Nothing Special   »   [go: up one dir, main page]

JPH09202924A - Production of mirror-finished grain-oriented silicon steel sheet with high magnetic flux density and low iron loss - Google Patents

Production of mirror-finished grain-oriented silicon steel sheet with high magnetic flux density and low iron loss

Info

Publication number
JPH09202924A
JPH09202924A JP8010615A JP1061596A JPH09202924A JP H09202924 A JPH09202924 A JP H09202924A JP 8010615 A JP8010615 A JP 8010615A JP 1061596 A JP1061596 A JP 1061596A JP H09202924 A JPH09202924 A JP H09202924A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
flux density
magnetic flux
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8010615A
Other languages
Japanese (ja)
Other versions
JP3154935B2 (en
Inventor
Nobunori Fujii
宣憲 藤井
Hodaka Honma
穂高 本間
Yoshiyuki Ushigami
義行 牛神
Shuichi Yamazaki
修一 山崎
Norito Abe
憲人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP01061596A priority Critical patent/JP3154935B2/en
Publication of JPH09202924A publication Critical patent/JPH09202924A/en
Application granted granted Critical
Publication of JP3154935B2 publication Critical patent/JP3154935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain a mirror-finished grain-oriented silicon steel sheet with high magnetic flux density on an industrial scale by effectively combining the attainment of ultrahigh magnetic flux density by means of conventional Bi addition with the reduction of iron loss by means of mirror finishing technique by application of alumina. SOLUTION: A molten steel, having a composition consisting of, by weight, 0.02-0.1% C, 2.0-4.8% Si, 0.012-0.050% acid soluble Al, 0.030-0.150% N, 0.0005-0.03% Bi, and the balance Fe, is cast, hot-rolled, and subjected to cold rolling including final heavy cold rolling at 65-95%, while process-annealed between cold rolling stages, to the final sheet thickness. After decarburizing annealing, the resultant sheet is nitrided and subjected to secondary recrystallization finish annealing, by which a grain-oriented silicon steel sheet is produced. At this time, decarburizing annealing is performed in the atmospheric gas of a degree of oxidation free from formation of Fe oxides, or, the oxides resultant from decarburizing annealing are removed by acid pickling, and then, alumina is applied as a separation agent at annealing, by which the steel sheet surface after finish annealing is formed into mirror-finished state. By this method, the mirror-finished grain-oriented silicon steel sheet, having a magnetic flux density as high as >=1.95T B8 , can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主として変圧器そ
の他の電気機器等の鉄心として利用される方向性電磁鋼
板の製造方法に関するものである。特に、{110}
〈001〉方位すなわちゴス方位を高度に発達させたB
i添加高磁束密度一方向性電磁鋼板の製造方法とその表
面の鏡面化手段、及び磁区細分化手段を効果的に導入す
ることにより、鉄損特性の向上を工業的に低コストで達
成する製造方法に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet mainly used as an iron core of a transformer or other electric equipment. In particular, {110}
<001> azimuth, that is, Goss azimuth highly developed B
Manufacturing that achieves improvement of iron loss characteristics at an industrially low cost by effectively introducing a method for manufacturing an i-added high magnetic flux density unidirectional electrical steel sheet, a means for mirroring the surface thereof, and a means for subdividing magnetic domains It relates to the method.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、軟磁性材料として
主にトランスその他の電気機器の鉄心材料に使用されて
いるもので、磁気特性としては励磁特性と鉄損特性が良
好でなくてはならない。この励磁特性を表す指標とし
て、通常は磁束密度B8 (磁場の強さ800A/mにおけ
る磁束密度)が用いられ、鉄損特性を表す指標として、
17/50(50Hzで 1.7Tまで磁化させたときの単位
重量あたりの鉄損)が用いられる。
2. Description of the Related Art A grain-oriented electrical steel sheet is mainly used as a soft magnetic material for core materials of transformers and other electric equipment, and must have good magnetic properties such as excitation properties and iron loss properties. No. A magnetic flux density B 8 (magnetic flux density at a magnetic field strength of 800 A / m) is usually used as an index representing this excitation characteristic.
W 17/50 (iron loss per unit weight when magnetized to 1.7 T at 50 Hz) is used.

【0003】一方向性電磁鋼板は、Siを0.8〜4.
8%含有し、製造工程の最終段階の900℃以上の温度
での仕上焼鈍工程で2次再結晶を起こさせ、鋼板面に
{110}面、圧延方向に〈001〉軸をもったいわゆ
るゴス組織を発達させることによって得られている。そ
のなかでも、磁束密度B8 が1.88T以上の優れた励
磁特性をもつものは高磁束密度一方向性電磁鋼板とよば
れている。
[0003] The grain-oriented electrical steel sheet contains 0.8 to 4.
A so-called Goss containing 8% and causing secondary recrystallization in the final annealing step at a temperature of 900 ° C. or higher in the final stage of the manufacturing process, having a {110} plane on the steel plate surface and a <001> axis in the rolling direction. It is obtained by developing the organization. Among them, a magnetic flux density B 8 having an excellent excitation characteristic of 1.88 T or more is called a high magnetic flux density unidirectional electrical steel sheet.

【0004】高磁束密度電磁鋼板の代表的製造方法とし
ては、特公昭40−15644号公報、特公昭51−1
3469号公報等があげられる。現在世界的規模で生産
されている高磁束密度一方向性電磁鋼板は、上記2特許
を基本として生産されていると云える。しかし上記特許
に基づく製品の磁束密度B8 は1.88Tから高々1.
95T程度であり、例えば3%Si鋼の飽和磁束密度
2.03Tの95%程度の値を示しているに過ぎない。
そして、近年省エネルギー、省資源への社会的要求は益
々厳しくなり、一方向性電磁鋼板の鉄損低減、磁化特性
改善への要求も熾烈になってきている。
As a typical method for producing a high magnetic flux density electromagnetic steel sheet, Japanese Patent Publication No. 40-15644 and Japanese Patent Publication No. 51-1 are available.
3469 publication etc. are mentioned. It can be said that the high magnetic flux density unidirectional electrical steel sheet currently produced on a worldwide scale is produced based on the above two patents. However, the magnetic flux density B 8 of the product based on the above patent is from 1.88 T to at most 1.
The value is about 95T, and shows only a value of about 95% of the saturation magnetic flux density of 2.03T of 3% Si steel, for example.
In recent years, social demands for energy savings and resource savings have become increasingly severe, and demands for reduction of iron loss and improvement of magnetic properties of the grain-oriented electrical steel sheets have also become fierce.

【0005】ところで、一般に磁束密度B8 が高くなる
とともに製品の結晶粒が大きくなる傾向があり、高磁束
密度電磁鋼板によりB8 を高くしても180゜磁区巾が
大きくなるために渦電流損が増大し、冶金学的にはこれ
以上の鉄損改善の期待が望まれない。この観点から技術
的な鉄損低減化の手法としてレーザー照射等の磁区制御
技術が特公昭57−2252号公報、特公昭58−59
68号公報、特開昭58−26405号公報等により確
立された。また、該方法による鉄損の低減はレーザー照
射によって導入された歪に起因するので、トランスに成
形したのちに歪取り焼鈍を必要とする巻鉄心トランス用
としては使用することができないため、例えば特公昭6
2−53579号公報、特公昭63−44804号公
報、特公平04−48847号公報等において、仕上焼
鈍後に例えば歯車型ロールにより溝を導入すると共に、
加工歪を加え微細粒を形成させて磁区細分化する方法が
開示されている。
By the way, in general, the magnetic flux density B 8 tends to increase and the crystal grains of the product tend to increase. Even if B 8 is increased by a high magnetic flux density electromagnetic steel sheet, the 180 ° magnetic domain width increases, so that eddy current loss occurs. Therefore, metallurgically, further improvement of iron loss is not expected. From this viewpoint, magnetic domain control technology such as laser irradiation is a technical technique for reducing iron loss, which is disclosed in Japanese Patent Publication No. 57-2252 and Japanese Patent Publication No. 58-59.
68, JP-A-58-26405 and the like. Further, since the reduction of the iron loss by the method is caused by the strain introduced by the laser irradiation, it cannot be used for a wound iron core transformer that requires strain relief annealing after forming into a transformer, and therefore, for example, Kosho 6
No. 2-53579, Japanese Patent Publication No. 63-44804, Japanese Patent Publication No. 04-48847, etc., a groove is introduced by, for example, a gear type roll after finish annealing, and
A method is disclosed in which a processing strain is applied to form fine grains to subdivide magnetic domains.

【0006】しかし、歯車型ロール等の機械加工によっ
て鋼板表面に溝を形成する方法は、方向性電磁鋼板の一
次皮膜(グラス皮膜)と呼ばれる表面セラミックス層を
破砕する必要があるために歯車ロール等の摩耗が大き
く、製造コストに問題を生じる。
However, the method of forming a groove on the surface of a steel sheet by machining such as a gear type roll requires crushing a surface ceramics layer called a primary coating (glass coating) of a grain-oriented electrical steel sheet, so that a gear roll, etc. Wears out and causes a problem in manufacturing cost.

【0007】一方、これら磁区細分化処理を施した鋼板
の磁区の動きを詳細に観察すると、静的には細分化した
磁区の中には動かない磁区も存在していることが分かっ
た。方向性電磁鋼板の鉄損値を更に低減させるために
は、上記方法による磁区細分化技術と合わせて磁区の動
きを阻害する要因を排除する技術(磁区の活性化技術)
を導入する必要がある。すなわち、磁区の動きを阻害す
る大きな要因である鋼板表面のグラス被膜等を除去し表
面を鏡面化する方法が有効である。
On the other hand, when the movement of the magnetic domains of the steel sheet subjected to the magnetic domain subdivision processing was observed in detail, it was found that some of the statically subdivided magnetic domains did not move. In order to further reduce the iron loss value of grain-oriented electrical steel sheets, in addition to the magnetic domain refining technology according to the above method, a technology that eliminates factors that hinder the movement of magnetic domains (magnetic domain activation technology)
Need to be introduced. In other words, it is effective to remove the glass coating on the surface of the steel sheet, which is a major factor that hinders the movement of magnetic domains, to make the surface mirror-finished.

【0008】その手段として、仕上げ焼鈍後にグラス被
膜を酸洗等により除去した後に化学研磨或いは電解研磨
を行い表面を鏡面化させる方法が、例えば特開昭64−
83620号公報に開示されている。しかしながら、化
学研磨・電解研磨等の方法は、研究室レベルでの少試料
の材料を加工することは可能であるが、工業的規模で行
うには薬液の濃度管理,温度管理,公害設備の付与等の
点で大きな問題があり、更にこのような工程を付加する
ことにより製造コストが高くなってしまうために、いま
だ実用化されるに至っていない。
As a means therefor, there is a method of removing the glass coating by pickling after finishing annealing and then chemically polishing or electrolytically polishing the surface to make the surface mirror-finished.
No. 83620. However, chemical polishing, electrolytic polishing, etc. can process a small amount of sample material at the laboratory level, but for industrial scale, chemical solution concentration control, temperature control, and provision of pollution equipment. However, since the manufacturing cost is increased by adding such a step, it has not yet been put to practical use.

【0009】これに対して本出願人は、工業的規模で安
価に鋼板表面を鏡面化する方法を開発した(例えば特開
平5−033052号公報、特開平6−093335号
公報)。これらは、脱炭焼鈍時に鋼板表面に生成する酸
素を除去する、または脱炭焼鈍の雰囲気制御により酸素
量を規制したのち、焼鈍分離剤としてアルミナを鋼板表
面に塗布し仕上げ焼鈍を行うことにより、鋼板表面の鏡
面化と高磁束密度の2次再結晶形成を両立させるもので
ある。
On the other hand, the present applicant has developed a method for mirror-finishing the surface of a steel sheet at a low cost on an industrial scale (for example, JP-A-5-033052 and JP-A-6-093335). These remove oxygen generated on the steel sheet surface during decarburizing annealing, or after controlling the oxygen amount by controlling the atmosphere of decarburizing annealing, by applying alumina as a annealing separating agent to the steel sheet surface and performing finish annealing, This is to make the surface of the steel sheet mirror-like and to form secondary recrystallization with high magnetic flux density.

【0010】これらの技術は、磁区細分化処理のために
鋼板表面に機械加工を加える際に歯車ロール等の磨耗が
少ないため、主に巻鉄心トランス用の磁区制御材製造の
低コスト化に適している。例えば、特開平7−2589
45号公報には、仕上焼鈍後の鋼板表面に従来のように
セラミックス被膜が存在しない場合、歯車ロールの寿命
が5倍以上伸びることが示されている。
These techniques are suitable for reducing the cost of manufacturing the magnetic domain control material mainly for the winding core transformer, because the gear rolls are less worn when machining the steel plate surface for the magnetic domain subdivision processing. ing. For example, JP-A-7-2589
Japanese Patent Laid-Open No. 45-45 discloses that the life of a gear roll is extended five times or more when a ceramic coating is not present on the surface of a steel sheet after finish annealing as in the conventional case.

【0011】しかるに、これら磁区制御、鏡面化等の周
辺技術の成熟に伴い、高磁束密度電磁鋼板を用いた低鉄
損化が容易となるとともに、超低鉄損電磁鋼板を狙うに
は更なる高磁束密度を有する素材が必須条件として期待
されてきている。これに対して本発明者らは、一方向性
電磁鋼板の溶鋼中にBiを含有させることにより、工業
的手段により磁束密度を従来の高磁束密度一方向性電磁
鋼板レベルから超高磁束密度一方向性電磁鋼板レベルま
で高める方法を特開平6−8814号公報、特開平6−
88173号公報等で提案した。
However, with the maturation of peripheral technologies such as magnetic domain control and mirror finishing, it becomes easy to reduce the iron loss using a high magnetic flux density electromagnetic steel sheet, and it is further necessary to aim at an ultra-low iron loss electromagnetic steel sheet. A material having a high magnetic flux density has been expected as an essential condition. On the other hand, the present inventors have found that by including Bi in the molten steel of the grain-oriented electrical steel sheet, the magnetic flux density can be reduced by industrial means from the level of the conventional high magnetic flux density unidirectional magnetic steel sheet to the ultra-high magnetic flux density. JP-A-6-8814 and JP-A-6-8814 disclose a method for increasing the level of grain-oriented electrical steel sheets.
88173.

【0012】この方法により初めて磁束密度B8 が1.
96Tを越える超高磁束密度一方向性電磁鋼板が工場規
模で比較的安定に生産できるようになった。本発明は従
来のBi添加法による超高磁束密度一方向性電磁鋼板製
造方法と鏡面化技術による低鉄損一方向性電磁鋼板製造
法の単なる組み合わせでなく、前者の工業化における欠
点と後者の安定促進化を極めて効果的に解決する方法を
提供するものである。
With this method, the magnetic flux density B 8 is 1.
Ultra-high magnetic flux density grain-oriented electrical steel sheets exceeding 96T can now be produced relatively stably on a factory scale. The present invention is not a simple combination of the conventional method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet by the Bi addition method and the low iron loss unidirectional electrical steel sheet production method by the mirror finishing technology, and the former is a drawback in industrialization and the latter is stable. It is intended to provide a method of solving acceleration very effectively.

【0013】[0013]

【発明が解決しようとする課題】本発明は、従来のBi
添加技術と鏡面化技術とを有機的に組み合わせることに
より、極めて磁束密度の高い超高磁束密度一方向性鏡面
電磁鋼板素材を工場的規模で安定に製造することを可能
とし、さらに磁区制御技術を組み合わせることにより、
極めて鉄損の低い超低鉄損一鏡面方向性電磁鋼板を低コ
ストで製造することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a conventional Bi
By organically combining the addition technology and the mirroring technology, it is possible to stably manufacture ultra-high magnetic flux density unidirectional mirror-finished electromagnetic steel sheet material with extremely high magnetic flux density on a factory scale, and further develop magnetic domain control technology. By combining,
The purpose of the present invention is to manufacture an ultra-low iron loss-oriented mirror-oriented electrical steel sheet with extremely low iron loss at low cost.

【0014】[0014]

【課題を解決するための手段】本発明の特徴は以下のと
おりである。 (1) 重量で、C:0.02〜0.1%、Si:2.
0〜4.8%、酸可溶性Al:0.012〜0.050
%、N:0.030〜0.0150%、Bi:0.00
05〜0.03%を含有し、残部はFeおよび不可避的
不純物をからなる溶鋼を鋳造し、熱間圧延し、次いで6
5〜95%の最終強冷延を含む1回あるいは中間焼鈍を
はさむ2回以上の冷間圧延を行い最終板厚とし、脱炭焼
鈍を行ったのち窒化処理を施すかあるいは施さず、2次
再結晶仕上焼鈍を行う工程からなる一方向性電磁鋼板の
製造方法において、脱炭焼鈍をFe系酸化物の形成しな
い酸化度の雰囲気ガス中で行なう、または脱炭焼鈍で生
成した酸化物を酸洗で除去したのち、焼鈍分離剤として
アルミナを塗布することにより、仕上焼鈍後の鋼板表面
を鏡面状態にすることを特徴とする磁束密度の高い鏡面
一方向性電磁鋼板の製造方法。
The features of the present invention are as follows. (1) By weight, C: 0.02 to 0.1%, Si: 2.
0 to 4.8%, acid-soluble Al: 0.012 to 0.050
%, N: 0.030 to 0.0150%, Bi: 0.00
Cast molten steel containing 0.05 to 0.03% with the balance Fe and unavoidable impurities, hot rolled, then 6
5 to 95% final cold rolling, including one final cold rolling, or two or more cold rollings with intermediate annealing, to obtain the final sheet thickness, and decarburization annealing followed by nitriding or not In a method for producing a grain-oriented electrical steel sheet comprising a step of performing recrystallization finish annealing, decarburization annealing is performed in an atmosphere gas having an oxidation degree that does not form Fe-based oxides, or an oxide produced by decarburization annealing is treated with an acid. A method for producing a specular unidirectional electrical steel sheet having a high magnetic flux density, which comprises removing the surface by washing and then applying alumina as an annealing separator to make the surface of the steel sheet after finish annealing into a mirror surface state.

【0015】(2) 前記(1)記載の鋼板に局部的な
歪みを導入することにより、磁区細分化処理を施すこと
を特徴とする鉄損の低い鏡面方向性電磁鋼板の製造方
法。 (3) 前記(1)記載の鋼板にコーティング処理によ
る張力皮膜を形成した後、局部的な歪みを導入すること
により、磁区細分化処理を施すことを特徴とする鉄損の
低い方向性電磁鋼板の製造方法。
(2) A method for producing a specular grain-oriented electrical steel sheet having a low iron loss, which comprises subjecting the steel sheet according to (1) above to local distortion to perform a magnetic domain refining treatment. (3) A grain-oriented electrical steel sheet with low iron loss, characterized by performing a magnetic domain refinement treatment by introducing a local strain after forming a tension film by the coating treatment on the steel sheet according to (1) above. Manufacturing method.

【0016】(4) 前記(1)記載の鋼板に圧延方向
に対して直角もしくは直角から45度の範囲内で間隔2
〜10mmで幅10〜300μm、深さ5〜50μmの
範囲で連続的、不連続または点状の局部的な溝を形成
し、併せてコーティング処理による張力皮膜を形成する
ことにより磁区細分化させることを特徴とする鉄損の低
い鏡面方向性電磁鋼板の製造方法。
(4) The steel plate described in (1) above is spaced at an interval of 2 at right angles to the rolling direction or within a range of 45 degrees from the right angles.
To form a continuous, discontinuous or dot-shaped local groove within a range of 10 mm to a width of 10 to 300 μm and a depth of 5 to 50 μm, and also to form a tension film by a coating process to subdivide magnetic domains. A method for producing a specular grain-oriented electrical steel sheet having low iron loss.

【0017】[0017]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明者らは、特開平6−8814号公報、特開平6−
88173号公報等に示しているとおり、実験室での実
験により、窒化アルミニウムを主インヒビターとする一
方向性電磁鋼板用の素材に、Biを添加含有せしめるこ
とにより、現在市販されている高磁束密度電磁鋼板のB
8 =1.93T程度をはるかに越える1.95T以上、
2Tにおよぶ超高磁束密度一方向性電磁鋼板を得た。そ
の後、鋼板の磁束密度B8 が1.95T以上のいわゆる
超高磁束密度一方向性電磁鋼板を工業規模で安定に製造
すべくコイルフォームでの工場試験を実施したが、製造
条件と製品の磁化特性と一次皮膜性状を精査したとこ
ろ、場合によっては問題点があることが判明した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The present inventors have disclosed JP-A-6-8814 and JP-A-6-8814.
As disclosed in Japanese Patent No. 88173, etc., by conducting experiments in a laboratory, Bi is added to and contained in a material for a grain-oriented electrical steel sheet having aluminum nitride as a main inhibitor, so that a commercially available high magnetic flux density is obtained. B of electrical steel sheet
8 = 1.93T or more, far exceeding 1.93T,
An ultra-high magnetic flux density unidirectional magnetic steel sheet of 2T was obtained. After that, in order to stably manufacture a so-called ultra-high magnetic flux density unidirectional electrical steel sheet with a magnetic flux density B 8 of 1.95 T or more on a steel sheet, a factory test was conducted using coil form. A close examination of the properties and properties of the primary coating revealed that in some cases there were problems.

【0018】すなわち、コイル位置別に磁化特性のバラ
ツキおよびコイル内部に一次皮膜の剥離部分が認められ
た。そこでこの問題点を解決すべく、仕上焼鈍済みのコ
イルを展開し、2次再結晶組織および一次皮膜形成状態
の位置関係を詳細に調査した結果、コイル内部では一次
皮膜の剥離が顕著となり2次再結晶組織も等軸粒的で超
高磁束密度が得られにくい一方、コイル端部の部分では
一次皮膜が良好で2次再結晶粒もBi添加材の特徴であ
る延伸粒を呈し、B8 で1.95T以上が安定して得ら
れていることが判明した。
That is, there was a variation in the magnetization characteristics depending on the coil position and a peeled portion of the primary coating was found inside the coil. In order to solve this problem, we developed a coil that had been subjected to finish annealing and investigated the positional relationship between the secondary recrystallized structure and the state of formation of the primary film in detail. while recrystallization structure hardly ultra-high magnetic flux density equiaxed grains manner is obtained, the secondary recrystallized grains has good primary coating also exhibited stretch particle is characteristic of Bi additive in the portion of the coil end portion, B 8 It was found that 1.95T or more was stably obtained.

【0019】ところで、超高磁束密度を実現するために
は一定量以上の鋼中Bi含有量が必要である一方、仕上
・純化焼鈍中に鋼中Biを鋼板表面から気化させて除去
する必要がある。例えば、実験室規模の板状の小試験片
の場合は仕上焼鈍中にBiを除去することは容易であ
る。しかし、工場的規模で製造する場合、コイル状に巻
いた鋼板を箱形仕上焼鈍炉で焼鈍することが前提となる
ので、特にコイル内部においてはガスの通気性が悪く、
鋼中Biの除去が困難となり超高磁束密度が得られ難
い。
By the way, in order to realize an ultra-high magnetic flux density, a certain amount of Bi content in the steel is required, while it is necessary to vaporize and remove Bi in the steel from the surface of the steel sheet during finishing / purification annealing. is there. For example, in the case of a laboratory-scale plate-shaped small test piece, it is easy to remove Bi during finish annealing. However, in the case of manufacturing on a factory scale, since it is premised that the coiled steel sheet is annealed in a box-shaped finishing annealing furnace, gas permeability is particularly poor inside the coil,
It is difficult to remove Bi in steel, and it is difficult to obtain an ultrahigh magnetic flux density.

【0020】さらに鋼板間に濃化したBi蒸気が一次皮
膜の形成に悪影響を及ぼすため、良好な一次皮膜が得ら
れにくいと推定した。逆にコイル端部では比較的ガスの
通気性が良好なので超高磁束密度が得られやすく、Bi
蒸気も濃化しないので一次皮膜は良好であると推定され
る。すなわち、工場的規模におけるコイルフォームでの
焼鈍では、特にコイル中心部でのBiの除去が困難であ
り、また鋼板間に残存したBiは一次皮膜形成に有害で
あると推定し、本発明者らは、Bi添加による2次再結
晶仕上焼鈍中における板間のガス通気性の影響を定量的
に把握するため次の実験を行った。
Further, it was estimated that it was difficult to obtain a good primary coating because the Bi vapor concentrated between the steel sheets adversely affected the formation of the primary coating. On the contrary, since the gas permeability is relatively good at the coil end, it is easy to obtain an ultra-high magnetic flux density.
It is presumed that the primary coating is good because the vapor also does not thicken. That is, it is presumed that it is difficult to remove Bi particularly in the center of the coil by annealing in a coil form on a factory scale, and Bi remaining between the steel sheets is harmful to the primary film formation. Conducted the following experiment in order to quantitatively understand the influence of gas permeability between the plates during the secondary recrystallization finish annealing by adding Bi.

【0021】C:0.05%、Si:3.25%、M
n:0.10%、S:0.007%、P:0.025
%,酸可溶性Al:0.029%、N:0.007%、
Cr:0.12%を含有する珪素鋼を溶製し、Bi含有
量を0,0.007%,0.013%,0.025%と
し、それぞれ鋳片に分注鋳造後、1150℃に加熱し、
抽出後直ちに2.3mm板厚まで熱延し、熱延後水冷し5
50℃で保定した。その後熱延板を1120℃の温度で
30秒、引き続き900℃で90秒焼鈍し、750℃ま
で空冷後80℃の水中に急冷した。
C: 0.05%, Si: 3.25%, M
n: 0.10%, S: 0.007%, P: 0.025
%, Acid-soluble Al: 0.029%, N: 0.007%,
Cr: 0.12% containing silicon steel was melted, Bi content was set to 0, 0.007%, 0.013%, 0.025%, and after casting by casting into slabs, respectively, to 1150 ° C. Heat
Immediately after extraction, hot-rolled to a thickness of 2.3 mm, and water-cooled after hot-rolling.
It was kept at 50 ° C. Thereafter, the hot-rolled sheet was annealed at a temperature of 1120 ° C. for 30 seconds and subsequently at 900 ° C. for 90 seconds, air-cooled to 750 ° C. and then rapidly cooled to 80 ° C. in water.

【0022】次いで酸洗し0.23mmまで途中で250
℃での時効処理を5回挟んで冷延した。引き続き、窒素
と水素の混合ガスにおいて酸化度が0.40(PH2
/PH2 )になるように導入水蒸気を調整し、脱炭・1
次再結晶焼鈍を行い、引き続いてNH3 雰囲気でN含有
量が200ppm になるよう窒化焼鈍を行った。MgOを
主成分とする焼鈍分離剤を塗布後、2次再結晶仕上焼鈍
を行った。
Next, pickling is carried out to 250 mm on the way to 0.23 mm.
Cold rolling was performed by sandwiching the aging treatment at ℃ 5 times. Subsequently, in a mixed gas of nitrogen and hydrogen, the degree of oxidation is 0.40 (PH 2 O
/ PH 2 ) Adjust the introduced steam to decarburize.
Next, recrystallization annealing was performed, and then nitriding annealing was performed in an NH 3 atmosphere so that the N content was 200 ppm. After applying an annealing separator containing MgO as a main component, secondary recrystallization finish annealing was performed.

【0023】板間のガス通気性の影響をみるため、10
0mm×500mmの鋼板を約50枚積層した試料を鉄薄膜
で梱包し炉内に挿入したのち、窒素分圧が25%の湿水
素雰囲気のガスを導入し、その流量を1,5,10,1
5Nm3 /分としながら1200℃まで15℃/hrで中
で昇温し、引き続いて乾水素雰囲気中で1200℃で2
0時間の純化焼鈍を行った。このときの焼鈍炉の炉内容
積は、0.06m3 であった。炉内導入ガス流量と得ら
れた鋼板の一次皮膜の状況および磁束密度B8の関係を
図1に示す。
To check the effect of gas permeability between the plates, 10
A sample in which about 50 sheets of 0 mm x 500 mm steel sheets were laminated was packed with an iron thin film and inserted into the furnace. Then, a gas in a wet hydrogen atmosphere with a nitrogen partial pressure of 25% was introduced, and the flow rate was 1, 5, 10, 1
The temperature was raised up to 1200 ° C. at 15 ° C./hr at 5 Nm 3 / min, and subsequently at 1200 ° C. in a dry hydrogen atmosphere at 2 ° C.
A zero-hour purification annealing was performed. At this time, the furnace internal volume of the annealing furnace was 0.06 m 3 . FIG. 1 shows the relationship between the flow rate of gas introduced into the furnace, the condition of the obtained steel sheet primary coating, and the magnetic flux density B 8 .

【0024】その結果、Biを添加した超高磁束密度一
方向性電磁鋼板は、従来の窒化アルミニウムを主インヒ
ビターとする高磁束密度一方向性電磁鋼板に比較して、
仕上げ焼鈍中のガスの通気性が悪いと一次皮膜に悪影響
を及ぼし高磁束密度が得られにくいことが判明した。本
発明者らは1次皮膜剥離とB8 悪化のメカニズムを説明
するに至ってないが、鋼中Biが仕上・純化焼鈍中に表
面へ拡散したのち表面から蒸発する際、Bi蒸気が地鉄
と一次皮膜の界面で膨張するため一次皮膜が地鉄から剥
離するものと推定している。
As a result, the ultra-high magnetic flux density unidirectional electrical steel sheet containing Bi is compared with the conventional high magnetic flux density unidirectional electrical steel sheet using aluminum nitride as the main inhibitor.
It was found that when the gas permeability during finish annealing was poor, the primary coating was adversely affected and it was difficult to obtain a high magnetic flux density. Although the inventors have not yet explained the mechanism of primary film peeling and B 8 deterioration, when Bi in steel diffuses to the surface during finish / purification annealing and then evaporates from the surface, Bi vapor forms It is presumed that the primary coating peels from the base iron due to expansion at the interface of the primary coating.

【0025】一方、一次皮膜が剥離すると鋼板直下のA
2 3 形成や窒素の挙動に影響を与え、AlNを主と
するインヒビター挙動に影響を与え、二次再結晶過程が
変化するためであると推定している。これらの問題を解
決するためには、例えば工場の焼鈍炉の導入ガス流量を
増加せしめればよいが、工場規模の箱形焼鈍設備の炉内
容積は通常約30m3 であり、単純に計算しても蒸気の
実験室焼鈍炉の導入ガス流量の500倍の導入ガスが必
要である。
On the other hand, when the primary coating peels off, A
It is presumed that this is because it affects the formation of l 2 O 3 and the behavior of nitrogen, affects the behavior of the inhibitor mainly containing AlN, and changes the secondary recrystallization process. In order to solve these problems, for example, the flow rate of gas introduced into the annealing furnace of the factory may be increased, but the furnace internal volume of the factory-scale box-type annealing equipment is usually about 30 m 3 and can be calculated simply. However, the introduction gas flow rate of 500 times the introduction gas flow rate of the laboratory annealing furnace for steam is required.

【0026】これは設備費を圧迫し、原単位等のコスト
の観点からも困難であるため、すなわち、Bi添加によ
り超高磁束密度一方向性電磁鋼板を工業規模で安定して
製造するためには、一次皮膜形成に頼らない鏡面化技術
の適用が有効である可能性を見出した。
This is because the equipment cost is pressed down and it is difficult from the viewpoint of the cost of the basic unit etc., that is, in order to stably manufacture the super high magnetic flux density unidirectional electrical steel sheet on an industrial scale by adding Bi. Found that the application of a mirror finishing technology that does not rely on the formation of a primary film may be effective.

【0027】以下に本発明に至った実験結果について説
明する。本発明者らは、Bi添加による2次再結晶仕上
焼鈍中の温度勾配の影響を定量的に把握するため次の実
験を行った。C:0.05%、Si:3.25%、M
n:0.10%、S:0.007%、P:0.025
%,酸可溶性Al:0.029%、N:0.007%、
Cr:0.12%を含有する珪素鋼を溶製し、Bi含有
量を0%,0.007%,0.013%,0.025%
とし、それぞれ鋳片に分注鋳造後、1150℃に加熱
し、抽出後直ちに2.3mm板厚まで熱延し、熱延後水冷
し550℃で保定した。
The results of the experiments that led to the present invention will be described below. The present inventors conducted the following experiment in order to quantitatively understand the influence of the temperature gradient during the secondary recrystallization finish annealing due to the addition of Bi. C: 0.05%, Si: 3.25%, M
n: 0.10%, S: 0.007%, P: 0.025
%, Acid-soluble Al: 0.029%, N: 0.007%,
Cr: 0.12% containing silicon steel is melted, and Bi content is 0%, 0.007%, 0.013%, 0.025%
Each of them was dispensed and cast into a slab, heated to 1150 ° C., hot-rolled immediately after extraction to a plate thickness of 2.3 mm, hot-rolled and then water-cooled and held at 550 ° C.

【0028】その後熱延板を1120℃の温度で30秒
引き続き900℃で90秒焼鈍し、750℃まで空冷後
80℃の水中に急冷した。次いで酸洗し0.23mmまで
途中で250℃での時効処理を5回挟んで冷延した。引
き続き、窒素と水素の混合ガスにおいて酸化度が0.0
6になるように導入水蒸気を導入し、鋼板酸素量が20
0ppm 以下になるように脱炭・1次再結晶焼鈍を行い、
引き続いてNH3 雰囲気でN含有量が200ppm になる
よう窒化焼鈍を行った。
Thereafter, the hot-rolled sheet was annealed at a temperature of 1120 ° C. for 30 seconds and subsequently at 900 ° C. for 90 seconds, air-cooled to 750 ° C. and then rapidly cooled in water of 80 ° C. Next, it was pickled and cold rolled by aging treatment at 250 ° C. 5 times to reach 0.23 mm. Subsequently, the degree of oxidation is 0.0 in a mixed gas of nitrogen and hydrogen.
Introduced water vapor so that the steel plate oxygen content is 20
Perform decarburization and primary recrystallization annealing so that the concentration becomes 0 ppm or less,
Subsequently, nitriding annealing was performed in an NH 3 atmosphere so that the N content was 200 ppm.

【0029】そしてAl2 3 を主成分とする焼鈍分離
剤を塗布後、2次再結晶仕上焼鈍を行った。そして上記
の実験と同様に、100mm×500mmの鋼板を約50枚
積層した試料を鉄薄膜で梱包し炉内に挿入し、乾窒素雰
囲気を炉内に導入し、その流量を1,5,10,15,
Nm3 /分としながら1200℃まで15℃/hrで昇温
し、引き続いて1200℃で20時間の純化焼鈍を行っ
た。炉内導入ガス流量と得られた鋼板の酸素量および磁
束密度B8 の関係を図2に示す。
Then, after applying an annealing separator containing Al 2 O 3 as a main component, secondary recrystallization finish annealing was performed. Then, similarly to the above experiment, a sample in which about 50 sheets of 100 mm × 500 mm steel sheets were laminated was packed with an iron thin film, inserted into the furnace, and a dry nitrogen atmosphere was introduced into the furnace, and the flow rate was set to 1, 5, 10 , 15,
The temperature was raised to 1200 ° C. at 15 ° C./hr at Nm 3 / min, and then purification annealing was performed at 1200 ° C. for 20 hours. Oxygen of the steel sheet obtained as furnace Flow rate of introduced gas and shows the relationship between the magnetic flux density B 8 in FIG.

【0030】図2で明らかなように、鏡面化技術を適用
することにより、磁束密度は仕上げ焼鈍中のガス流量に
影響されず、Bi添加による磁束密度向上の効果が安定
して得られた。このように仕上げ焼鈍中のガス流量に影
響されないことは、コイル内位置のガス通気性バラツキ
に二次再結晶過程が影響されにくいことから、工場規模
のコイルフォームでの仕上げ焼鈍による製造に有利であ
ることを示している。また、図2でBi添加量とともに
鏡面化鋼板表面に微量に付着した酸素が減少しているこ
とから、Bi添加は鏡面化を促進させる作用があること
が期待される。
As is apparent from FIG. 2, by applying the mirror finishing technique, the magnetic flux density was not affected by the gas flow rate during the finish annealing, and the effect of improving the magnetic flux density by adding Bi was stably obtained. In this way, the fact that the gas flow rate during finish annealing is not affected is advantageous for manufacturing by finish annealing in factory-scale coil form because the secondary recrystallization process is less affected by the variation in gas permeability in the coil. It indicates that there is. In addition, in FIG. 2, since the amount of oxygen adhering to the mirror-finished steel sheet in a small amount decreases along with the amount of Bi added, it is expected that the addition of Bi has an effect of promoting mirror polishing.

【0031】さらに本発明者らは、図2で得られた試料
を850℃の温度で2時間の歪み取り焼鈍を行ったの
ち、圧延方向と直角方向に5mm間隔でレーザー照射処理
を行い、磁区制御を試みた。得られた試料についての素
材(磁区制御前)の磁束密度B8 と磁区制御後の鉄損W
17/50の関係を図3に示す。
Further, the present inventors performed strain relief annealing of the sample obtained in FIG. 2 at a temperature of 850 ° C. for 2 hours, and then performed laser irradiation treatment in the direction perpendicular to the rolling direction at intervals of 5 mm to obtain magnetic domains. Tried to control. Magnetic flux density B 8 of the material (before magnetic domain control) and iron loss W after magnetic domain control for the obtained sample
The relationship of 17/50 is shown in FIG.

【0032】図3から次のことが判る。まず、Bi添加
を行い0.007%から0.025%にBi含有量を調
整すれば、磁束密度B8 が1.96T以上の超高磁束密
度一方向性電磁鋼板が発現し、また磁区制御との組み合
わせで超低鉄損電磁鋼板が得られる。また、B8 とW
17/50の関係を示す直線はBi添加とともに下がってお
り、Bi添加材の鉄損は磁束密度の向上から期待される
鉄損よりも更に改善されていることがわかる。
The following can be seen from FIG. First, by adjusting the Bi content of 0.007% or perform Bi added to 0.025%, the magnetic flux density B 8 is expressed more ultra-high magnetic flux density grain-oriented electrical steel sheet 1.96T, also the magnetic domain control In combination with the above, an ultra-low iron loss electromagnetic steel sheet can be obtained. Also, B 8 and W
The straight line showing the relationship of 17/50 decreases with Bi addition, and it can be seen that the iron loss of the Bi-added material is further improved than the iron loss expected from the improvement of the magnetic flux density.

【0033】これは、図2で説明したように、Bi添加
は鏡面化を促進させる作用のためであると推定される。
本発明は従来のBi添加法による超高磁束密度一方向性
電磁鋼板製造方法と鏡面化技術による低鉄損一方向性電
磁鋼板製造法の単なる組み合わせでなく、前者の工業化
における欠点と後者の安定促進化を極めて効果的に解決
する方法を提供するものである。
This is presumed to be due to the action of Bi addition for promoting the mirroring, as explained in FIG.
The present invention is not a simple combination of the conventional method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet by the Bi addition method and the low iron loss unidirectional electrical steel sheet production method by the mirror finishing technology, and the former is a drawback in industrialization and the latter is stable. It is intended to provide a method of solving acceleration very effectively.

【0034】次に、本発明に必要な構成要素とその限定
理由について述べる。本発明において、素材が含有する
成分は、重量で、C:0.02〜0.1%、Si:2.
0〜4.8%、酸可溶性Al:0.012〜0.050
%、N:0.030〜0.0150%、Bi:0.00
05〜0.03%、残部Fe及び不可避的不純物であ
り、これらを必須成分としてそれ以外は限定しない。
Next, the components necessary for the present invention and the reasons for limiting them will be described. In the present invention, the components contained in the material are, by weight, C: 0.02 to 0.1%, Si:
0 to 4.8%, acid-soluble Al: 0.012 to 0.050
%, N: 0.030 to 0.0150%, Bi: 0.00
05 to 0.03%, the balance being Fe and unavoidable impurities, and these are essential components, and the others are not limited.

【0035】基本的な製造法としては、小松等による
(Al,Si)Nを主インヒビターとして用いる製造法
(例えば特公昭62−45285号公報)、または田口
・坂倉等によるAlNとMnSを主インヒビターとして
用いる製造法(例えば特公昭40−15644号公報)
を適用すれば良い。
As a basic production method, a production method using (Al, Si) N as a main inhibitor by Komatsu et al. (For example, Japanese Examined Patent Publication No. 62-45285) or AlN and MnS by Taguchi / Sakakura etc. as main inhibitors. Manufacturing method used as (for example, Japanese Patent Publication No. 40-15644)
Should be applied.

【0036】Cはγ域開放型元素であり、熱間圧延から
脱炭焼鈍の工程でα→γ変態、または固溶Cの存在によ
り二次再結晶に有利な集合組織を形成する重要な元素で
ある。Cが0.02%未満ではα→γ変態が生じないの
で好ましくない。また、0.1%を越えると脱炭焼鈍工
程に負荷がかかり、コストアップとなるため好ましくな
い。
C is an element of the γ region open type, which is an important element that forms an advantageous texture for secondary recrystallization due to α → γ transformation or the presence of solute C in the steps from hot rolling to decarburization annealing. Is. If C is less than 0.02%, α → γ transformation does not occur, which is not preferable. On the other hand, if it exceeds 0.1%, the decarburization annealing process is burdened with an increase in cost, which is not preferable.

【0037】Siは電気抵抗を高め、鉄損を下げる上で
重要な元素である。含有量が4.8%を超えると、冷間
圧延時に材料が割れ易くなり、圧延不可能となる。一
方、2.0%未満では製品の渦電流損が増大するととも
に、仕上げ焼鈍時にα→γ変態を生じ、結晶の方向性が
損なわれる。
Si is an important element for increasing electric resistance and reducing iron loss. If the content exceeds 4.8%, the material is easily cracked during cold rolling, and cannot be rolled. On the other hand, if it is less than 2.0%, the eddy current loss of the product increases, and the α → γ transformation occurs at the time of finish annealing, and the directionality of the crystal is impaired.

【0038】酸可溶性AlはNと結合してAlNを形成
し、高磁束密度一方向性電磁鋼板製造のための主インヒ
ビター構成元素である。0.012%未満では量的に不
足し、インヒビター強度が不足する。一方、0.050
%越えではAlNが粗大化し、結果としてインヒビター
強度を低下させるので2次再結晶が起こらなくなる。
Acid-soluble Al is combined with N to form AlN, and is a main inhibitor constituent element for producing a high magnetic flux density unidirectional electrical steel sheet. If it is less than 0.012%, the amount is insufficient, and the inhibitor strength is insufficient. On the other hand, 0.050
If it exceeds%, AlN becomes coarse and, as a result, the inhibitor strength is lowered, so that secondary recrystallization does not occur.

【0039】素材に含有するNはSi,Al等の窒化物
を形成し、低温スラブ加熱を前提とする場合特に1次再
結晶のインヒビターとして影響する。N含有量は1次再
結晶粒径を制御する観点から工程の熱履歴や必要な1次
焼鈍温度から決定される。一方、高温スラブ加熱により
前段階でAlNを微細分散させる場合は、2次再結晶焼
鈍の雰囲気条件等を考慮する必要がある。0.030%
未満では脱窒のため溶製段階のコストアップとなり、
0.0150%越えではブリスターと呼ばれる欠陥が発
生するので、0.030%〜0.0150%の範囲とし
た。その他のインヒビター構成元素として、Mn,S,
Se,V,N,B,Nb,Sn,Cu,Ti,Zr,T
a,Mo,Sn等を複合して添加することができる。
N contained in the material forms nitrides of Si, Al, etc., and acts as an inhibitor of primary recrystallization especially when low temperature slab heating is premised. The N content is determined from the thermal history of the process and the required primary annealing temperature from the viewpoint of controlling the primary recrystallized grain size. On the other hand, when AlN is finely dispersed in the previous stage by high temperature slab heating, it is necessary to consider the atmospheric conditions of the secondary recrystallization annealing. 0.030%
If the amount is less than the above, denitrification will increase the cost in the melting stage,
If it exceeds 0.0150%, defects called blisters occur, so the range was made 0.030% to 0.0150%. Other inhibitor constituent elements include Mn, S,
Se, V, N, B, Nb, Sn, Cu, Ti, Zr, T
It is possible to add a, Mo, Sn and the like in combination.

【0040】Biは超高速密度を得るための必要元素で
あり、添加含有量は、0.0005〜0.03%の範囲
が有効である。0.0005%未満では効果が僅かであ
り、また0.03%越では磁束密度向上の効果が飽和す
るとともに熱延板の端部に割れが発生するので上限を
0.03%に限定する。
Bi is a necessary element for obtaining an ultra-high speed density, and it is effective that the content of addition is 0.0005 to 0.03%. If it is less than 0.0005%, the effect is slight, and if it exceeds 0.03%, the effect of improving the magnetic flux density saturates and cracks occur at the ends of the hot-rolled sheet, so the upper limit is limited to 0.03%.

【0041】次に、製造プロセス条件について説明す
る。上記のごとく成分を調整した超高磁束密度一方向性
電磁鋼板用素材は通常の如何なる溶解法、造塊法を用い
た場合でも本発明の素材とすることが出来る。次いでこ
の電磁鋼板用素材は通常の熱間圧延により熱延コイルに
圧延される。
Next, the manufacturing process conditions will be described. The material for ultra-high magnetic flux density unidirectional electrical steel sheet whose components have been adjusted as described above can be used as the material of the present invention even when any ordinary melting method or ingot making method is used. Next, the magnetic steel sheet material is rolled into a hot-rolled coil by ordinary hot rolling.

【0042】小松等による(Al,Si)Nを主インヒ
ビターとして用いる製造法(例えば特公昭62−452
85号公報)では、熱間圧延時の温度確保の観点より1
100℃以上、またAlNの完全溶体化しない1280
℃以下の温度で加熱を行った後に熱間圧延を行う。ま
た、田口・坂倉等によるAlNとMnSを主インヒビタ
ーとして用いる製造法(例えば特公昭40−15644
号公報)では完全溶体化する1300℃以上の温度で加
熱した後に熱延を行えば良い。
A production method using (Al, Si) N as a main inhibitor by Komatsu et al. (Eg Japanese Patent Publication No. 62-452).
No. 85), from the viewpoint of ensuring the temperature during hot rolling, 1
100 ° C or higher, and 1280 without complete solution of AlN
Hot rolling is performed after heating at a temperature of ℃ or less. A production method using AlN and MnS as main inhibitors by Taguchi and Sakakura (for example, Japanese Patent Publication No. 40-15644).
In Japanese Unexamined Patent Publication (Kokai) No. H11-260, hot rolling may be performed after heating at a temperature of 1300 ° C. or higher at which complete solution is formed.

【0043】引き続いて1ステージの冷間圧延または中
間焼鈍を含む複数ステージの冷間圧延によって最終板厚
とするが、磁束密度が高い一方向性電磁鋼板を得ること
から、最終冷延の圧延率(1ステージの冷間圧延の場合
はその圧延率)は65〜95%の強圧下が好ましい。最
終圧延以外のステージの圧延率は特に規定しなくてもよ
い。また、AlNを強化するため、最終冷延前に焼鈍お
よび冷却を行ってもよい。焼鈍は750〜1200℃の
温度域で30秒〜30分間行われ、この焼鈍は製品の磁
気特性を高めるために有効である。望む製品の特性レベ
ルとコストを勘案して採否を決めるとよい。
Subsequently, final sheet thickness is obtained by one-stage cold rolling or multiple-stage cold rolling including intermediate annealing, but since a unidirectional electrical steel sheet having a high magnetic flux density is obtained, the final cold rolling reduction rate is set. (The rolling ratio in the case of one-stage cold rolling) is preferably a strong reduction of 65 to 95%. The rolling rates of stages other than the final rolling need not be particularly defined. Further, in order to strengthen AlN, annealing and cooling may be performed before final cold rolling. Annealing is performed in a temperature range of 750 to 1200 ° C. for 30 seconds to 30 minutes, and this annealing is effective for enhancing the magnetic properties of the product. It is advisable to decide whether or not to take into account the desired product characteristic level and cost.

【0044】最終製品厚に圧延した冷延板は、1次再結
晶焼鈍と鋼中に含まれる炭素を除去する目的で湿潤な水
素または水素と窒素の混合雰囲気中で、750〜900
℃の温度範囲で30秒〜30分間脱炭焼鈍を行う。この
脱炭焼鈍において、Fe系の酸化物(Fe2 SiO4
FeO等)を形成させない酸化度で焼鈍を行い、焼鈍分
離剤としてアルミナを塗布することが本発明の1つのポ
イントである。たとえば、通常脱炭焼鈍が行われる80
0℃〜850℃の温度域においては、雰囲気ガスの酸化
度(PH2 O/PH2 )<0.15に調整することによ
り、Fe系酸化物の生成を抑制することができる。
The cold-rolled sheet rolled to the final product thickness has a thickness of 750 to 900 in wet hydrogen or a mixed atmosphere of hydrogen and nitrogen for the purpose of primary recrystallization annealing and removal of carbon contained in the steel.
Decarburization annealing is performed in a temperature range of 30C for 30 seconds to 30 minutes. In this decarburization annealing, Fe-based oxides (Fe 2 SiO 4 ,
One point of the present invention is to perform annealing at an oxidation degree that does not form (FeO etc.) and apply alumina as an annealing separator. For example, 80 where decarburization annealing is usually performed
In the temperature range of 0 ° C. to 850 ° C., the generation of Fe-based oxide can be suppressed by adjusting the degree of oxidation of the atmospheric gas (PH 2 O / PH 2 ) <0.15.

【0045】但し、あまりに酸化度を下げると脱炭速度
が遅くなってしまい、工業的観点から望ましくない。こ
の両者を勘案すると、750〜900℃の温度域におい
て、雰囲気ガスの酸化度(PH2 O/PH2 ):0.0
1〜0.15の範囲で焼鈍することが好ましい。焼鈍温
度は主に最適な1次再結晶粒径を得る観点から決定され
る。
However, if the degree of oxidation is lowered too much, the decarburization rate becomes slow, which is not desirable from an industrial viewpoint. Taking both of these into consideration, in the temperature range of 750 to 900 ° C., the degree of oxidation of the atmospheric gas (PH 2 O / PH 2 ): 0.0
It is preferable to anneal in the range of 1 to 0.15. The annealing temperature is determined mainly from the viewpoint of obtaining the optimum primary recrystallized grain size.

【0046】この脱炭焼鈍板に(Al,Si)Nインヒ
ビターを強化する必要がある場合、または(Al,S
i)Nを主インヒビターとして用いる製造法(例えば特
公昭62−45285号公報)においては、窒化処理を
施す。この窒化処理の方法は特に限定するものではな
く、アンモニア等の窒化能のある雰囲気ガス中で行う方
法等がある。量的には0.005%以上、望ましくは全
窒素量として鋼中のAl当量以上窒化すれば良い。
When it is necessary to strengthen the (Al, Si) N inhibitor in the decarburized and annealed sheet, or (Al, S)
i) In the production method using N as a main inhibitor (for example, Japanese Patent Publication No. 62-45285), a nitriding treatment is performed. The method of the nitriding treatment is not particularly limited, and there is a method of performing the nitriding treatment in an atmosphere gas having a nitriding ability such as ammonia. Nitrogen may be nitrided in an amount of 0.005% or more, desirably the equivalent of Al in steel as a total nitrogen amount.

【0047】これらの脱炭焼鈍板をコイルフォームに巻
く際に、焼鈍分離剤としてアルミナを水スラリーもしく
は静電塗布法等によりドライ・コートする。水スラリー
で塗布する場合には、例えば特開平7−62427号公
報に開示する方法を採用することが好ましい。
When these decarburized and annealed plates are wound on the coil form, alumina is dry-coated as an annealing and separating agent by a water slurry or an electrostatic coating method. When coating with a water slurry, it is preferable to employ the method disclosed in, for example, JP-A-7-62427.

【0048】アルミナ焼鈍分離剤は、工場規模でコール
フォームによりBi添加超高磁束密度一方向性電磁鋼板
製造方法する場合、極めて有効であり、本発明は従来の
Bi添加法とによる超高磁束密度化とアルミナ塗布によ
る鏡面化技術による低鉄損化を極めて効果的に組み合わ
せたものである。このコイルを仕上げ焼鈍して、二次再
結晶と窒化物の純化を行う。二次再結晶を特開平2−2
58929号公報に開示される様に一定の温度で保持す
る等の手段により所定の温度域で行うことは磁束密度を
上げるうえで有効である。
The alumina annealing separator is extremely effective in the production method of Bi-added ultra-high magnetic flux density unidirectional electrical steel sheet by Colefoam on a factory scale, and the present invention is an ultra-high magnetic flux density by the conventional Bi-added method. This is an extremely effective combination of the reduction of iron loss by the mirror finishing technology by applying alumina and the application of alumina. This coil is finish annealed to carry out secondary recrystallization and purification of nitride. Secondary recrystallization is described in JP-A-2-2.
As disclosed in Japanese Patent No. 58929, it is effective to increase the magnetic flux density by using a means such as maintaining a constant temperature.

【0049】二次再結晶完了後、窒化物等の不純物の純
化と表面の平滑化を行うために、100%水素で110
0℃以上の温度で焼鈍する。仕上げ焼鈍後引き続き余分
の焼鈍分離剤を除去後、コイル巻きぐせ等を矯正するた
めの連続張力焼鈍を行い、同時に絶縁皮膜コーティング
を塗布、焼き付けする。このとき必要に応じて、該鋼板
にレーザー照射、機械的溝形成、張力被膜コーティング
等の磁区細分化処理を施す。本発明はBi添加により超
高磁束密度化を行うと同時に2次再結晶粒径を大きく制
御するものであるため、鉄損特性を改善する意味から磁
区細分化処理は有効である。磁区細分化の方法は特に限
定する必要はない。
After the secondary recrystallization is completed, 110% 100% hydrogen is used to purify impurities such as nitrides and smooth the surface.
Anneal at a temperature of 0 ° C. or higher. After the finish annealing, the excess annealing separator is subsequently removed, and then continuous tension annealing is performed to correct coil winding and the like, and at the same time, an insulating film coating is applied and baked. At this time, if necessary, the steel sheet is subjected to magnetic domain refining treatment such as laser irradiation, mechanical groove formation, and tension film coating. In the present invention, the addition of Bi makes the magnetic flux density extremely high and at the same time greatly controls the secondary recrystallized grain size. Therefore, the magnetic domain refining treatment is effective from the viewpoint of improving the iron loss characteristics. There is no particular limitation on the method of magnetic domain subdivision.

【0050】局部的な歪みを導入することで磁区細分化
を行う場合、例えば特公昭57−2252号公報等に記
載されるレーザー光照射を行う方法や、特開昭62−1
51511号公報、特公平6−45824号公報等に記
載されるプラズマ炎照射を行う方法等を用いれば良い。
When the magnetic domain is subdivided by introducing a local strain, for example, a method of irradiating a laser beam described in Japanese Patent Publication No. 57-2252, or JP-A-62-1 is used.
A method for performing plasma flame irradiation described in Japanese Patent No. 51511 and Japanese Patent Publication No. 6-45824 may be used.

【0051】局部的な溝を形成することで磁区細分化を
行う場合、歯車ロール法(例えば特公平4−48847
号公報)や金型プレス法(例えば特公平6−63037
号公報)等の機械的な塑性加工による方法、フォトエッ
チング法(例えば特公平5−69284号公報)やレジ
ストインキエッチング法(特公平2ー46673号公
報、特公平3−69968号公報)等の化学エッチング
や電解エッチングを用いる方法などを採用すればよい。
鋼板に形成する溝は圧延方向に対して直角もしくは直角
から45度の範囲内で、その間隔は2〜10mmが鉄損低
下の観点から好ましい。
When the magnetic domains are subdivided by forming local grooves, a gear roll method (for example, Japanese Patent Publication No. 4-48847) is used.
Publication) and die pressing method (for example, Japanese Patent Publication No. 6-63037).
Such as a photo-etching method (for example, Japanese Patent Publication No. 5-69284), a resist ink etching method (Japanese Patent Publication No. 2-46673, Japanese Patent Publication No. 3-69968), and the like. A method using chemical etching or electrolytic etching may be adopted.
The grooves formed in the steel sheet are at right angles to the rolling direction or within a range of 45 degrees from the right angles, and the intervals are preferably 2 to 10 mm from the viewpoint of reducing iron loss.

【0052】溝の形状は連続的、不連続または点状のい
ずれでも良い。溝の幅、及び深さはそれぞれ10〜30
0μm、5〜50μmの範囲が鉄損低下の観点から好ま
しい。溝の幅を狭くすると曲率半径の小さな曲げ加工を
施す際に折れの起点となりやすい。また溝の幅を広くす
ると磁束密度が低下してしまう。溝の深さも同様にあま
り深くすると磁束密度が低下してしまう。
The shape of the groove may be continuous, discontinuous or dot-shaped. The groove width and depth are 10 to 30 respectively.
The range of 0 μm and 5 to 50 μm is preferable from the viewpoint of reducing iron loss. When the width of the groove is reduced, the groove tends to be a starting point when bending with a small radius of curvature. In addition, if the width of the groove is increased, the magnetic flux density decreases. Similarly, if the depth of the groove is too large, the magnetic flux density will decrease.

【0053】張力コーティングとしては、例えば特開昭
48−39338号公報によるコロイド状シリカとリン
酸アルミニウムを主体とするコーテイング液、特開昭5
0−79442号公報によるコロイド状シリカとリン酸
マグネシウムを主体とするコーテイング液、または特開
平6−65754号公報によるアルミナ・ゾルとホウ酸
を主成分とするコーテイング液を焼き付ける方法等を採
用すればよい。
As the tension coating, for example, a coating liquid mainly composed of colloidal silica and aluminum phosphate according to JP-A-48-39338, JP-A-5-58 is disclosed.
If the coating liquid mainly composed of colloidal silica and magnesium phosphate according to JP-A-0-79442 or the coating liquid mainly composed of alumina sol and boric acid according to JP-A-6-65754 is adopted, Good.

【0054】[0054]

【実施例】【Example】

(実施例1)C:0.05%、Si:3.3%、Mn:
0.1%、S:0.01%、酸可溶性Al:0.03
%、N:0.008%、を基本成分とし、(A:Bi添
加)Bi:0.01%と(B:従来法)Bi:0%の2
水準の珪素鋼を溶製し、それぞれ鋳片に分注鋳造後、1
200℃に加熱し、抽出後直ちに2.3mm板厚まで熱間
圧延した。その後、酸洗し0.23mmまで冷延した。こ
の冷延板を窒素と水素の混合ガス中において酸化度
(C:鏡面化)0.1、及び(D:従来法)0.44で
830℃の温度で100秒焼鈍し一次再結晶させた。次
いでアンモニア雰囲気中で焼鈍することにより、窒素量
を0.02%に増加して、インヒビターの強化を行っ
た。
(Example 1) C: 0.05%, Si: 3.3%, Mn:
0.1%, S: 0.01%, acid-soluble Al: 0.03
%, N: 0.008%, as a basic component, (A: Bi added) Bi: 0.01% and (B: conventional method) Bi: 0% 2
After melting standard level of silicon steel and dispensing casting into slabs, 1
It was heated to 200 ° C., and immediately after extraction, it was hot rolled to a plate thickness of 2.3 mm. Then, it was pickled and cold rolled to 0.23 mm. This cold-rolled sheet was annealed for 100 seconds at a temperature of 830 ° C. in a mixed gas of nitrogen and hydrogen at an oxidation degree (C: mirror surface) of 0.1 and (D: conventional method) of 0.44 for primary recrystallization. . Then, by annealing in an ammonia atmosphere, the amount of nitrogen was increased to 0.02% to strengthen the inhibitor.

【0055】これらの鋼板をその後、(C:鏡面化)ア
ルミナ(Al2 3 )、及び(D:来法)マグネシア
(MgO)を水スラリーで塗布した後鋼板を積層し、低
いガス流量のもとで仕上げ焼鈍を施した。これらの試料
に歯車ロールで圧延方向と直角方向から10度の方向
で、幅50μm、深さ15μmの溝を形成した後、コロ
イド状シリカとリン酸塩を主成分とするコーテイング液
を塗布して850℃で2分間焼き付けた。これらの試料
の磁気特性を測定した後、更に800℃で4時間の歪取
り焼鈍を行った。得られた製品の磁気特性を表1に示
す。
These steel sheets were then coated with (C: mirror-finished) alumina (Al 2 O 3 ) and (D: conventional) magnesia (MgO) in a water slurry, and then the steel sheets were laminated to obtain a low gas flow rate. Originally, finish annealing was applied. A groove having a width of 50 μm and a depth of 15 μm was formed on each of these samples by a gear roll in a direction of 10 ° from the direction perpendicular to the rolling direction, and then a coating liquid containing colloidal silica and phosphate as a main component was applied. It was baked at 850 ° C. for 2 minutes. After measuring the magnetic properties of these samples, strain relief annealing was further performed at 800 ° C. for 4 hours. Table 1 shows the magnetic properties of the obtained products.

【0056】[0056]

【表1】 [Table 1]

【0057】(実施例2)重量で、Si:3.3%,M
n:0.1%,C:0.05%,S:0.007%,酸
可溶性Al:0.03%,N:0.008%,Sn:
0.05%を基本成分とし、(A:Bi添加)Bi:
0.01%と(B:従来法)Bi:0%の2水準の珪素
鋼を溶製し、それぞれ鋳片に分注鋳造後、1200℃に
加熱し、抽出後直ちに2.3mm板厚まで熱間圧延した。
酸洗し、1.4mmまで冷延した冷延板を1120℃の温
度で30秒、900℃で90秒焼鈍し、750℃まで空
冷後80℃の水中に急冷し後、最終板厚0.15mmに冷
延した。この冷延板を窒素と水素の混合ガス中において
酸化度(C:鏡面化法)0.06、及び(D:従来法)
0.44で830℃の温度で70秒焼鈍し一次再結晶さ
せた。次いでアンモニア雰囲気中で焼鈍することによ
り、窒素量を0.025%に増加して、インヒビターの
強化を行った。
(Example 2) Si: 3.3% by weight, M
n: 0.1%, C: 0.05%, S: 0.007%, acid-soluble Al: 0.03%, N: 0.008%, Sn:
0.05% as a basic component, (A: Bi added) Bi:
Melting two levels of silicon steel of 0.01% and (B: conventional method) Bi: 0%, dispensing and casting each to a slab, heating to 1200 ° C., and immediately after extraction to 2.3 mm sheet thickness. Hot rolled.
The cold-rolled sheet that has been pickled and cold-rolled to 1.4 mm is annealed at a temperature of 1120 ° C. for 30 seconds and 900 ° C. for 90 seconds, air-cooled to 750 ° C., and then rapidly cooled in water at 80 ° C. Cold rolled to 15 mm. This cold-rolled sheet was subjected to a mixed gas of nitrogen and hydrogen with an oxidation degree (C: mirror-finishing method) of 0.06, and (D: conventional method).
It was annealed at 0.44 at 830 ° C. for 70 seconds for primary recrystallization. Then, by annealing in an ammonia atmosphere, the amount of nitrogen was increased to 0.025% to strengthen the inhibitor.

【0058】これらの鋼板をその後、(C:鏡面化法)
アルミナ(Al2 3 )、及び(D:従来法)マグネシ
ア(MgO)を水スラリ−で塗布した後鋼板を積層し、
低いガス流量のもとで仕上げ焼鈍を施した。これら仕上
焼鈍後の試料に圧延方向と直角方向に、幅30μm、深
さ10μmの溝をフォトエッチング法で形成した後、ア
ルミナ・ゾルとホウ酸を主成分とするコ−テイング液を
塗布して870℃で2分間焼き付けた。これらの試料の
磁気特性を測定した後、更に800℃で4時間の歪取り
焼鈍を行った。得られた製品の磁気特性を表2に示す。
These steel sheets were then subjected to (C: mirror-finishing method).
Alumina (Al 2 O 3 ) and (D: conventional method) magnesia (MgO) were applied with a water slurry, and then steel sheets were laminated,
Finish annealing was performed under a low gas flow rate. Grooves having a width of 30 μm and a depth of 10 μm were formed in the samples after the finish annealing in a direction perpendicular to the rolling direction by a photoetching method, and then a coating liquid containing alumina sol and boric acid as main components was applied. Baking at 870 ° C. for 2 minutes. After measuring the magnetic properties of these samples, strain relief annealing was further performed at 800 ° C. for 4 hours. Table 2 shows the magnetic properties of the obtained products.

【0059】[0059]

【表2】 [Table 2]

【0060】(実施例3)重量で、Si:3.3%,M
n:0.07%,C:0.07%,Se:0.025
%,酸可溶性Al:0.028%,N:0.008%,
Sb:0.1%を基本成分とし、(A:Bi添加)B
i:0.01%と(B:従来法)Bi:0%の2水準の
珪素鋼を溶製し、それぞれ鋳片に分注鋳造後、1350
℃で加熱し、抽出後直ちに2.3mm板厚まで熱間圧延
し、直ちに室温まで水冷した。この熱延板を1100℃
で2分間焼鈍した後酸洗し、最終板厚0.27mmまで途
中で250℃での時効処理を5回挟んで冷延した。この
冷延板を窒素と水素の混合ガス中において酸化度(A:
本発明法)0.06、及び(B:従来法)0.44で8
50℃の温度で120秒焼鈍し一次再結晶させた。
(Example 3) Si: 3.3% by weight, M
n: 0.07%, C: 0.07%, Se: 0.025
%, Acid-soluble Al: 0.028%, N: 0.008%,
Sb: 0.1% as a basic component, (A: Bi added) B
i: 0.01% and (B: conventional method) Bi-level silicon steels of 2% were melted, each of which was dispensed and cast into a slab, and then 1350
C., immediately after the extraction, hot-rolled to a thickness of 2.3 mm, and immediately cooled with water to room temperature. 1100 ° C
And then pickled, and cold rolled with aging treatment at 250 ° C. five times on the way to a final sheet thickness of 0.27 mm. This cold-rolled sheet was subjected to a degree of oxidation (A:
Inventive method) 0.06 and (B: Conventional method) 0.44 8
It was annealed at a temperature of 50 ° C. for 120 seconds for primary recrystallization.

【0061】これらの鋼板をその後、(A:本発明法)
アルミナ(Al2 3 )、及び(B:従来法)マグネシ
ア(MgO)を水スラリーで塗布した後、鋼板を積層し
厚み方向に20kg/mm2 で加圧した後、仕上げ焼鈍を施
した。これらの試料に、コロイド状シリカとリン酸塩を
主成分とするコーテイング液を塗布して850℃で2分
間焼き付けた。その後、鋼板表面に圧延方向と直角方向
に5mm間隔でレーザー照射を行った。得られた製品の磁
気特性を表3に示す。
These steel sheets were then subjected to (A: method of the present invention).
Alumina (Al 2 O 3 ) and (B: conventional method) magnesia (MgO) were applied in a water slurry, steel plates were laminated, pressed at 20 kg / mm 2 in the thickness direction, and then subjected to finish annealing. A coating liquid containing colloidal silica and phosphate as main components was applied to these samples and baked at 850 ° C. for 2 minutes. Thereafter, the surface of the steel sheet was irradiated with laser at intervals of 5 mm in a direction perpendicular to the rolling direction. Table 3 shows the magnetic properties of the obtained products.

【0062】[0062]

【表3】 [Table 3]

【0063】(実施例4)C:0.05%、Si:3.
25%、Mn:0.10%、S:0.007%、P:
0.025%,酸可溶性Al:0.029%、N:0.
007%、Bi:0.007%,Cr:0.12%を含
有する珪素鋼を溶製し、スラブに鋳造後、1150℃に
加熱し、抽出後直ちに2.3mm板厚まで熱延し、熱延後
水冷し550℃で巻き取った。その後熱延板を1120
℃の温度で30秒、900℃で90秒焼鈍し、750℃
まで空冷後80℃の水中に急冷した。次いで酸洗後、
0.23mmまで5パスの圧延を行い、途中200℃以上
で5分以上の時効処理を行った。引き続き脱炭・1次再
結晶焼鈍を窒素と水素の混合ガス中において酸化度0.
06の雰囲気とし、850℃の温度で100秒行い、引
き続いてNH3 雰囲気でN含有量が200ppm になるよ
う窒化焼鈍を行った。
Example 4 C: 0.05%, Si: 3.
25%, Mn: 0.10%, S: 0.007%, P:
0.025%, acid-soluble Al: 0.029%, N: 0.
Silicon steel containing 007%, Bi: 0.007%, Cr: 0.12% is melted, cast into a slab, heated to 1150 ° C., and immediately after extraction, hot rolled to a thickness of 2.3 mm, After hot rolling, it was cooled with water and wound at 550 ° C. After that, 1120 the hot rolled sheet
Annealed at ℃ for 30 seconds, 900 ℃ for 90 seconds, 750 ℃
After air cooling, it was rapidly cooled in water at 80 ° C. Then after pickling,
Rolling was performed for 5 passes to 0.23 mm, and aging treatment was performed at 200 ° C or higher for 5 minutes or longer. Subsequently, decarburization / primary recrystallization annealing was performed in a mixed gas of nitrogen and hydrogen to an oxidation degree of 0.
The atmosphere was set to 06 and the temperature was set to 850 ° C. for 100 seconds, followed by nitriding annealing in an NH 3 atmosphere so that the N content was 200 ppm.

【0064】アルミナ(Al2 3 )を主成分とする焼
鈍分離剤を塗布後の5Tコイルを、ボックスタイプの焼
鈍炉で2次再結晶仕上焼鈍を行った。炉内に窒素を流し
ながら1200℃まで15℃/hrで昇温し、引き続いて
水素を流しながら1200℃で75時間の純化焼鈍を行
った。その後、コイルを連続焼鈍ラインで展開しなが
ら、圧延方向からと直角方向から10度傾いた、幅50
μm、深さ11μmの溝を形成した歯型の金型をプレス
で溝を形成した後、コロイド状シリカとリン酸塩を主成
分とするコーテイング液を塗布して860℃で2分間焼
き付けた。得られたコイルの5箇所でサンプリングし、
測定した800℃で2時間焼鈍後のエプスタイン値は、
磁束密度B8 で平均1.97T、鉄損W17/50で0.6
1W/kgであった。
The 5T coil coated with the annealing separator containing alumina (Al 2 O 3 ) as a main component was subjected to secondary recrystallization finish annealing in a box type annealing furnace. While flowing nitrogen into the furnace, the temperature was raised to 1200 ° C. at 15 ° C./hr, and subsequently purifying annealing was performed at 1200 ° C. for 75 hours while flowing hydrogen. After that, while expanding the coil on the continuous annealing line, the width of 50
After forming a groove of a tooth mold having a groove of μm and a depth of 11 μm by a press, a coating liquid containing colloidal silica and a phosphate as main components was applied and baked at 860 ° C. for 2 minutes. Sampling at 5 points on the obtained coil,
The measured Epstein value after annealing at 800 ° C. for 2 hours is
Magnetic flux density B 8 is 1.97T on average, iron loss W 17/50 is 0.6
It was 1 W / kg.

【0065】[0065]

【発明の効果】本発明は、従来のBi添加法による超高
磁束密度化と、アルミナ塗布による鏡面化技術による低
鉄損化を極めて効果的に組み合わせることにより、工業
生産において極めて安定的に安価な超磁束密度低一方向
性電磁鋼板が得られるとともに、磁区細分化処理後の鉄
損特性も極めて優れており、工業的に非常に価値が高い
ものと云える。
INDUSTRIAL APPLICABILITY The present invention combines extremely high magnetic flux density by the conventional Bi addition method and low iron loss by the mirror-finishing technique by alumina coating, which is extremely stable and inexpensive in industrial production. It can be said that it is very valuable industrially because it has excellent super-flux density and low unidirectional electrical steel sheet, and the iron loss characteristics after magnetic domain refinement treatment are also very excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】一次皮膜形成法(マグネシア焼鈍分離剤)にお
ける、各Bi含有量での仕上げ焼鈍導入ガス流量と磁束
密度B8 および一次皮膜剥離面積の関係を示す図表。
FIG. 1 is a chart showing the relationship among the flow rate of introduced finish annealing gas, magnetic flux density B 8 and primary coating peeling area at each Bi content in the primary coating forming method (magnesia annealing separator).

【図2】鏡面化法(アルミナ焼鈍分離剤)における、各
Bi含有量での仕上げ焼鈍導入ガス流量と磁束密度B8
および鋼板酸素量の関係を示す図表。
FIG. 2 is a flow diagram of the final annealing introduction gas and the magnetic flux density B 8 for each Bi content in the mirror-finishing method (alumina annealing separator).
And a chart showing the relationship between the steel plate oxygen content.

【図3】図2で得られた試料をレーザー照射により磁区
細分化処理を行ったときの素材磁束密度(磁区細分化
前)B8 と磁区細分化後の鉄損W17/50の関係を示す図
表。
FIG. 3 shows the relationship between the material magnetic flux density (before magnetic domain subdivision) B 8 and the iron loss W 17/50 after magnetic domain subdivision when the sample obtained in FIG. 2 was subjected to magnetic domain subdivision processing by laser irradiation. Chart showing.

フロントページの続き (72)発明者 山崎 修一 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 阿部 憲人 姫路市広畑区富士町1番地 新日本製鐵株 式会社広畑製鐵所内Front page continuation (72) Inventor Shuichi Yamazaki 20-1 Shintomi, Futtsu City Technical Development Division, Nippon Steel Corporation (72) Inventor Kento Abe 1 Fuji-machi, Hirohata-ku, Himeji City Nippon Steel Co., Ltd. Hirohata Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量で、 C :0.02〜0.1% Si:2.0〜4.8%、 酸可溶性Al:0.012〜0.050%、 N :0.030〜0.0150%、 Bi:0.0005〜0.03% を含有し、残部はFeおよび不可避的不純物をからなる
溶鋼を鋳造し、熱間圧延し、次いで65〜95%の最終
強冷延を含む1回あるいは中間焼鈍をはさむ2回以上の
冷間圧延を行い最終板厚とし、脱炭焼鈍を行ったのち窒
化処理を施すかあるいは施さず、2次再結晶仕上焼鈍を
行う工程からなる一方向性電磁鋼板の製造方法におい
て、脱炭焼鈍をFe系酸化物の形成しない酸化度の雰囲
気ガス中で行なう、または脱炭焼鈍で生成した酸化物を
酸洗で除去したのち、焼鈍分離剤としてアルミナを塗布
することにより、仕上焼鈍後の鋼板表面を鏡面状態にす
ることを特徴とする磁束密度の高い鏡面一方向性電磁鋼
板の製造方法。
1. By weight, C: 0.02-0.1% Si: 2.0-4.8%, acid-soluble Al: 0.012-0.050%, N: 0.030-0. 0150%, Bi: 0.0005 to 0.03%, the balance Fe and inevitable impurities cast molten steel, hot-rolled, then including 65-95% final strong cold rolling 1 Unidirectionality consisting of two or more cold rolling steps with intermediate or intermediate annealing to obtain the final plate thickness, decarburization annealing, and then nitriding or not, and secondary recrystallization finish annealing. In the method for producing an electromagnetic steel sheet, decarburization annealing is performed in an atmosphere gas having an oxidation degree that does not form Fe-based oxides, or oxides produced by decarburization annealing are removed by pickling, and then alumina is used as an annealing separator. By coating, the steel plate surface after finish annealing is mirror-like Method for producing a high specular grain-oriented electrical steel sheet magnetic flux density, characterized by a.
【請求項2】 請求項1記載の鋼板に局部的な歪みを導
入することにより、磁区細分化処理を施すことを特徴と
する鉄損の低い鏡面一方向性電磁鋼板の製造方法。
2. A method for producing a specular unidirectional electrical steel sheet with low iron loss, which comprises subjecting the steel sheet according to claim 1 to local strain to perform a magnetic domain refining treatment.
【請求項3】 請求項1記載の鋼板にコーティング処理
による張力皮膜を形成した後、局部的な歪みを導入する
ことにより、磁区細分化処理を施すことを特徴とする鉄
損の低い鏡面一方向性電磁鋼板の製造方法。
3. A mirror surface unidirectional direction with low iron loss, characterized in that the steel sheet according to claim 1 is subjected to a coating treatment to form a tension film, and then a local strain is introduced to perform a magnetic domain refinement treatment. For manufacturing high-performance electrical steel sheet.
【請求項4】 請求項1記載の鋼板に圧延方向に対して
直角もしくは直角から45度の範囲内で間隔2〜10m
mで幅10〜300μm、深さ5〜50μmの範囲で連
続的、不連続または点状の局部的な溝を形成し、併せて
コーティング処理による張力皮膜を形成することにより
磁区細分化させることを特徴とする鉄損の低い鏡面一方
向性電磁鋼板の製造方法。
4. The steel sheet according to claim 1 having a distance of 2 to 10 m at right angles to the rolling direction or within a range of 45 degrees from right angles.
It is possible to subdivide the magnetic domains by forming continuous, discontinuous or dot-shaped local grooves in the range of 10 to 300 μm in width and 5 to 50 μm in depth, and forming a tension film by coating treatment. A method for producing a specular grain-oriented electrical steel sheet having low iron loss.
JP01061596A 1996-01-25 1996-01-25 Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density Expired - Lifetime JP3154935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01061596A JP3154935B2 (en) 1996-01-25 1996-01-25 Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01061596A JP3154935B2 (en) 1996-01-25 1996-01-25 Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density

Publications (2)

Publication Number Publication Date
JPH09202924A true JPH09202924A (en) 1997-08-05
JP3154935B2 JP3154935B2 (en) 2001-04-09

Family

ID=11755151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01061596A Expired - Lifetime JP3154935B2 (en) 1996-01-25 1996-01-25 Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JP3154935B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095745A (en) * 2015-11-19 2017-06-01 新日鐵住金株式会社 Grain oriented silicon steel sheet and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2605394T3 (en) 2014-03-06 2017-03-14 Tepe Munhygienprodukter Ab Interdental cleaner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095745A (en) * 2015-11-19 2017-06-01 新日鐵住金株式会社 Grain oriented silicon steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JP3154935B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
JPH0717961B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3496067B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JP3337958B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet with excellent magnetic properties
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3489945B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JP2680987B2 (en) Method for producing grain-oriented silicon steel sheet with low iron loss
JP4331886B2 (en) Method for producing grain-oriented silicon steel sheet
JP3154935B2 (en) Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density
JP2674917B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH09279247A (en) Production of grain-oriented silicon steel sheet high in density of magnetic flux
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3148095B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH07278669A (en) Manufacture of mirror surface oriented silicon steel sheet with low iron loss
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0730396B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic and film properties

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 13

EXPY Cancellation because of completion of term