Nothing Special   »   [go: up one dir, main page]

JPH0982807A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0982807A
JPH0982807A JP7241300A JP24130095A JPH0982807A JP H0982807 A JPH0982807 A JP H0982807A JP 7241300 A JP7241300 A JP 7241300A JP 24130095 A JP24130095 A JP 24130095A JP H0982807 A JPH0982807 A JP H0982807A
Authority
JP
Japan
Prior art keywords
well
layer
well layer
semiconductor device
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7241300A
Other languages
Japanese (ja)
Inventor
Shizunori Oyu
静憲 大湯
Osamu Okura
理 大倉
Yoshifumi Kawamoto
佳史 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7241300A priority Critical patent/JPH0982807A/en
Publication of JPH0982807A publication Critical patent/JPH0982807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the movement of a parasitic bipolar, to restrain a junction leak current, and to suppress the deterioration of reliability of an insulating film by a method wherein a heavily doped well layer of carrier density distribution having the highest concentration is formed deeper than the well layer on the surface side of a semiconductor substrate, with crystal defects included in the well layer. SOLUTION: A plurality of well layers 2a, 2b, 3a, 3b, 4a and 4b are formed on the main surface side of a semiconductor substrate 1. Heavily doped well layers 2b, 3b and 4b, having the carrier density distribution of highest concentrations 5, 6 and 7, are formed deeper than the well layers 2a, 3a and 4a on the surface side of the semiconductor substrate. A layer, having a crystal defect 8, is formed at least in a kind of well layer. As a result, the diffusion into the well layer of minority carrier from the side of the substrate 1 can be prevented, and the leak current of source/drain junction can be decreased. Also, a parasitic bipolar action and a soft error can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の誤動作を
招く寄生バイポーラ動作の抑制,半導体装置の消費電力
を増加させる接合リーク電流の抑制、および、半導体装
置の寿命を劣化させる絶縁膜の信頼性劣化の抑制を実現
した、高品質および高信頼の半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to suppression of parasitic bipolar operation which causes malfunction of a semiconductor device, suppression of junction leak current which increases power consumption of the semiconductor device, and reliability of an insulating film which deteriorates the life of the semiconductor device. The present invention relates to a high-quality and highly reliable semiconductor device that realizes the suppression of deterioration of the characteristics.

【0002】[0002]

【従来の技術】従来、半導体装置は、特開昭61−206219
号公報に記載のように2種類の導電型のウエル層を有
し、そのウエル層の表面近傍に素子を形成していた。こ
れにより、素子へのバイアス条件がウエル毎に設定でき
るようにしていた。また、従来の半導体装置は、特開平
2−305469 号公報に記載のように2種類の導電型のウエ
ル層の一方のウエル層を異なる導電型のシールド層(こ
れもウエルと呼ぶこともある)により囲み、各ウエル層
の表面近傍に素子を形成していた。このシールド層の形
成により、ウエル毎のバイアス条件の設定がさらに自由
に行えるようにしていた。さらに、従来の半導体装置
は、特開昭63−64360 号公報に記載のように、ウエル層
のキャリヤ濃度分布をレトログレードにした複数種類の
ウエル層を有し、各ウエル層の表面近傍に素子を形成し
ていた。ウエル層のキャリヤ濃度分布をレトログレード
にすることにより、寄生バイポーラ動作やソフトエラー
の抑制を行えるようにしていた。
2. Description of the Related Art Conventionally, a semiconductor device has been disclosed in JP-A-61-206219.
As described in Japanese Patent Laid-Open Publication No. 2004-242242, there are two types of conductive type well layers, and elements are formed near the surface of the well layers. Thereby, the bias condition for the device can be set for each well. Further, a conventional semiconductor device is disclosed in
As described in Japanese Patent Laid-Open No. 2-305469, one of well layers of two types of conductivity type is surrounded by a shield layer of different conductivity type (also referred to as a well), and each well layer is provided in the vicinity of the surface. The element was formed. By forming this shield layer, the bias condition for each well can be set more freely. Furthermore, the conventional semiconductor device has a plurality of types of well layers in which the carrier concentration distribution of the well layers is retrograde, as described in Japanese Patent Laid-Open No. 63-64360, and the element is provided near the surface of each well layer. Had formed. By making the carrier concentration distribution of the well layer retrograde, the parasitic bipolar operation and the soft error can be suppressed.

【0003】[0003]

【発明が解決しようとする課題】以上の従来の半導体装
置が有するウエル層は、ウエル層表面に形成する素子へ
の悪影響を排除するため、結晶欠陥を含まないように形
成していた。しかし、半導体基板が有する特性と半導体
装置製造工程の熱履歴との関係により、制御しきれない
結晶欠陥がウエル層に残存していた。また、半導体装置
製造工程中の損傷や汚染によっても制御しきれない結晶
欠陥がウエル層に形成されていた。しかし、これらウエ
ル層中の結晶欠陥は、ウエル層表面に形成された素子の
特性を左右するほど多くは発生していなかった。しか
し、この制御できない結晶欠陥の影響により、半導体装
置を製造歩留まりが低下したり、半導体装置の消費電力
低減を制御できないといった問題点を有していた。さら
に、結晶欠陥の影響を受けて、素子を構成する絶縁膜の
特性が変動するため、半導体装置の使用中に動作不能と
なる場合があるという問題を有していた。
The well layer of the above conventional semiconductor device is formed so as not to include crystal defects in order to eliminate adverse effects on the elements formed on the surface of the well layer. However, due to the relationship between the characteristics of the semiconductor substrate and the thermal history of the semiconductor device manufacturing process, uncontrolled crystal defects remain in the well layer. In addition, crystal defects that cannot be controlled due to damage or contamination during the semiconductor device manufacturing process were formed in the well layer. However, the number of crystal defects in these well layers did not occur so much as to affect the characteristics of the element formed on the surface of the well layer. However, due to the influence of this uncontrollable crystal defect, there are problems that the manufacturing yield of the semiconductor device is reduced and the reduction of power consumption of the semiconductor device cannot be controlled. Further, there is a problem in that the characteristics of the insulating film forming the element change due to the influence of the crystal defect, and thus the semiconductor device may become inoperable during use.

【0004】本発明の目的は、半導体装置の誤動作を招
く寄生バイポーラ動作の抑制,半導体装置の消費電力を
増加させる接合リーク電流の抑制、および、半導体装置
の寿命を劣化させる絶縁膜の信頼性劣化の抑制を実現し
て、高品質および高信頼の半導体装置を提供することに
ある。
It is an object of the present invention to suppress parasitic bipolar operation that causes malfunction of a semiconductor device, suppress junction leakage current that increases power consumption of the semiconductor device, and deteriorate reliability of an insulating film that deteriorates the life of the semiconductor device. It is to provide a high-quality and highly reliable semiconductor device by suppressing the above.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、図1に示すように、半導体基板1の主表面側に、複
数のウエル層2a,2b,3a,3b,4a,4bを形
成し、半導体基板表面側のウエル層2a,3a,4aよ
り深い部分に最大濃度5,6,7を持つキャリヤ濃度分
布の高濃度のウエル層2b,3b,4bを形成する。そ
して、少なくとも1種類のウエル層内に結晶欠陥8を有
する層を形成する。
To achieve the above object, a plurality of well layers 2a, 2b, 3a, 3b, 4a, 4b are formed on the main surface side of a semiconductor substrate 1 as shown in FIG. , The well layers 2b, 3b, 4b of high carrier concentration distribution having the maximum concentrations 5, 6, 7 are formed in a portion deeper than the well layers 2a, 3a, 4a on the surface side of the semiconductor substrate. Then, a layer having crystal defects 8 is formed in at least one type of well layer.

【0006】ここで、上記の半導体基板内に最大濃度
5,6,7を持つキャリヤ濃度分布の高濃度のウエル層
2b,3b,4bで、少なくとも1種類のウエル層内に
結晶欠陥8を有する層を持ち、個々のウエル層表面を基
準にした場合に結晶欠陥8の深さがウエル層の最大キャ
リヤ濃度5,6,7の深さより深くする。
Here, the high-concentration well layers 2b, 3b, 4b having the carrier concentration distributions having the maximum concentrations 5, 6, 7 in the above-mentioned semiconductor substrate, and the crystal defects 8 in at least one kind of the well layers. The layer has a layer and the depth of the crystal defect 8 is made deeper than the maximum carrier concentration 5, 6, 7 of the well layer when the surface of each well layer is used as a reference.

【0007】また、個々のウエル層の結晶欠陥層の深さ
が異なるようにする。さらに、上記の半導体基板内に最
大濃度5,6,7を持つキャリヤ濃度分布のウエル層2
b,3b,4bで、複数種類のウエル層内に結晶欠陥8
を有する層を持ち、結晶欠陥8の深さからウエル層の最
大キャリヤ濃度5,6,7の深さまでの距離を、第1の
ウエル層2bと他の第1以外のウエル層3b,4bとで
変える。
Further, the depth of the crystal defect layer of each well layer is made different. Further, the well layer 2 having a carrier concentration distribution having a maximum concentration of 5, 6 and 7 in the above semiconductor substrate.
b, 3b, 4b, crystal defects 8 in a plurality of types of well layers
And the distance from the depth of the crystal defect 8 to the depth of the maximum carrier concentration 5, 6, 7 of the well layer is set to the first well layer 2b and the other well layers 3b, 4b other than the first well layer 2b. Change with.

【0008】また、上記の半導体基板内に最大濃度5,
6,7を持つキャリヤ濃度分布のウエル層2b,3b,
4bで、複数種類のウエル層内に結晶欠陥8を有する層
を持ち、情報を記憶する部分のウエル層2a,2bでの
結晶欠陥8を有する層の深さからウエル層2bの最大キ
ャリヤ濃度5の深さまでの距離を、情報を処理する部分
のウエル層3a,3b,4a,4bでの結晶欠陥8を有
する層の深さからウエル層3a,4aの最大キャリヤ濃
度6,7の深さまでの距離より短くする。
Further, the maximum concentration in the semiconductor substrate is 5,
Well layers 2b, 3b having a carrier concentration distribution of 6, 7
4b has a layer having crystal defects 8 in a plurality of types of well layers, and the maximum carrier concentration of the well layer 2b is 5 from the depth of the layer having crystal defects 8 in the well layers 2a and 2b where information is stored. From the depth of the layer having crystal defects 8 in the well layers 3a, 3b, 4a, 4b of the information processing portion to the maximum carrier concentration 6, 7 of the well layers 3a, 4a. Make it shorter than the distance.

【0009】さらに、上記の半導体基板内に最大濃度
5,6,7を持つキャリヤ濃度分布のウエル層2b,3
b,4bで、少なくとも1種類のウエル層内に結晶欠陥
8を有する層を持ち、導電型の異なるウエル層が接する
部分では結晶欠陥8が存在しないようにする。
Further, the well layers 2b, 3 having a carrier concentration distribution having a maximum concentration of 5, 6, 7 in the above semiconductor substrate.
In b and 4b, at least one type of well layer has a layer having a crystal defect 8 so that the crystal defect 8 does not exist at a portion where the well layers having different conductivity types are in contact with each other.

【0010】以上のような、各種のウエル層の表面にL
OCOS10で素子分離したMOSFET11,12,
13,14を作製する。これらのMOSFETは、それ
ぞれ、ソース・ドレイン11a,12a,13a,14
a、ゲート電極11b,12b,13b,14b、およ
び、ゲート絶縁膜11c,12c,13c,14cから
構成される。
L is formed on the surface of various well layers as described above.
MOSFETs 11 and 12 separated by the OCOS 10
13 and 14 are produced. These MOSFETs are source / drain 11a, 12a, 13a, 14 respectively.
a, gate electrodes 11b, 12b, 13b, 14b, and gate insulating films 11c, 12c, 13c, 14c.

【0011】[0011]

【作用】図1に示すように、半導体基板1の主表面側
に、複数のウエル層2a,2b,3a,3b,4a,4
bを形成し、半導体基板表面側のウエル層2a,3a,
4aより深い部分に最大濃度5,6,7を持つキャリヤ
濃度分布の高濃度のウエル層2b,3b,4bを形成す
ることにより、基板側から拡散してくる少数キャリヤの
ウエル層内への拡散を防止できる。これによって、少数
キャリヤの拡散に起因するソース・ドレイン接合のリー
ク電流を低減できる。
As shown in FIG. 1, a plurality of well layers 2a, 2b, 3a, 3b, 4a, 4 are formed on the main surface side of the semiconductor substrate 1.
b, and the well layers 2a, 3a on the front surface side of the semiconductor substrate are formed.
Diffusion of minority carriers diffused from the substrate side into the well layer by forming high concentration well layers 2b, 3b, 4b having a carrier concentration distribution having maximum concentrations 5, 6, 7 in a portion deeper than 4a. Can be prevented. This can reduce the leak current of the source / drain junction due to the diffusion of minority carriers.

【0012】また、高濃度のウエル層2b,3b,4b
を形成することにより、周知のように寄生バイポーラ動
作やソフトエラーを抑制できる。また、ウエル層内に結
晶欠陥8を形成することによって、MOSFET側に導
入される半導体装置製造工程中の損傷や汚染を結晶欠陥
8に集めることができる。この結晶欠陥8をウエル層内
の比較的キャリヤ濃度が高い部分に形成することで、汚
染や損傷を効果的に集めることができる。その結果、損
傷や汚染に起因するソース・ドレイン接合のリーク電流
の発生やゲート絶縁膜の特性劣化を防止できる。
Further, the well layers 2b, 3b, 4b of high concentration
As is well known, parasitic bipolar operation and soft error can be suppressed by forming the. Further, by forming the crystal defects 8 in the well layer, it is possible to collect damages and contamination in the semiconductor device manufacturing process, which are introduced on the MOSFET side, in the crystal defects 8. By forming the crystal defect 8 in the well layer where the carrier concentration is relatively high, contamination and damage can be effectively collected. As a result, it is possible to prevent generation of leakage current at the source / drain junction and deterioration of the characteristics of the gate insulating film due to damage or contamination.

【0013】さらに、ウエル層内に結晶欠陥8を有する
層を持ち、個々のウエル層表面を基準にした場合に結晶
欠陥8の深さをウエル層の最大キャリヤ濃度5,6,7
の深さより深くすることによって、結晶欠陥8の影響を
受けて発生した少数キャリヤがMOSFET側に移動す
ることを防止できる。これによって、この少数キャリヤ
に起因したソース・ドレイン接合のリーク電流の発生を
防止できる。
Further, the well layer has a layer having crystal defects 8 and the depth of the crystal defects 8 is the maximum carrier concentration of the well layers 5, 6, 7 when the surface of each well layer is used as a reference.
By making the depth deeper than the depth of, the minority carriers generated under the influence of the crystal defects 8 can be prevented from moving to the MOSFET side. As a result, it is possible to prevent the generation of leak current at the source / drain junction due to the minority carriers.

【0014】また、個々のウエル層の結晶欠陥層8の深
さが異なるようにすることで、個々のウエル層において
損傷や欠陥を集める効果を制御できる。そして、結晶欠
陥8の深さからウエル層の最大キャリヤ濃度5,6,7
の深さまでの距離を、第1のウエル層2bと他の第1以
外のウエル層3b,4bとで変えられるようにすること
で、上記汚染や損傷を結晶欠陥8に集める効果を制御で
きるようになる。
Further, by making the depth of the crystal defect layer 8 of each well layer different, the effect of collecting damages and defects in each well layer can be controlled. Then, from the depth of the crystal defect 8, the maximum carrier concentration of the well layer is 5, 6, 7
By changing the distance to the depth of the first well layer 2b and the other well layers 3b and 4b other than the first well layer, it is possible to control the effect of collecting the contamination and damage in the crystal defects 8. become.

【0015】ここで、ウエル層に形成された素子の性質
やウエル層間の特性によって、結晶欠陥8の位置を変え
る必要がある。例えば、情報を記憶する部分のウエル層
2a,2bでの結晶欠陥8を有する層の深さからウエル
層2bの最大キャリヤ濃度5の深さまでの距離を、情報
を処理する部分のウエル層3a,3b,4a,4bでの
結晶欠陥8を有する層の深さからウエル層3a,4aの
最大キャリヤ濃度6,7の深さまでの距離より短くす
る。すなわち、情報を記憶する部分では、ソース・ドレ
イン接合のリーク電流やゲート絶縁膜の特性変動が記憶
特性を劣化させるため、最も汚染や損傷を低減する必要
がある。このため、結晶欠陥8はなるべくウエル層表面
に近づけ、汚染や損傷を有効に集める必要がある。これ
に対して、情報を処理する部分ではソース・ドレイン接
合のリーク電流やゲート絶縁膜の特性変動より、寄生バ
イポーラ動作やウエル間の接合耐圧および接合リーク電
流によって誤動作することが最も問題となる。従って、
ウエル間の接合特性劣化を防止するため、ウエル層の高
濃度部分が接する部分に結晶欠陥8を存在させることは
避けなければならない。この様なことから、汚染や損傷
を集めることができる結晶欠陥8を比較的濃度の低い部
分に存在させた方が情報処理部分では好都合である。特
に、導電型の異なるウエル層が接する部分では結晶欠陥
8が存在しないようにすることによって、結晶欠陥のウ
エル間接合特性の劣化は全く生じない。
Here, it is necessary to change the position of the crystal defect 8 depending on the characteristics of the element formed in the well layer and the characteristics between the well layers. For example, the distance from the depth of the layer having crystal defects 8 in the well layers 2a, 2b in the information storage portion to the depth of the maximum carrier concentration 5 in the well layer 2b is defined as the well layer 3a in the information processing portion. The distance from the depth of the layer having the crystal defect 8 in 3b, 4a, 4b to the depth of the maximum carrier concentration 6, 7 of the well layers 3a, 4a is made shorter. That is, in the portion for storing information, the leakage current of the source / drain junction or the characteristic variation of the gate insulating film deteriorates the memory characteristic, and therefore it is necessary to reduce the contamination and damage most. Therefore, the crystal defects 8 need to be as close to the surface of the well layer as possible to effectively collect contamination and damage. On the other hand, in the portion for processing information, the most problem is malfunction due to the parasitic bipolar operation, the junction breakdown voltage between wells and the junction leakage current due to the leakage current of the source / drain junction and the characteristic variation of the gate insulating film. Therefore,
In order to prevent the deterioration of the junction characteristics between the wells, it is necessary to avoid the presence of the crystal defect 8 at the portion where the high concentration portion of the well layer contacts. For this reason, it is more convenient for the information processing section to have the crystal defects 8 capable of collecting contamination and damage in a relatively low concentration area. In particular, by preventing the crystal defects 8 from existing in the portions where the well layers having different conductivity types are in contact with each other, the inter-well junction characteristics of the crystal defects are not deteriorated at all.

【0016】なお、図1には、前述のシールド層が描か
れていないが、例えば、ウエル層2bの下に反対の導電
型の層を形成すれば、上記と作用に何ら影響を与えない
でシールド層形成特有の周知の効果を得ることができ
る。この場合、結晶欠陥8を比較的高濃度部分5に近づ
けておくことによって、ウエル層2bとその下のシール
ド層とで構成されるpn接合の空乏層が結晶欠陥8まで
広がらないようにできる。これによって、このpn接合
でのリーク電流の発生を防止できる。このような構成
は、上記情報を記憶する部分のウエル層に相当する場合
に有効である。
Although the above-mentioned shield layer is not shown in FIG. 1, if a layer of the opposite conductivity type is formed under the well layer 2b, it does not affect the above operation. A well-known effect peculiar to the shield layer formation can be obtained. In this case, by making the crystal defect 8 relatively close to the high-concentration portion 5, the depletion layer of the pn junction formed by the well layer 2b and the shield layer thereunder can be prevented from spreading to the crystal defect 8. As a result, it is possible to prevent the occurrence of a leak current at this pn junction. Such a structure is effective when it corresponds to the well layer of the portion for storing the above information.

【0017】さらに、図2に示すように、ウエル層の表
面位置がそれぞれ異なっている場合でも、上記と同様に
作用する。この場合、結晶欠陥8は他のウエル層と同じ
平面上に形成できるので、半導体装置製造工程が若干容
易になる。
Further, as shown in FIG. 2, even when the surface positions of the well layers are different, the same operation as described above is performed. In this case, the crystal defects 8 can be formed on the same plane as the other well layers, so that the semiconductor device manufacturing process is slightly facilitated.

【0018】本発明は、半導体装置の誤動作を招く寄生
バイポーラ動作の抑制,半導体装置の消費電力を増加さ
せる接合リーク電流の抑制、および、半導体装置の寿命
を劣化させる絶縁膜の信頼性劣化の抑制を実現して、高
品質および高信頼の半導体装置を達成できる。
The present invention suppresses parasitic bipolar operation that causes malfunction of a semiconductor device, suppresses junction leakage current that increases power consumption of the semiconductor device, and suppresses reliability deterioration of an insulating film that deteriorates the life of the semiconductor device. And a semiconductor device of high quality and high reliability can be achieved.

【0019】[0019]

【実施例】本発明の実施例を図3ないし図4を用いて以
下に説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0020】不揮発性メモリであるフラッシュ素子に本
発明を実施した構造を図3に示す。情報を記憶する部分
のウエル層15a,15bは公知の技術を用いて、図4
に示すようなキャリヤ濃度分布と欠陥密度分布を有する
ようにした。また、情報を処理する部分のウエル層は、
n型ウエル層16a,16bおよびp型ウエル層17a,
17bを有し、それぞれ図5に示すようなキャリヤ濃度
分布と欠陥密度分布を有するようにした。
A structure in which the present invention is applied to a flash device which is a non-volatile memory is shown in FIG. The well layers 15a and 15b in the portion for storing information are formed by a known technique as shown in FIG.
The carrier concentration distribution and the defect density distribution as shown in FIG. In addition, the well layer in the portion that processes information is
n-type well layers 16a, 16b and p-type well layers 17a,
17b, each having a carrier concentration distribution and a defect density distribution as shown in FIG.

【0021】このような構造にすることによって、情報
を記憶する部分のメモリ用MOSFET18のゲート絶縁膜19
への汚染や損傷の影響が少なくでき、ゲート絶縁膜のリ
ーク電流による情報保持特性が劣化するMOSFETの
数を、欠陥形成のない場合に比べて1桁以上減少でき
た。さらに、ゲート絶縁膜19の信頼性を向上でき、動
作寿命を向上できた。また、情報を処理する部分のn型
ウエル層16bとp型ウエル層17bで構成されるpn
接合、および、情報を記憶する部分のウエル層15bと
n型シールド層20で構成されるpn接合のリーク電流
増大を招かないで、情報を処理するMOSFET21の
動作に与える汚染や損傷などの悪影響を排除できたの
で、情報処理に誤動作を生じることがなくなった。な
お、各ウエルの高濃度の部分に形成される結晶欠陥8
を、各ウエル層間で形成される空乏層には存在しないよ
うにすることで、pn接合のリーク電流は全く無視でき
るようになった。
With such a structure, the gate insulating film 19 of the memory MOSFET 18 in the portion for storing information is formed.
It is possible to reduce the influence of contamination and damage on the gate insulating film, and it is possible to reduce the number of MOSFETs in which the information retention characteristic is deteriorated by the leak current of the gate insulating film by one digit or more as compared with the case where no defect is formed. Furthermore, the reliability of the gate insulating film 19 can be improved and the operating life can be improved. Also, a pn formed by the n-type well layer 16b and the p-type well layer 17b in the portion for processing information
Without adversely affecting the junction and the leakage current of the pn junction formed by the well layer 15b and the n-type shield layer 20 for storing information, the adverse effects such as contamination and damage on the operation of the MOSFET 21 for processing information are prevented. Since it can be eliminated, the information processing does not malfunction. The crystal defects 8 formed in the high-concentration portion of each well
By eliminating the existence of the depletion layer in the depletion layer formed between the well layers, the leak current of the pn junction can be completely ignored.

【0022】以上のように、フラッシュ素子に本発明を
実施した場合、情報の保持特性を改善し、また、素子動
作に伴うリーク電流による消費電力の増加を防止でき
た。なお、ウエル層に存在する結晶欠陥の濃度は、図4
および図5に示した濃度より高くても低くてもよい。つ
まり、高ければ汚染や損傷を集める能力が高くなり、低
ければその能力が低くなるが、その濃度は半導体装置を
製造する工程の汚染度や損傷度にあわせれば良い。
As described above, when the present invention is applied to the flash element, it is possible to improve the information retention characteristic and prevent the increase in power consumption due to the leak current due to the element operation. The concentration of crystal defects existing in the well layer is shown in FIG.
The concentration may be higher or lower than that shown in FIG. In other words, the higher the concentration, the higher the ability to collect contamination and damage, and the lower the ability to collect, the lower the concentration, but the concentration may be matched to the degree of contamination and damage in the process of manufacturing a semiconductor device.

【0023】次に、ダイナミックランダムアクセスメモ
リ素子に本発明を実施した構造を図6に示す。この場合
の特徴は、ウエル層の表面がそれぞれ異なる高さになっ
ていることである。それにより、ウエル層に存在する結
晶欠陥8をほぼ同一平面上に置くことができ、半導体装
置製造工程前の欠陥導入工程が簡便になる。つまり、前
の実施例では、深さが異なる結晶欠陥8を有する層を形
成する必要があり、欠陥導入工程が複雑になっていた。
Next, FIG. 6 shows a structure in which the present invention is applied to a dynamic random access memory device. The feature in this case is that the surfaces of the well layers have different heights. As a result, the crystal defects 8 existing in the well layer can be placed on substantially the same plane, and the defect introduction process before the semiconductor device manufacturing process can be simplified. That is, in the previous example, it was necessary to form a layer having crystal defects 8 having different depths, and the defect introduction process was complicated.

【0024】情報を記憶する部分のp型ウエル層21
a,21bでは、図7に示した分布を有する結晶欠陥8
と高濃度部分21bが共存することで、工程中の汚染や
損傷を効率良く集めることができた。その結果、MOS
FET24のキャパシタ25に接する接合のリーク電流
を低減できたため、情報保持時間を長くすることができ
た。また、図8に示すようなキャリヤ分布と結晶欠陥分
布を有するウエル層23a,23b,24a,24bであ
る情報を処理する部分のウエル層の結晶欠陥8により、
上記実施例と同様の効果を有することができた。
The p-type well layer 21 for storing information
a and 21b, crystal defects 8 having the distribution shown in FIG.
By coexisting with the high-concentration portion 21b, contamination and damage during the process could be efficiently collected. As a result, MOS
Since the leak current of the junction of the FET 24 in contact with the capacitor 25 can be reduced, the information retention time can be lengthened. Further, due to the crystal defects 8 in the well layers 23a, 23b, 24a, 24b having the carrier distribution and the crystal defect distribution as shown in FIG.
It was possible to obtain the same effect as that of the above-mentioned embodiment.

【0025】以上の2つの実施例から判断されるよう
に、本発明により半導体装置の誤動作を招く寄生バイポ
ーラ動作を抑制することは勿論、半導体装置の消費電力
を増加させる接合リーク電流の抑制、および、半導体装
置の寿命を劣化させる絶縁膜の信頼性劣化の抑制を実現
することができたので、高品質および高信頼の半導体装
置を提供できるようになった。
As can be judged from the above two embodiments, according to the present invention, it is possible to suppress not only the parasitic bipolar operation which causes a malfunction of the semiconductor device but also the junction leak current which increases the power consumption of the semiconductor device, and Since it has been possible to suppress the reliability deterioration of the insulating film which deteriorates the life of the semiconductor device, it is possible to provide a high quality and highly reliable semiconductor device.

【0026】[0026]

【発明の効果】本発明によれば、半導体装置の誤動作を
招く寄生バイポーラ動作の抑制,半導体装置の消費電力
を増加させる接合リーク電流の抑制、および、半導体装
置の寿命を劣化させる絶縁膜の信頼性劣化の抑制を実現
することができるので、高品質および高信頼の半導体装
置を提供できる。
According to the present invention, the parasitic bipolar operation that causes the malfunction of the semiconductor device is suppressed, the junction leakage current that increases the power consumption of the semiconductor device is suppressed, and the reliability of the insulating film that deteriorates the life of the semiconductor device is suppressed. Since it is possible to suppress deterioration of the characteristics, a semiconductor device of high quality and high reliability can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のウエル構造の断面図。FIG. 1 is a sectional view of a well structure of the present invention.

【図2】本発明のウエル構造の断面図。FIG. 2 is a sectional view of a well structure of the present invention.

【図3】本発明を実施したフラッシュ素子の断面図。FIG. 3 is a cross-sectional view of a flash device embodying the present invention.

【図4】本発明のウエル層のキャリヤ分布および結晶欠
陥濃度分布図。
FIG. 4 is a carrier distribution and crystal defect concentration distribution chart of the well layer of the present invention.

【図5】本発明のウエル層のキャリヤ分布および結晶欠
陥濃度分布図。
FIG. 5 is a carrier distribution and crystal defect concentration distribution chart of the well layer of the present invention.

【図6】実施例のダイナミックランダムアクセスメモリ
素子の構造断面図。
FIG. 6 is a structural cross-sectional view of a dynamic random access memory device of an example.

【図7】実施例のウエル層のキャリヤ分布および結晶欠
陥濃度分布図。
FIG. 7 is a carrier distribution and crystal defect concentration distribution chart of the well layer of the example.

【図8】実施例のウエル層のキャリヤ分布および結晶欠
陥濃度分布図。
FIG. 8 is a carrier distribution and crystal defect concentration distribution chart of the well layer of the example.

【符号の説明】[Explanation of symbols]

1…半導体基板、2a,3a,4a…ウエル層の低濃度
部,2b,3b,4b…ウエル層の高濃度部、5,6,
7…最大キャリヤ濃度部、8…結晶欠陥、10…素子分
離酸化膜、11,12,13,14…MOSFET。
1 ... Semiconductor substrate, 2a, 3a, 4a ... Low concentration part of well layer, 2b, 3b, 4b ... High concentration part of well layer, 5, 6,
7 ... Maximum carrier concentration part, 8 ... Crystal defect, 10 ... Element isolation oxide film, 11, 12, 13, 14 ... MOSFET.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】複数のウエル層を有する半導体装置におい
て、半導体基板内に最大濃度を持つキャリヤ濃度分布の
ウエル層で、少なくとも1種類のウエル層内に結晶欠陥
層を有することを特徴とする半導体装置。
1. A semiconductor device having a plurality of well layers, which is a well layer having a carrier concentration distribution having a maximum concentration in a semiconductor substrate and having a crystal defect layer in at least one type of well layer. apparatus.
【請求項2】複数のウエル層を有する半導体装置におい
て、半導体基板内に最大濃度を持つキャリヤ濃度分布の
ウエル層で、少なくとも1種類のウエル層内に結晶欠陥
層を有し、個々のウエル層表面を基準にした場合、結晶
欠陥層の深さがウエル層の最大キャリヤ濃度の深さより
深いことを特徴とする半導体装置。
2. In a semiconductor device having a plurality of well layers, a well layer having a carrier concentration distribution having a maximum concentration in a semiconductor substrate, at least one type of well layer having a crystal defect layer, and individual well layers. A semiconductor device characterized in that the depth of the crystal defect layer is deeper than the maximum carrier concentration depth of the well layer when the surface is taken as a reference.
【請求項3】複数のウエル層を有する半導体装置におい
て、半導体基板内に最大濃度を持つキャリヤ濃度分布の
ウエル層で、少なくとも1種類のウエル層内に結晶欠陥
層を有し、個々のウエル層表面を基準にした場合、個々
のウエル層の結晶欠陥層の深さが異なることを特徴とす
る半導体装置。
3. In a semiconductor device having a plurality of well layers, a well layer having a carrier concentration distribution having a maximum concentration in a semiconductor substrate, at least one type of well layer having a crystal defect layer, and individual well layers. A semiconductor device in which the depths of crystal defect layers of individual well layers are different when the surface is used as a reference.
【請求項4】複数のウエル層を有する半導体装置におい
て、半導体基板内に最大濃度を持つキャリヤ濃度分布の
ウエル層で、複数種類のウエル層内に結晶欠陥層を有
し、結晶欠陥層の深さからウエル層の最大キャリヤ濃度
の深さまでの距離が、第1のウエル層と他の第1以外の
ウエル層とで異なる請求項1,2または3に記載の半導
体装置。
4. In a semiconductor device having a plurality of well layers, a well layer having a carrier concentration distribution having a maximum concentration in a semiconductor substrate, having crystal defect layers in a plurality of kinds of well layers, and having a depth of the crystal defect layer. 4. The semiconductor device according to claim 1, wherein the distance from the first well layer to the depth of the maximum carrier concentration of the well layer is different from that of the other well layers other than the first well layer.
【請求項5】複数のウエル層を有する半導体装置におい
て、半導体基板内に最大濃度を持つキャリヤ濃度分布の
ウエル層で、複数種類のウエル層内に結晶欠陥層を有
し、情報を記憶する部分のウエル層での結晶欠陥層の深
さからウエル層の最大キャリヤ濃度の深さまでの距離
が、情報を処理する部分のウエル層での結晶欠陥層の深
さからウエル層の最大キャリヤ濃度の深さまでの距離よ
り短い請求項1,2,3または4に記載の半導体装置。
5. A semiconductor device having a plurality of well layers, which is a well layer having a carrier concentration distribution having a maximum concentration in a semiconductor substrate, having crystal defect layers in a plurality of types of well layers, and storing information. The distance from the depth of the crystal defect layer in the well layer to the depth of the maximum carrier concentration in the well layer depends on the distance from the depth of the crystal defect layer in the portion of the information processing part to the maximum carrier concentration in the well layer. The semiconductor device according to claim 1, 2, 3, or 4, which is shorter than the distance up to that point.
【請求項6】複数のウエル層を有する半導体装置におい
て、半導体基板内に最大濃度を持つキャリヤ濃度分布の
ウエル層で、少なくとも1種類のウエル層内に結晶欠陥
層を有し、導電型の異なるウエル層が接する部分では結
晶欠陥が存在しない請求項1,2,3,4または5に記
載の半導体装置。
6. A semiconductor device having a plurality of well layers, which is a well layer having a carrier concentration distribution having a maximum concentration in a semiconductor substrate, having a crystal defect layer in at least one kind of well layers, and having different conductivity types. The semiconductor device according to claim 1, 2, 3, 4, or 5, wherein no crystal defect exists in a portion where the well layer contacts.
JP7241300A 1995-09-20 1995-09-20 Semiconductor device Pending JPH0982807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7241300A JPH0982807A (en) 1995-09-20 1995-09-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7241300A JPH0982807A (en) 1995-09-20 1995-09-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0982807A true JPH0982807A (en) 1997-03-28

Family

ID=17072235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7241300A Pending JPH0982807A (en) 1995-09-20 1995-09-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0982807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109031A (en) * 2008-10-29 2010-05-13 Sanken Electric Co Ltd Semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109031A (en) * 2008-10-29 2010-05-13 Sanken Electric Co Ltd Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7790551B2 (en) Method for fabricating a transistor having a recess gate structure
US7518198B2 (en) Transistor and method for manufacturing the same
US5324680A (en) Semiconductor memory device and the fabrication method thereof
JP2002043439A (en) Method for manufacturing semiconductor memory element using mask pattern for channel ion implantation
KR100636680B1 (en) Semiconductor device having recessed gate and asymmetric impurity region and method of manufacturing the same
US5627087A (en) Process for fabricating metal-oxide semiconductor (MOS) transistors based on lightly doped drain (LDD) structure
KR100327736B1 (en) Semiconductor device manufacturing method
KR100876883B1 (en) Semiconductor device, manufacturing method thereof and gate forming method of semiconductor device
US7202180B2 (en) Methods of forming semiconductor devices using an etch stop layer
JPH0982807A (en) Semiconductor device
KR100598172B1 (en) Method for forming the transistor with recess gate
JP2004063527A (en) Semiconductor memory device and its manufacturing method
US20230411495A1 (en) Semiconductor device and fabrication method thereof
KR100650773B1 (en) Fin transistor and method for forming thereof
KR100195835B1 (en) Fabrication method of tr.
KR100235625B1 (en) Method of manufacturing semiconductor device
US6720224B2 (en) Method for forming transistor of semiconductor device
KR20050071020A (en) Method for fabricating the mos field effect transistor
KR100598180B1 (en) Transistor and forming method thereof
KR100521994B1 (en) Trench gate type MOS transistor and its manufacturing method
KR100451759B1 (en) Method for manufacturing semiconductor device
KR100818110B1 (en) Semiconductor device and forming method of the same
KR950002184B1 (en) Manufacturing method for semiconductor memory device
KR100320611B1 (en) Semiconductor Memory Device Manufacturing Method
CN117672954A (en) Semiconductor structure and forming method thereof