔質セラミックスが得られたので、この物
性をしらべたところ、このものは開気孔率が27%、曲げ
強度が52MPaであり、導電率が200S/mであった。Example 2 La having an average particle size of 2.0 μm synthesized in a perovskite structure
72% by weight of SrMnO 3 powder, average particle size of 1.0μ as a pore former
20% by weight of carbon black having a specific surface area of 290 m 2 / g in m,
And 8% by weight of methyl cellulose (MC) as a binder are mixed, granulated and molded, and then 1,3 in an oxidizing atmosphere.
When heated to 00 ℃ and sintered, the diameter is 205mm and the thickness is 2mm.
Since the flat plate-shaped porous ceramics were obtained, its physical properties were examined. As a result, the open porosity was 27%, the bending strength was 52 MPa, and the electrical conductivity was 200 S / m.
【0014】比較例 ペロブスカイト構造に合成された平均粒径 2.3μmのLa
SrMnO3粉末75重量%、造孔材としての平均粒径が 0.7μ
mで比表面積が 100m2/gのカーボンブラック23重量%、
および結合剤としてのポリビニルアルコール(PVA)
2重量%を混合し、造粒、成形したのち、酸化性雰囲気
中で 1,400℃に加熱して焼結したところ、直径 205mm、
厚さ2mmの平板型の多孔質セラミックスが得られたの
で、この物性をしらべたところ、このものは曲げ強度が
62MPaであり、開気孔率が17%と低く、導電率も 170
S/mであった。Comparative Example La synthesized with a perovskite structure and having an average particle size of 2.3 μm
75% by weight of SrMnO 3 powder, 0.7μ average particle size as pore former
23% by weight of carbon black with a specific surface area of 100 m 2 / g
And polyvinyl alcohol (PVA) as binder
After mixing 2% by weight, granulating and molding, heating at 1,400 ℃ in an oxidizing atmosphere and sintering, a diameter of 205 mm,
Since a flat type porous ceramics with a thickness of 2 mm was obtained, its physical properties were examined.
62 MPa, low open porosity of 17% and conductivity of 170
It was S / m.
【0015】[0015]
【発明の効果】本発明は導電性多孔質セラミックスに関
するもので、ペロブスカイト型結晶構造を有するランタ
ン系複合酸化物と適切な造孔材を調合することによって
作られたものであるが、このものは開気孔率が20%以
上、曲げ強度が50MPa以上で、導電率が 200S/m以
上のものとなるので、特に固体電解質型燃料電池のカソ
ード電極材料として有用とされるというものである。INDUSTRIAL APPLICABILITY The present invention relates to a conductive porous ceramics, which is produced by mixing a lanthanum-based composite oxide having a perovskite type crystal structure and an appropriate pore-forming material. It has an open porosity of 20% or more, a bending strength of 50 MPa or more, and an electric conductivity of 200 S / m or more, and is particularly useful as a cathode electrode material of a solid oxide fuel cell.
Claims (1)
イト型結晶構造を有するランタン系複合酸化物から構成
される導電性多孔質セラミックスにおいて、開気孔率が
20%以上の多孔質で、かつ曲げ強度が50MPa以上、導
電率が 200S/m以上であることを特徴とする導電性多
孔質セラミックス。1. A conductive porous ceramics composed of a lanthanum-based composite oxide having a perovskite type crystal structure represented by the general formula ABO 3 has an open porosity of
Conductive porous ceramics having a porosity of 20% or more, a bending strength of 50 MPa or more, and an electrical conductivity of 200 S / m or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7252134A JPH0987024A (en) | 1995-09-29 | 1995-09-29 | Electrically conductive porous ceramic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7252134A JPH0987024A (en) | 1995-09-29 | 1995-09-29 | Electrically conductive porous ceramic |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0987024A true JPH0987024A (en) | 1997-03-31 |
Family
ID=17232958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7252134A Pending JPH0987024A (en) | 1995-09-29 | 1995-09-29 | Electrically conductive porous ceramic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0987024A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003059496A (en) * | 2001-08-13 | 2003-02-28 | Nissan Motor Co Ltd | Solid electrolyte fuel cell and its manufacturing method |
KR100594677B1 (en) * | 1998-04-10 | 2006-06-28 | 린나이가부시기가이샤 | Combustion device |
US7938940B2 (en) | 2006-08-03 | 2011-05-10 | Noritake Co., Limited | Support for oxygen separation membrane element and the element using the same |
-
1995
- 1995-09-29 JP JP7252134A patent/JPH0987024A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100594677B1 (en) * | 1998-04-10 | 2006-06-28 | 린나이가부시기가이샤 | Combustion device |
JP2003059496A (en) * | 2001-08-13 | 2003-02-28 | Nissan Motor Co Ltd | Solid electrolyte fuel cell and its manufacturing method |
US7938940B2 (en) | 2006-08-03 | 2011-05-10 | Noritake Co., Limited | Support for oxygen separation membrane element and the element using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shang et al. | A promising cathode for intermediate temperature protonic ceramic fuel cells: BaCo 0.4 Fe 0.4 Zr 0.2 O 3− δ | |
Fabbri et al. | High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes | |
KR101892909B1 (en) | A method for manufacturing protonic ceramic fuel cells | |
KR20110035681A (en) | Porous anode substrate for protonic ceramic fuel cell and fabrication method thereof | |
JP2004503054A (en) | Method for producing electrode having temperature stable conductivity | |
JPH02293384A (en) | Production of electrically conductive porous ceramic tube | |
JP3661676B2 (en) | Solid oxide fuel cell | |
Zhang et al. | Lanthanum strontium manganite powders synthesized by gel‐casting for solid oxide fuel cell cathode materials | |
Xin et al. | Fabrication of dense YSZ electrolyte membranes by a modified dry-pressing using nanocrystalline powders | |
JPH0987024A (en) | Electrically conductive porous ceramic | |
JP2003217597A (en) | Solid electrolyte type fuel cell | |
KR102270111B1 (en) | Perobskite based cathode material, cathode containing the same, and solid oxide fuel cell containing the same | |
KR100898219B1 (en) | Porous nano composite powder, method of fabricating thereof, solid oxide fuel electrode and fuel cell using the same | |
JP2000044340A (en) | Sintered lanthanum gallate, its production and fuel cell produced by using the gallate as solid electrolyte | |
JP3254456B2 (en) | Method for manufacturing solid oxide fuel cell | |
JP2734768B2 (en) | Method for manufacturing solid oxide fuel cell | |
JP2005139024A (en) | Mixed conductive ceramic material and solid oxide type fuel cell using this material | |
KR101793365B1 (en) | Cathode based in perovskite for solid oxide fuel cell, manufacturing method thereof | |
JPH0722056A (en) | Manufacture of solid electrolyte fuel cell | |
JP7167145B2 (en) | Proton conductor and electrochemical device using it | |
EP4398268A1 (en) | Oxide ion-conducting solid electrolyte | |
KR102270128B1 (en) | Zirconia electrolyte and manufacturing method thereof | |
KR20240149618A (en) | Reaction barrier ceria electrolyte for Solid Oxide Fuel Cell | |
JP5228353B2 (en) | Composite type mixed conductor | |
JPH07215764A (en) | Electrical conductive ceramic sintered compact and its production |