Nothing Special   »   [go: up one dir, main page]

JPH08317429A - Stereoscopic electronic zoom device and stereoscopic picture quality controller - Google Patents

Stereoscopic electronic zoom device and stereoscopic picture quality controller

Info

Publication number
JPH08317429A
JPH08317429A JP7123395A JP12339595A JPH08317429A JP H08317429 A JPH08317429 A JP H08317429A JP 7123395 A JP7123395 A JP 7123395A JP 12339595 A JP12339595 A JP 12339595A JP H08317429 A JPH08317429 A JP H08317429A
Authority
JP
Japan
Prior art keywords
image
zoom
stereoscopic
stereoscopic image
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7123395A
Other languages
Japanese (ja)
Other versions
JP3653790B2 (en
Inventor
Kenya Uomori
謙也 魚森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12339595A priority Critical patent/JP3653790B2/en
Publication of JPH08317429A publication Critical patent/JPH08317429A/en
Application granted granted Critical
Publication of JP3653790B2 publication Critical patent/JP3653790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Details Of Television Scanning (AREA)

Abstract

PURPOSE: To perform the segmentation and zoom processing on right and left images by using the size perceptive characteristic and depth perceptive characteristic of an observer and without changing the size feeling and depth perception of the observer so as to put an object within the both eye merging range of the observer and to display a stereoscopic image within the both eye merging range without impairing the depth feeling and size feeling of the observer. CONSTITUTION: This device is a stereoscopic electronic zoom device which comprises a segmentation area decision part 15 which decides the segmenting areas of the right and left images so as to put a display stereoscopic image within the both eye merging range of the observer, a stereoscopic image segmenting part 13 which segments the stereoscopic image in a decided segmenting area, and a zoom part 14 which enlarges and contracts the segmenting area designated by the stereoscopic image segmenting part 13 by image processing and obtains the stereoscopic image to which the zoom processing is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,観察者が自然な立体視
をすることが出来る様な立体電子ズーム装置と立体画質
制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereoscopic electronic zoom device and a stereoscopic image quality control device that allow an observer to see a natural stereoscopic image.

【0002】[0002]

【従来の技術】従来の立体画像撮像装置は、例えば図9
に示すようなものがある。これは、2台のカメラを平行
に設置し、2眼式立体画像の左右画像を同時に撮影出来
るものである。また、図10(a)は従来の電子ズーム装
置の構成図、図10(b)は電子ズームの動作を示す図で
ある。図10(a)に示すように、撮像された画像は画像
メモリ8を利用した電子ズーム処理により、図10(b)
の入力画像の一部分を各画素値の内挿処理により出力画
像の大きさまで拡大、または縮小する。通常図10
(b)の斜線領域は画面中央に選ばれ、電子ズーム時に
光軸がずれないように設定される。
2. Description of the Related Art A conventional stereoscopic image pickup device is shown in FIG.
There is something like that shown in This is one in which two cameras are installed in parallel and the left and right images of a twin-lens stereoscopic image can be taken at the same time. Further, FIG. 10A is a configuration diagram of a conventional electronic zoom device, and FIG. 10B is a diagram showing an operation of the electronic zoom. As shown in FIG. 10A, the captured image is subjected to an electronic zoom process using the image memory 8 to obtain the image shown in FIG.
Part of the input image is enlarged or reduced to the size of the output image by interpolation processing of each pixel value. Normal Figure 10
The shaded area in (b) is selected at the center of the screen and is set so that the optical axis does not shift during electronic zoom.

【0003】このような従来例では図11に示す様に、
2台のカメラで構成される立体画像撮像においては、撮
像された被写体の画像は、その水平位置がお互いにずれ
ている。このずれ量を両眼視差と呼ぶが、両眼視差の存
在により、立体画像観察者は被写体が立体的に見えるの
である。ここで観察者が立体画像を立体的に観察できる
には、この両眼視差の大きさはある値よりも小さくなけ
ればならない。これよりも大きな両眼視差を観察者が見
るともはや立体ではなく、単なる2重の画像が見えるだ
けである。
In such a conventional example, as shown in FIG.
In the stereoscopic image capturing including two cameras, the captured images of the subject are displaced from each other in horizontal position. This amount of shift is called binocular parallax, but the presence of binocular parallax allows a stereoscopic image observer to see a subject stereoscopically. Here, in order for an observer to stereoscopically observe a stereoscopic image, the magnitude of this binocular parallax must be smaller than a certain value. When an observer sees a binocular parallax larger than this, the observer no longer sees a stereoscopic image, but merely sees a double image.

【0004】また、従来の立体映像の画質制御回路とし
ては、例えば特開平4−35491号公報に開示されて
おり、図12に示す構成となっている。この構成では、
奥行き感調整手段9により左右画像の位相差を変化させ
て、被写体を立体表示手段11の表示面の前後で観察者
の好みの位置に設定する。この際に、表示される被写体
像と観察者の距離が変化するのに対し被写体の大きさが
変化しない違和感を、奥行き感調整手段9に連動したズ
ーミング調整手段10を図の様に講じることにより観察
者に近付く場合は被写体を大きく、遠ざかる場合には小
さくなる様に変化させ、被写体の大きさの違和感を軽減
するものである。
A conventional stereoscopic image quality control circuit is disclosed in, for example, Japanese Patent Application Laid-Open No. 4-35491, and has a configuration shown in FIG. With this configuration,
The depth difference adjusting unit 9 changes the phase difference between the left and right images, and sets the subject at the viewer's favorite position before and after the display surface of the stereoscopic display unit 11. At this time, the discomfort that the size of the subject does not change, while the distance between the displayed subject image and the observer changes, is adjusted by using the zooming adjusting means 10 linked with the depth feeling adjusting means 9 as shown in the figure. The size of the subject is reduced so that the size of the subject is increased when approaching the observer and decreased when approaching the observer.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図11
に示すように、2枚の立体画像を従来の電子ズームの手
法で拡大すると、両眼視差も拡大され、両眼視差が観察
者の許容限界を越えたズーム倍率に設定すると立体画像
の観賞が不可能になる。そればかりでなく、2重に見え
る立体画像は非常に不快な画像となるのが問題であっ
た。また、従来の立体映像の画質制御回路では、図12
のズーミング調整手段10における画像の拡大縮小時に
両眼視差が変化し、これによる被写体と観察者の距離の
変化が生じてしまい、被写体の大きさ変化の違和感を完
全に除去することが出来ない。また、観察者が感じる大
きさの変化の違和感の大きさは、奥行き感調整手段9の
制御量から幾何学的に推測される大きさとは異なるもの
であり、奥行き感調整手段9の制御量から直接ズーム倍
率を求めると、観察者の大きさ変化の違和感を完全に除
去できなかった。
However, as shown in FIG.
As shown in, when two stereoscopic images are enlarged by the conventional electronic zoom method, the binocular parallax is also enlarged, and if the binocular parallax is set to a zoom magnification exceeding the allowable limit of the observer, the stereoscopic image is viewed. It will be impossible. Not only that, but the problem is that a stereoscopic image that looks double becomes a very unpleasant image. Further, in the conventional stereoscopic image quality control circuit, as shown in FIG.
The binocular parallax changes when the image is scaled up and down by the zooming adjusting means 10, which causes a change in the distance between the subject and the observer, which makes it impossible to completely eliminate the discomfort of the change in the size of the subject. Further, the size of the sense of discomfort felt by the observer is different from the size geometrically inferred from the control amount of the depth sensation adjusting unit 9, and is determined from the control amount of the depth sensation adjusting unit 9. When the zoom magnification was directly obtained, it was not possible to completely eliminate the discomfort of the viewer's size change.

【0006】本発明は上記課題を解決するもので、観察
者の大きさ知覚特性と奥行き知覚特性を利用し、観察者
の大きさ感覚・奥行き知覚を変化させることなく、両眼
融合範囲内に被写体が観察者の両眼融合範囲に収まるよ
うに左右画像の切り出し・ズーム処理し、観察者の奥行
き感・大きさ感覚を損なうこと無く両眼融合範囲内に立
体画像を表示することを目的とする。
The present invention solves the above-mentioned problems, and utilizes the observer's size perception and depth perception characteristics, and within the binocular fusion range without changing the observer's size perception and depth perception. The purpose is to clip and zoom the left and right images so that the subject fits within the viewer's binocular fusion range, and to display a stereoscopic image within the binocular fusion range without impairing the viewer's sense of depth and size. To do.

【0007】[0007]

【課題を解決するための手段】本発明の立体電子ズーム
装置は上記目的を達成するため、観察者の両眼融合範囲
内に表示立体画像が収まるように左右画像の切り出し領
域を決定する切り出し領域決定部と、前記切り出し領域
決定部の出力を用いて立体画像を切り出す立体画像切り
出し部と、前記立体画像切り出し部により指定された切
り出し領域を画像処理により拡大もしくは縮小しズーム
処理された立体画像を得るズーム部により構成される。
In order to achieve the above-mentioned object, a stereoscopic electronic zoom device of the present invention has a cutout area for determining a cutout area of left and right images so that a display stereoscopic image fits within a fusional range of both eyes of an observer. A determination unit, a stereoscopic image cutout unit that cuts out a stereoscopic image using the output of the cutout region determination unit, and a stereoscopic image that has been zoomed by enlarging or reducing the clipping region specified by the stereoscopic image cutting unit by image processing. It is composed of a zoom unit.

【0008】また、本発明の立体画質制御装置は、各画
像の水平位相差を変化させる水平位相差制御部と、各画
像の水平位相差を変化させる時に観察者が感じる表示被
写体の大きさ変化を記憶する大きさ知覚変化量保持部
と、前記大きさ知覚変化量保持部の出力と前記水平位相
差を用いて被写体の大きさを補償するためのズーム倍率
と立体画像の再生位置が変化しないようなズーム処理を
行なう切り出し領域を計算する融合範囲確認部と、前記
融合範囲確認部の出力に従って画像の切り出し・ズーム
処理を行なうズーム部により構成される。
Further, the stereoscopic image quality control apparatus of the present invention comprises a horizontal phase difference control unit for changing the horizontal phase difference between the images and a change in the size of the display object which an observer feels when changing the horizontal phase difference between the images. And a zoom magnification for compensating the size of the subject using the output of the size perceptual change amount holding unit and the horizontal phase difference, and the reproduction position of the stereoscopic image does not change. It is composed of a fusion range confirmation unit that calculates a clipping region for performing such zoom processing, and a zoom unit that performs image clipping / zoom processing according to the output of the fusion range confirmation unit.

【0009】[0009]

【作用】本発明は、前記した構成により、観察者が常に
両眼立体視可能な電子ズーム処理を行なった立体画像を
得る。また、各画像の水平位相を変化させて被写体を観
察者の両眼融合範囲内に設定する場合、観察者の大きさ
変化の違和感の特性を用いて、かつ、表示される被写体
の3次元位置が出来る限り変化しない様に、各画像の最
適な領域を切り出してズーム処理することにより、観察
者の奥行き感・大きさ感覚を損なうことの無い立体画像
を得る。
With the above-described structure, the present invention obtains a stereoscopic image that has been subjected to electronic zoom processing so that the observer can always perform stereoscopic viewing with both eyes. In addition, when the horizontal phase of each image is changed and the subject is set within the range of binocular fusion of the observer, the three-dimensional position of the displayed subject is used by using the characteristic of the sense of discomfort of the size change of the observer. The optimum region of each image is cut out and zoomed so that the image does not change as much as possible, thereby obtaining a stereoscopic image that does not impair the viewer's sense of depth and size.

【0010】[0010]

【実施例】図1は,本発明の第1の実施例における立体
電子ズーム装置の構成を示すものである。図1におい
て、1、2はレンズ、5、6はカメラ、13は立体画像
切り出し部、14はズーム部、15は切り出し領域決定
部である。以上のように構成された本実施例の立体電子
ズーム装置の動作を説明する。
1 shows the structure of a stereoscopic electronic zoom device according to a first embodiment of the present invention. In FIG. 1, 1 and 2 are lenses, 5 and 6 are cameras, 13 is a stereoscopic image cutout unit, 14 is a zoom unit, and 15 is a cutout region determination unit. The operation of the stereoscopic electronic zoom device of the present embodiment configured as above will be described.

【0011】まず、左右のカメラ5,6で撮像された右
および左画像信号は立体画像切り出し部13に入力され
る。立体画像切り出し部13は、切り出し領域決定部1
5が最も近い被写体までの距離(近点データ)とズーム
倍率により決定した右および左画像の切り出し領域を切
り出す。そしてズーム部14により切り出し領域を所定
のTV規格の画面の大きさまで拡大することにより、電
子ズーム処理されて拡大された左右画像を得る。このズ
ーム処理を行なう時、切り出し領域の水平位置を制御す
ることにより、画像の拡大に伴う両眼視差の増大を補償
する動作を切り出し領域決定部15で行なう。
First, the right and left image signals picked up by the left and right cameras 5 and 6 are input to the stereoscopic image clipping section 13. The three-dimensional image cutout unit 13 is a cutout area determination unit 1
5 cuts out the cut-out areas of the right and left images determined by the distance (near point data) to the closest subject and the zoom magnification. Then, the cutout area is enlarged by the zoom unit 14 to the size of the screen of a predetermined TV standard, and the left and right images that have been electronically zoomed and enlarged are obtained. When this zoom process is performed, the cutout region determining unit 15 performs an operation of compensating for an increase in binocular parallax due to image enlargement by controlling the horizontal position of the cutout region.

【0012】以下、図2を用いて左右画像の切り出し・
拡大動作について、更に詳しく説明する。図2におい
て、被写体は英文字「A」であり、右画像を実線、左画
像を破線で示している。ここで、英文字「A」の両眼視
差はΔ1である。この場合、右画像の「A」は画面の左
側に、左画像の「A」は画面の右側に撮像されており、
この立体画像を観察者が見ると、画像表示面よりも手前
側に飛び出して見える筈である。これらの画像の中で右
画像は実線の領域を切り出し、左画像は破線の領域を切
り出し、ズーム処理を行なってズーム処理後の画像を得
る。ズーム処理後の画像においても、実線は右画像、破
線は左画像を示している。この画像において、Δ2がズ
ーム処理後の被写体「A」の両眼視差となる。ここでズ
ーム倍率をmとすると、Δ1とΔ2の関係は
Hereinafter, with reference to FIG.
The enlarging operation will be described in more detail. In FIG. 2, the subject is the letter “A”, the right image is shown by a solid line, and the left image is shown by a broken line. Here, the binocular parallax of the English character "A" is Δ1. In this case, “A” in the right image is captured on the left side of the screen, and “A” in the left image is captured on the right side of the screen,
When an observer sees this stereoscopic image, it should appear as if it jumps out to the front side of the image display surface. Of these images, the right image cuts out a solid line region, the left image cuts out a broken line region, and zoom processing is performed to obtain a zoomed image. Also in the image after the zoom processing, the solid line shows the right image and the broken line shows the left image. In this image, Δ2 is the binocular parallax of the subject “A” after zoom processing. Here, if the zoom magnification is m, the relationship between Δ1 and Δ2 is

【0013】[0013]

【数1】 [Equation 1]

【0014】となる。ここで、観察者が良好に両眼立体
視できる両眼視差の最大値は決まっており、視角にして
大体数度である。これをΔmaxとすると、ズーム処理後
の両眼視差は
[0014] Here, the maximum value of binocular parallax that allows an observer to favorably perform stereoscopic binocular viewing is fixed, and the viewing angle is approximately several degrees. If this is Δmax, the binocular parallax after zooming is

【0015】[0015]

【数2】 [Equation 2]

【0016】を満足しなければならない。この条件を、
ズーム処理前の切り出し領域(図2)で考慮すると、図
2の切り出し領域の中心位置を、画像の中心位置から
Must be satisfied. This condition
Considering the cutout area before zoom processing (FIG. 2), the center position of the cutout area in FIG.

【0017】[0017]

【数3】 (Equation 3)

【0018】[0018]

【数4】 [Equation 4]

【0019】を満たすΔSL、ΔSRだけお互いに反対方
向に水平方向に移動した点にすれば、電子ズーム後の両
眼視差Δ2を観察者の両眼視差許容範囲Δmax以下にす
ることができる。また、ΔSL、ΔSRを
If the points ΔSL and ΔSR satisfying the above conditions are moved horizontally in opposite directions to each other, the binocular parallax Δ2 after electronic zoom can be made equal to or less than the observer's binocular parallax allowable range Δmax. Also, ΔSL, ΔSR

【0020】[0020]

【数5】 (Equation 5)

【0021】[0021]

【数6】 (Equation 6)

【0022】を満足するように設定すれば、電子ズーム
前後において被写体の両眼視差を一定に保つこともでき
る。切り出し領域決定部15は、近点データΔ1(最も
近い被写体の両眼視差)とズーム倍率mから上記の式を
満たすΔSL、ΔSRを計算し結果を立体画像切り出し部
13に出力する。立体画像切り出し部13は、切り出し
領域の中心を左画像はΔSL、右画像はΔSRだけお互い
に反対方向に水平方向に移動して各画像を切り出し、こ
れをズーム部14で拡大する。
By setting so as to satisfy, it is possible to keep the binocular parallax of the subject constant before and after the electronic zoom. The cutout area determination unit 15 calculates ΔSL and ΔSR that satisfy the above formula from the near point data Δ1 (binocular parallax of the closest subject) and the zoom magnification m, and outputs the result to the stereoscopic image cutout unit 13. The stereoscopic image cutout unit 13 horizontally moves the center of the cutout region by ΔSL for the left image and ΔSR for the right image in opposite directions, and cuts out each image, and the zoom unit 14 enlarges it.

【0023】また、画像処理による電子ズームについて
は、既存のビデオカメラに導入されている技術を用いれ
ば簡単に実現できる。
The electronic zoom by image processing can be easily realized by using the technique introduced in the existing video camera.

【0024】以上の様に本実施例によれば、最も近い被
写体の視差(近点データ)とズーム倍率を用いて、観察
者の両眼融合範囲内に両眼視差を収めたズーム処理され
た立体画像を得ることが出来、両眼立体視に支障のない
電子ズーム処理された立体画像を生成することが出来
る。
As described above, according to this embodiment, the zoom process is performed so that the binocular parallax falls within the binocular fusion range of the observer by using the parallax (near point data) and the zoom magnification of the closest subject. It is possible to obtain a stereoscopic image, and to generate a stereoscopic image that has been subjected to electronic zoom processing that does not hinder the binocular stereoscopic vision.

【0025】図3は,本発明の第2の実施例における立
体電子ズーム装置の構成を示すものである。図3におい
て、1、2はレンズ、5、6はカメラ、13は立体画像
切り出し部、14はズーム部、15は切り出し領域決定
部で、以上は第1の実施例と同じものである。第1の実
施例と異なるのは、近点データを視差検出部16により
自動的に求めている点である。以上のように構成された
本実施例の立体電子ズーム装置の動作を説明する。
FIG. 3 shows the configuration of a stereoscopic electronic zoom device according to the second embodiment of the present invention. In FIG. 3, reference numerals 1 and 2 are lenses, 5 and 6 are cameras, 13 is a stereoscopic image cutout unit, 14 is a zoom unit, and 15 is a cutout region determination unit. The above is the same as in the first embodiment. The difference from the first embodiment is that the near point data is automatically obtained by the parallax detection unit 16. The operation of the stereoscopic electronic zoom device of the present embodiment configured as above will be described.

【0026】基本的な動作は本発明の第1の実施例と同
様である。即ち、左右のカメラで撮像された右および左
画像信号は立体画像切り出し部13に入力され、立体画
像切り出し部13は、切り出し領域決定部15が最も近
い被写体までの距離(近点データ)とズーム倍率により
決定した右および左画像の切り出し領域を切り出す。そ
してズーム部14により切り出し領域を所定のTV規格
の画面の大きさまで拡大する。
The basic operation is similar to that of the first embodiment of the present invention. That is, the right and left image signals picked up by the left and right cameras are input to the stereoscopic image cutout unit 13, and the stereoscopic image cutout unit 13 zooms out the distance (near point data) to the closest subject to the cutout region determination unit 15 and zooms. The cutout areas of the right and left images determined by the magnification are cut out. Then, the zoom unit 14 enlarges the cutout area to the size of the screen of a predetermined TV standard.

【0027】ここで、第1の実施例では最も近い被写体
の両眼視差Δ1を手動で入力していたが、本実施例では
これを視差検出部16により自動的に検出する。視差検
出の手法は種々提案されているが、ここでは相関マッチ
ング処理を用いた手法について説明する。
Here, in the first embodiment, the binocular parallax Δ1 of the closest subject was manually input, but in the present embodiment, this is automatically detected by the parallax detector 16. Various methods for detecting parallax have been proposed, but here, a method using correlation matching processing will be described.

【0028】図4において,大きさN×Mの左右画像を
考える。左画像でn×n画素(図では3×3画素)のブ
ロック窓を考える。このブロック窓と同じ画像を右画像
で同じサイズの窓を用いて探し,この時の左右のブロッ
ク位置のずれを示すベクトル(Δx,Δy)の水平成分
Δxが,そのブロック窓の中心座標での左右画像の両眼
視差となる。基準となる左画像のブロック窓の位置を全
画面に渡って平行移動し,全ての場合において右画像の
対応するブロックの位置(両眼視差)を求めれば,画面
全体の視差地図(画面の各場所での奥行き距離を示した
もの)が求められる。ここで画像の座標(x,y)にお
ける左右画像のずれ、すなわち両眼視差(Δx,Δy)
In FIG. 4, consider left and right images of size N × M. Consider a block window of n × n pixels (3 × 3 pixels in the figure) in the left image. The same image as this block window is searched for in the right image using a window of the same size, and the horizontal component Δx of the vector (Δx, Δy) indicating the displacement of the left and right block positions at this time is the center coordinate of the block window. It becomes the binocular parallax of the left and right images. If the position of the block window of the reference left image is translated over the entire screen and the position of the corresponding block (binocular parallax) of the right image is obtained in all cases, the parallax map of the entire screen (each screen What shows the depth distance at the place) is required. Here, the shift between the left and right images at the image coordinates (x, y), that is, binocular parallax (Δx, Δy)
Is

【0029】[0029]

【数7】 (Equation 7)

【0030】ここで,Here,

【0031】[0031]

【数8】 (Equation 8)

【0032】である。ただし(数8)のΣは、n×nの
ブロック窓内について座標xk,ykを変化させて絶対値
内の総和をとることを示す。両眼視差Δx,Δyの内,
奥行き位置を直接示すのはΔxであり、両眼視差の値が
正の時は,基準画像に対して右画像は右側に位置し,左
画像は左側に位置し,両眼視差0の奥行き位置より奥側
を示し,両眼視差の値が負の時は両眼視差0の奥行き位
置より手前側に被写体が存在することを示す。近点デー
タΔ1としては、計算されたΔxのうち負の値で最も絶
対値の大きいものを用いることにより、最も近い被写体
の両眼視差Δ1が得られる。
It is However, Σ in (Equation 8) indicates that the coordinates xk and yk are changed in the n × n block window to obtain the sum within the absolute value. Of binocular parallax Δx, Δy,
The depth position is directly indicated by Δx. When the binocular disparity value is positive, the right image is located on the right side of the reference image, the left image is located on the left side, and the depth position of binocular parallax is 0. When the binocular parallax value is negative, it indicates that the subject is present in front of the depth position where the binocular parallax is 0. As the near point data Δ1, the binocular parallax Δ1 of the closest subject can be obtained by using the negative value having the largest absolute value among the calculated Δx.

【0033】以上の様にして得られた両眼視差Δ1と、
使用者に設定されたズーム倍率mを用いて切り出し領域
決定部15は(数3)(数4)を満たすΔSL、ΔSRを
算出し、これに従って立体画像切り出し部13、ズーム
部14により所定の位置の画像をズーム処理し、観察者
が良好に立体視可能な両眼視差の設定の立体画像を得
る。
The binocular parallax Δ1 obtained as described above,
The cutout area determination unit 15 calculates ΔSL and ΔSR that satisfy (Equation 3) and (Equation 4) using the zoom magnification m set by the user, and the stereoscopic image cutout unit 13 and the zoom unit 14 determine predetermined positions according to the calculated ΔSL and ΔSR. The image is subjected to zoom processing to obtain a stereoscopic image with binocular parallax setting that allows the observer to favorably perform stereoscopic viewing.

【0034】以上の様に本実施例によれば、最も近い被
写体の視差(近点データ)とズーム倍率を用いて、観察
者の両眼融合範囲内に両眼視差を収めたズーム処理され
た立体画像を得ることが出来、両眼立体視に支障のない
電子ズーム処理された立体画像を生成することが出来
る。
As described above, according to this embodiment, the zoom process is performed so that the binocular parallax falls within the binocular fusion range of the observer by using the parallax (near point data) and the zoom magnification of the closest subject. It is possible to obtain a stereoscopic image, and to generate a stereoscopic image that has been subjected to electronic zoom processing that does not hinder the binocular stereoscopic vision.

【0035】なお、本実施例においては各々のカメラが
平行に設置されていたが、各々のカメラの光軸がある被
写体に向けられる輻輳撮影、また、光学ズームにおいて
輻輳角を変化する場合においても本手法は有効である。
In the present embodiment, the cameras are installed in parallel, but in the case of the convergence photographing in which the optical axis of each camera is directed to a subject, or when the convergence angle is changed in the optical zoom. This method is effective.

【0036】また、本発明の第1及び第2の実施例にお
いて、最も近い被写体の視差(近点データ)とズーム倍
率を用いて切り出し領域を決定したが、最も遠い被写体
の視差(遠点データ)を用いても同様に、ズーム処理後
の両眼視差を観察者の融合範囲内に収めた立体画像を得
ることが出来る。この場合、Δmaxは観察者の遠点での
両眼融合可能な最大両眼視差、Δ1は遠点の被写体の両
眼視差となり、視差検出部16は、最も遠い被写体の両
眼視差Δ1を検出することになる。
In the first and second embodiments of the present invention, the cutout area is determined using the parallax (near point data) of the closest object and the zoom magnification, but the parallax of the farthest object (far point data). Similarly, it is possible to obtain a stereoscopic image in which the binocular parallax after zooming is within the fusion range of the observer. In this case, Δmax is the maximum binocular parallax that allows binocular fusion at the far point of the observer, Δ1 is the binocular parallax of the subject at the far point, and the parallax detection unit 16 detects the binocular parallax Δ1 of the farthest subject. Will be done.

【0037】図5は,本発明の第3の実施例における立
体画質制御装置の構成図を示すものである。図5におい
て、13は立体画像切り出し部、14はズーム部、16
は視差検出部、17は水平位相差制御部、18は注視点
計算部、19は大きさ知覚変化量保持部、20は融合範
囲確認部である。
FIG. 5 shows a block diagram of a three-dimensional image quality control device in the third embodiment of the present invention. In FIG. 5, 13 is a three-dimensional image cutout unit, 14 is a zoom unit, and 16 is a zoom unit.
Is a parallax detection unit, 17 is a horizontal phase difference control unit, 18 is a gazing point calculation unit, 19 is a size perceptual change amount holding unit, and 20 is a fusion range confirmation unit.

【0038】以上のように構成された第3の本実施例の
動作を説明する。まず、左右画像は視差検出部16に入
力され、左右画像の両眼視差が計算される。計算方法は
第2の実施例(図4)と同じ構成で行なうことが出来
る。これにより、画像中の任意の場所の両眼視差が計算
される。検出された両眼視差のうち、最も近い位置を示
す両眼視差を注視点計算部18で計算し、これが観察者
の両眼融合範囲に収まるように水平位相差制御部17は
左右画像をお互いに逆位相方向に水平方向に平行移動す
る。例えば、図6(a)に示す様に、右画像表示面22、
左画像表示面23に、点画像AR、ALが表示され、点P
1の位置に観察者21が立体視している状態から、左右
画像をDだけ平行移動してずらし、図6(b)に示すよう
にすると、P2の位置に被写体を立体視することが出来
る。仮に、P1の位置が画像表示面22、23から離れ
過ぎると観察者21は立体視が非常に困難になるので、
図6(b)の様に左右画像の水平位相差を制御することに
より、立体視し易い画像を得ることになる。
The operation of the third embodiment having the above configuration will be described. First, the left and right images are input to the parallax detection unit 16, and the binocular parallax of the left and right images is calculated. The calculation method can be performed with the same configuration as in the second embodiment (FIG. 4). Thereby, the binocular parallax at an arbitrary position in the image is calculated. Of the detected binocular parallax, the binocular parallax indicating the closest position is calculated by the gazing point calculation unit 18, and the horizontal phase difference control unit 17 separates the left and right images from each other so that the binocular parallax falls within the binocular fusion range of the observer. Translate in the horizontal direction in the opposite phase direction. For example, as shown in FIG. 6A, the right image display surface 22,
Point images AR and AL are displayed on the left image display surface 23, and point P
From the state where the observer 21 is stereoscopically viewing at the position 1, the left and right images are moved in parallel by D and shifted, and as shown in FIG. 6B, the subject can be viewed stereoscopically at the position P2. . If the position of P1 is too far from the image display surfaces 22 and 23, the observer 21 becomes very difficult to stereoscopically view.
By controlling the horizontal phase difference between the left and right images as shown in FIG. 6B, an image that is easy to stereoscopically view can be obtained.

【0039】この場合、左右画像を平行移動したのみで
あるので、表示被写体の大きさは変化しない。通常の3
次元世界では被写体が近づくと、被写体の視野角は大き
くなる筈であるが、このような制御を行なうと大きさが
変化しなくなるので非常に違和感がある。この違和感を
取り除くために、立体画像切り出し部13、ズーム部1
4により、被写体の位置が近くなる場合には、拡大ズー
ム、遠くなる場合には縮小ズームを行なうことによりこ
の違和感を補償する。但し、図2で説明したように、ズ
ーム処理を行なうと被写体の両眼視差が変化してしま
う。また、観察者の被写体の大きさ変化の知覚は、被写
体の表示位置から計算される幾何学的大きさの変化とは
異なる特性を持っている。これらの2点を考慮して、大
きさ知覚変化量保持部19と融合範囲確認部20は、左
右画像の切り出し位置とズーム倍率を決定する。以下、
この動作について更に詳しく説明する。
In this case, since the left and right images are only moved in parallel, the size of the displayed subject does not change. Normal 3
In the three-dimensional world, when the subject approaches, the viewing angle of the subject should increase, but if such control is performed, the size does not change, which is very uncomfortable. In order to remove this discomfort, the stereoscopic image cutout unit 13 and the zoom unit 1
According to 4, the sense of discomfort is compensated by performing the zooming in the case where the position of the subject becomes closer and the zooming out in the case of the position far away. However, as described with reference to FIG. 2, when the zoom process is performed, the binocular parallax of the subject changes. Further, the perception of the change in the size of the subject by the observer has a characteristic different from the change in the geometric size calculated from the display position of the subject. Considering these two points, the size perceptual change amount holding unit 19 and the fusion range confirmation unit 20 determine the cutout positions and zoom magnifications of the left and right images. Less than,
This operation will be described in more detail.

【0040】まず、注視点計算部18により出力される
左右画像のずらし量Dから、この制御を行なった場合に
観察者が感じる大きさの変化量を大きさ知覚変化量保持
部19が出力する。これら2つのデータから、融合範囲
確認部20は、大きさ変化を補正するのに必要なズーム
倍率と、表示被写体の奥行き位置が変化しない様にズー
ム処理できる左右画像の切り出し領域を計算し、これを
ズーム部14、立体画像切り出し部13に出力する。こ
れにより、被写体の奥行き位置を変化させることなく、
観察者が感じる被写体の大きさ変化を補償した、立体画
像の画質制御を行なうことが出来る。
First, from the shift amount D of the left and right images output by the gazing point calculation unit 18, the size perceptual change amount holding unit 19 outputs the amount of change in size felt by the observer when this control is performed. . From these two data, the fusion range confirmation unit 20 calculates the zoom magnification necessary to correct the size change and the cutout regions of the left and right images that can be zoomed so that the depth position of the displayed subject does not change. Is output to the zoom unit 14 and the stereoscopic image cutout unit 13. As a result, without changing the depth position of the subject,
It is possible to control the image quality of a stereoscopic image while compensating for changes in the size of the object that the observer feels.

【0041】ここで、図7を用いて切り出し・ズーム処
理について更に具体的に説明する。まず、切り出し手法
について説明する。図7(a)は、左右画像22、23を
Dだけ水平に位相制御し、観察者21がP3の位置に被
写体を認識している状態である。この場合、被写体P3
は水平位相制御前と比較して手前側に移動しているの
で、被写体は大きくなるはずである。そこで、ズーム処
理により左右画像を拡大し、これを補正するが、このま
ま画面の中央をm倍に拡大すると、P3の両眼視差DLR
もm倍に拡大され、P3の奥行き位置も変化してしま
う。例えば、AL,ARの水平座標をそれぞれx1,x2とす
ると、両眼視差x1−x2(=DLR)が、ズーム処理後に
はm(x1−x2)になるわけである(図7(b))。そこ
で、ズーム処理を行なう時、左画像は
The clipping / zooming process will be described more specifically with reference to FIG. First, the clipping method will be described. FIG. 7A shows a state in which the left and right images 22 and 23 are horizontally phase-controlled by D and the observer 21 recognizes the subject at the position P3. In this case, the subject P3
Is moving toward the front side compared to before horizontal phase control, so the subject should be large. Therefore, the left and right images are magnified by zooming and corrected, but if the center of the screen is magnified m times as it is, the binocular parallax DLR of P3 is obtained.
Is also enlarged m times, and the depth position of P3 also changes. For example, if the horizontal coordinates of AL and AR are respectively x1 and x2, the binocular parallax x1-x2 (= DLR) becomes m (x1-x2) after zoom processing (Fig. 7 (b)). . Therefore, when performing zoom processing, the left image

【0042】[0042]

【数9】 [Equation 9]

【0043】だけ、中心から右側に水平方向に平行移動
した領域を、右画像も(数9)だけ、中心から左側に水
平方向に平行移動した領域を立体画像切り出し部13に
より切り出し、ズーム部14によりm倍に拡大する。こ
れにより、図7(c)のように、ズーム処理後の被写体A
R”、AL”の両眼視差をDLRに保つことができる。これ
らの動作は、ズーム倍率mと被写体の視差DLRから融合
範囲確認部20が計算する。
A region which is horizontally translated from the center to the right side, a region of the right image which is horizontally translated from the center, and a region which is horizontally translated from the center to the left side are clipped by the stereoscopic image clipping unit 13, and the zoom unit 14 is used. It will be enlarged m times. As a result, as shown in FIG. 7C, the subject A after zoom processing is performed.
The binocular parallax of R "and AL" can be kept at DLR. These operations are calculated by the fusion range confirmation unit 20 from the zoom magnification m and the parallax DLR of the subject.

【0044】ズーム倍率mは、注視点計算部18によっ
て得られる左右画像に施す位相差D(図6・図7)か
ら、融合範囲確認部20が算出する。この計算は、位相
差Dから幾何計算で得られる特性ではなく、予め人間が
感じる大きさの変化量を測定しておき、この特性を大き
さ知覚変化量保持部19が記憶しておき、これによりズ
ーム倍率mを決定する。例えば、図8に示すように、ズ
ーム倍率mは幾何学的な計算(破線)よりも小さな値に
なる。
The zoom magnification m is calculated by the fusion range confirmation unit 20 from the phase difference D (FIGS. 6 and 7) applied to the left and right images obtained by the gazing point calculation unit 18. This calculation is not the characteristic obtained by the geometrical calculation from the phase difference D, but the amount of change in the size perceived by humans is measured in advance, and this characteristic is stored in the size perceptual change amount holding unit 19 and stored. Determines the zoom magnification m. For example, as shown in FIG. 8, the zoom magnification m has a smaller value than the geometric calculation (broken line).

【0045】以上の様に本実施例によれば,観察者の大
きさ変化の違和感や、表示される被写体の3次元位置の
変化を発生することなく、左右画像の水平位相を変化さ
せて被写体を観察者の両眼融合範囲内に設定することが
できる。
As described above, according to the present embodiment, the horizontal phase of the left and right images is changed without changing the size of the observer or the three-dimensional position of the displayed subject is changed. Can be set within the binocular fusion range of the observer.

【0046】また、第3の実施例においては、被写体が
表示面の手前方向にある場合の例を示したが、被写体が
表示面の奥側にある場合も同様に制御できる。この場
合、画像の切り出し領域の水平移動は、第3の実施例と
反対方向に設定される。
Further, in the third embodiment, an example in which the subject is on the front side of the display surface is shown, but the same control can be performed when the subject is on the back side of the display surface. In this case, the horizontal movement of the cutout area of the image is set in the direction opposite to that of the third embodiment.

【0047】また、第3の実施例において、左右画像の
水平位相を被写体が表示面の手前側に移動するように制
御する時、拡大ズーム処理を行なう例を示したが、被写
体が表示面の奥側に移動する様に左右画像の位相差を制
御する場合も考えられれる。この場合、ズーム処理は画
像を縮小する処理となる(図8の第2象限の特性を用い
ることになる)。更に(数9)の計算値の符号が変わ
り、左右画像の切り出し領域の水平移動は反対方向にな
る。
Further, in the third embodiment, an example in which the enlarging zoom process is performed when the horizontal phase of the left and right images is controlled so that the subject moves toward the front side of the display surface has been shown. It is also conceivable to control the phase difference between the left and right images so as to move to the back side. In this case, the zoom process is a process of reducing the image (the characteristic of the second quadrant in FIG. 8 is used). Further, the sign of the calculated value of (Equation 9) is changed, and the horizontal movement of the cutout regions of the left and right images is in the opposite direction.

【0048】なお、本発明の第1〜3の実施例において
は、カメラを用いた自然画像の場合を説明したが、同じ
手法を用いてCG(コンピュータグラフィックス)にお
いても同じ動作を容易に実現できる。
In the first to third embodiments of the present invention, the case of a natural image using a camera has been described, but the same operation can be easily realized in CG (computer graphics) using the same method. it can.

【0049】[0049]

【発明の効果】以上のように本発明によれば,観察者が
常に両眼立体視可能な電子ズーム処理を行なった立体画
像を得ることが出来る。また、画像を観察者の特性に合
わせてズーム処理・切り出し処理することにより各画像
の水平位相を変化させて、観察者の大きさ変化の違和感
と表示される被写体の3次元位置の変化を発生すること
なく立体画像を観察者の両眼融合範囲内に表示でき、そ
の実用的効果は大きい。
As described above, according to the present invention, it is possible to obtain a stereoscopic image which has been subjected to an electronic zoom process in which an observer can always perform stereoscopic viewing with both eyes. In addition, the horizontal phase of each image is changed by zooming and clipping the image according to the characteristics of the observer, which causes a sense of discomfort in the change in size of the observer and a change in the three-dimensional position of the displayed subject. It is possible to display a stereoscopic image within the range of binocular fusion of the observer without doing so, and its practical effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における立体電子ズーム
装置の構成を示すブロック図
FIG. 1 is a block diagram showing a configuration of a stereoscopic electronic zoom device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における立体電子ズーム
処理の動作を示す線図
FIG. 2 is a diagram showing the operation of stereoscopic electronic zoom processing in the first embodiment of the present invention.

【図3】本発明の第2の実施例における立体電子ズーム
装置の構成を示すブロック図
FIG. 3 is a block diagram showing a configuration of a stereoscopic electronic zoom device according to a second embodiment of the present invention.

【図4】本発明の第2の実施例の視差検出部の動作を示
すブロック図
FIG. 4 is a block diagram showing the operation of the parallax detection unit according to the second embodiment of the present invention.

【図5】本発明の第3の実施例における立体画質制御装
置の構成を示すブロック図
FIG. 5 is a block diagram showing a configuration of a stereoscopic image quality control device according to a third embodiment of the present invention.

【図6】(a),(b)は本発明における第3の実施例の水平
位相差制御の動作を示す線図
6 (a) and 6 (b) are diagrams showing the operation of horizontal phase difference control according to the third embodiment of the present invention.

【図7】同第3の実施例の水平位相差制御・ズーム処理
の動作を示す線図
FIG. 7 is a diagram showing the operation of horizontal phase difference control / zoom processing according to the third embodiment.

【図8】同本実施例のズーム倍率における補正量を示す
特性図
FIG. 8 is a characteristic diagram showing a correction amount at a zoom magnification according to the present embodiment.

【図9】従来の立体画像撮像装置の構成を示す線図FIG. 9 is a diagram showing a configuration of a conventional stereoscopic image pickup device.

【図10】(a)は従来の電子ズーム処理の構成を示すブ
ロック図 (b)は同動作を示す線図
10A is a block diagram showing a configuration of a conventional electronic zoom process, and FIG. 10B is a diagram showing the same operation.

【図11】従来の立体電子ズーム処理の動作を示す線図FIG. 11 is a diagram showing an operation of a conventional stereoscopic electronic zoom process.

【図12】従来の立体画質制御装置の構成を示すブロッ
ク図
FIG. 12 is a block diagram showing a configuration of a conventional stereoscopic image quality control device.

【符号の説明】[Explanation of symbols]

1 レンズ1 2 レンズ2 3 撮像素子 4 撮像素子 5 左画像用カメラ 6 右画像用カメラ 13 立体画像切り出し部 14 ズーム部 15 切り出し領域決定部 16 視差検出部 17 水平位相差制御部 18 注視点計算部 19 大きさ知覚変化量保持部 20 融合範囲確認部 21 観察者 22 右画面 23 左画面 1 lens 1 2 lens 2 3 image sensor 4 image sensor 5 left image camera 6 right image camera 13 stereoscopic image cutout section 14 zoom section 15 cutout area determination section 16 parallax detection section 17 horizontal phase difference control section 18 gazing point calculation section 19 Size Perception Change Amount Holding Unit 20 Fusion Area Confirmation Unit 21 Observer 22 Right Screen 23 Left Screen

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】両眼視差を利用することにより立体感を得
ることを特徴とする立体画像において、観察者の両眼融
合範囲内に表示立体画像が収まるように左右画像の切り
出し領域を決定する切り出し領域決定部と、前記切り出
し領域決定部の出力を用いて立体画像を切り出す立体画
像切り出し部と、前記立体画像切り出し部により指定さ
れた切り出し領域を画像処理により拡大もしくは縮小し
ズーム処理された立体画像を得るズーム部により構成さ
れることを特徴とする立体電子ズーム装置。
1. In a stereoscopic image characterized by obtaining a stereoscopic effect by utilizing binocular parallax, the cutout regions of the left and right images are determined so that the displayed stereoscopic image fits within the binocular fusion range of the observer. A cutout area determination unit, a stereoscopic image cutout unit that cuts out a stereoscopic image using the output of the cutout area determination unit, and a stereoscopic image obtained by enlarging or reducing the cutout area specified by the stereoscopic image cutout unit and performing zoom processing. A stereoscopic electronic zoom device comprising a zoom unit for obtaining an image.
【請求項2】両眼視差を利用することにより立体感を得
ることを特徴とする立体画像において、各画像の水平位
相差を変化させる水平位相差制御部と、各画像の水平位
相差を変化させる時に観察者が感じる表示被写体の大き
さ変化を記憶する大きさ知覚変化量保持部と、前記大き
さ知覚変化量保持部の出力と前記水平位相差を用いて被
写体の大きさを補償するためのズーム倍率と立体画像の
再生位置が変化しないようなズーム処理を行なう切り出
し領域を計算する融合範囲確認部と、前記融合範囲確認
部の出力に従って画像の切り出し・ズーム処理を行なう
ズーム部により構成されることを特徴とする立体画質制
御装置。
2. In a stereoscopic image characterized by obtaining a stereoscopic effect by utilizing binocular parallax, a horizontal phase difference control unit for changing the horizontal phase difference of each image and a horizontal phase difference for each image. In order to compensate for the size of the subject by using the size perceptual change amount holding unit that stores the size change of the displayed subject that the observer feels when performing, and the output from the size perceptual change amount holding unit and the horizontal phase difference. And a zoom range for performing a zoom process so that the reproduction position of the stereoscopic image does not change, and a zoom unit for performing an image crop / zoom process according to the output of the fusion range check unit. A three-dimensional image quality control device characterized by the following.
JP12339595A 1995-05-23 1995-05-23 3D electronic zoom device and 3D image quality control device Expired - Lifetime JP3653790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12339595A JP3653790B2 (en) 1995-05-23 1995-05-23 3D electronic zoom device and 3D image quality control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12339595A JP3653790B2 (en) 1995-05-23 1995-05-23 3D electronic zoom device and 3D image quality control device

Publications (2)

Publication Number Publication Date
JPH08317429A true JPH08317429A (en) 1996-11-29
JP3653790B2 JP3653790B2 (en) 2005-06-02

Family

ID=14859510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12339595A Expired - Lifetime JP3653790B2 (en) 1995-05-23 1995-05-23 3D electronic zoom device and 3D image quality control device

Country Status (1)

Country Link
JP (1) JP3653790B2 (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071764A1 (en) * 2001-01-24 2002-09-12 Vrex, Inc. Method and system for adjusting stereoscopic image to optimize viewing for image zooming
JP2003111104A (en) * 2001-09-28 2003-04-11 Canon Inc Imaging system, imaging apparatus and imaging method
WO2004093469A1 (en) * 2003-04-17 2004-10-28 Sony Corporation 3-dimensional view image processing device, 3-dimensional view image providing method, and image display method
WO2004093467A1 (en) * 2003-04-17 2004-10-28 Sharp Kabushiki Kaisha 3-dimensional image creation device, 3-dimensional image reproduction device, 3-dimensional image processing device, 3-dimensional image processing program, and recording medium containing the program
JP2004349736A (en) * 2003-05-08 2004-12-09 Sharp Corp Apparatus and program for stereoscopic image processing, and recording medium recorded the program
WO2005020591A1 (en) * 2003-08-26 2005-03-03 Sharp Kabushiki Kaisha 3-dimensional video reproduction device and 3-dimensional video reproduction method
JP2005073013A (en) * 2003-08-26 2005-03-17 Sharp Corp Device and method for stereo image display, program for making computer execute the method, and recording medium recording the program
US7705886B2 (en) 2004-03-19 2010-04-27 Sony Corporation Information processing apparatus and method, recording medium, program, and display device
WO2010104089A1 (en) * 2009-03-11 2010-09-16 Fujifilm Corporation Imaging apparatus, image correction method, and computer-readable recording medium
JP2010263342A (en) * 2009-05-01 2010-11-18 Fujifilm Corp Three-dimensional display device and digital zoom correction method
US20110012998A1 (en) * 2009-07-17 2011-01-20 Yi Pan Imaging device, imaging method and recording medium
CN101964918A (en) * 2009-07-21 2011-02-02 富士胶片株式会社 Image reproducing apparatus and image reproducing method
WO2011024352A1 (en) * 2009-08-25 2011-03-03 パナソニック株式会社 Stereovision-image editing device and stereovision-image editing method
WO2011036813A1 (en) * 2009-09-28 2011-03-31 株式会社 東芝 Three-dimensional image displaying method and three-dimensional image displaying device
JP2011223640A (en) * 2011-08-09 2011-11-04 Toshiba Corp Electronic device and image output method
JP2011229165A (en) * 2011-06-08 2011-11-10 Fujifilm Corp Stereoscopic image display device, compound-eye imaging device and stereoscopic image display program
KR20110132036A (en) * 2010-06-01 2011-12-07 엘지전자 주식회사 Image display device and operating method for the same
JP2011250278A (en) * 2010-05-28 2011-12-08 Mitsubishi Electric Corp Image processing apparatus, image processing method, and image display apparatus
WO2011152167A1 (en) * 2010-05-31 2011-12-08 富士フイルム株式会社 Stereoscopic image control device, operation control method for same, and operation control program for same
JP2012004663A (en) * 2010-06-14 2012-01-05 Nintendo Co Ltd Display control program, display control apparatus, display control method, and display control system
JP2012002875A (en) * 2010-06-14 2012-01-05 Nintendo Co Ltd Stereoscopic image display program, stereoscopic image display device, stereoscopic image display system, and stereoscopic image display method
WO2012002307A1 (en) 2010-06-29 2012-01-05 富士フイルム株式会社 Single-lens stereoscopic image capture device
WO2012002070A1 (en) * 2010-06-29 2012-01-05 富士フイルム株式会社 Monocular stereoscopic imaging device
WO2012002354A1 (en) * 2010-06-30 2012-01-05 富士フイルム株式会社 Image processing device, imaging device and image processing method
WO2012002347A1 (en) * 2010-06-30 2012-01-05 富士フイルム株式会社 Image processing device, imaging device and image processing method
JP2012032964A (en) * 2010-07-29 2012-02-16 Olympus Imaging Corp Display device
JP2012050056A (en) * 2010-07-28 2012-03-08 Panasonic Corp Device and method for imaging three-dimensional video
JP4902012B1 (en) * 2011-08-24 2012-03-21 学校法人 文教大学学園 Zoomable stereo photo viewer
JP2012080294A (en) * 2010-09-30 2012-04-19 Toshiba Corp Electronic device, video processing method, and program
JP2012090063A (en) * 2010-10-19 2012-05-10 Olympus Imaging Corp Imaging apparatus
JP2012090094A (en) * 2010-10-20 2012-05-10 Sony Corp Image processing device, image processing method, and program
WO2012060170A1 (en) * 2010-11-02 2012-05-10 シャープ株式会社 3d image display device
JP2012095039A (en) * 2010-10-26 2012-05-17 Fujifilm Corp Three-dimensional image display device, three-dimensional image display method and program
EP2458880A2 (en) * 2010-11-26 2012-05-30 LG Electronics Inc. Mobile terminal and operation control method thereof
WO2012101917A1 (en) 2011-01-26 2012-08-02 富士フイルム株式会社 Image processing device, image-capturing device, reproduction device, and image processing method
WO2012105347A1 (en) * 2011-02-01 2012-08-09 富士フイルム株式会社 Radiography apparatus and method
JP2012182786A (en) * 2011-02-08 2012-09-20 Jvc Kenwood Corp Three-dimensional image pick-up device
JP2012191608A (en) * 2011-02-22 2012-10-04 Panasonic Corp Stereoscopic imaging apparatus and stereoscopic imaging method
CN102740103A (en) * 2011-04-08 2012-10-17 索尼公司 Image processing apparatus, image processing method, and program
JP2012200015A (en) * 2012-06-26 2012-10-18 Toshiba Corp Video processing apparatus and video processing method
JP2012237970A (en) * 2012-01-30 2012-12-06 Bunkyo Daigaku Gakuen Zoomable stereoscopic photograph viewer
JP2013042227A (en) * 2011-08-11 2013-02-28 Jvc Kenwood Corp Three-dimensional image processing apparatus and method
WO2013038781A1 (en) * 2011-09-13 2013-03-21 シャープ株式会社 Image processing apparatus, image capturing apparatus and image displaying apparatus
WO2013042311A1 (en) * 2011-09-20 2013-03-28 パナソニック株式会社 Stereoscopic video processing device and stereoscopic video processing method
WO2013046974A1 (en) * 2011-09-29 2013-04-04 富士フイルム株式会社 Three-dimensional image display control method, three-dimensional image display control device, and image pickup apparatus
WO2013080445A1 (en) * 2011-11-29 2013-06-06 パナソニック株式会社 Three-dimensional imaging device and control method for zoom operation
JP2013531440A (en) * 2010-06-28 2013-08-01 トムソン ライセンシング Method and apparatus for customizing 3D effect of 3D content
JP2013533672A (en) * 2010-05-28 2013-08-22 クゥアルコム・インコーポレイテッド 3D image processing
WO2013125122A1 (en) * 2012-02-23 2013-08-29 富士フイルム株式会社 Stereoscopic display control device, imaging device provided with same, and stereoscopic display control method
EP2395761A3 (en) * 2010-06-14 2014-04-09 LG Electronics Inc. Electronic device and depth control method for its stereoscopic image display
US8957950B2 (en) 2010-03-30 2015-02-17 Kabushiki Kaisha Toshiba Electronic apparatus and image output method
JP2015043607A (en) * 2014-10-10 2015-03-05 ソニー株式会社 Image processing apparatus, image processing method, image processing program, and recording medium
JP5725161B2 (en) * 2011-03-31 2015-05-27 富士通株式会社 Image processing apparatus, image processing method, and image processing program
US9172944B2 (en) 2010-05-28 2015-10-27 Sony Corporation Image processing device, image processing method, non-transitory tangible medium having image processing program, and image-pickup device
US9197873B2 (en) 2010-06-24 2015-11-24 Sony Corporation Stereoscopic display device and display method of stereoscopic display device
US9224232B2 (en) 2010-09-15 2015-12-29 Sharp Kabushiki Kaisha Stereoscopic image generation device, stereoscopic image display device, stereoscopic image adjustment method, program for causing computer to execute stereoscopic image adjustment method, and recording medium on which the program is recorded
JP2016103823A (en) * 2014-11-26 2016-06-02 深▲セン▼超多▲維▼光▲電▼子有限公司 Stereoscopic image display method and portable terminal
JP2018500690A (en) * 2014-12-23 2018-01-11 エルビット システムズ リミテッド Method and system for generating magnified 3D images

Cited By (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071764A1 (en) * 2001-01-24 2002-09-12 Vrex, Inc. Method and system for adjusting stereoscopic image to optimize viewing for image zooming
JP2003111104A (en) * 2001-09-28 2003-04-11 Canon Inc Imaging system, imaging apparatus and imaging method
KR100768837B1 (en) * 2003-04-17 2007-10-19 샤프 가부시키가이샤 3-dimensional image creating apparatus, 3-dimensional image reproducing apparatus, 3-dimensional image processing apparatus, and recording medium recorded with 3-dimensional image processing program
WO2004093467A1 (en) * 2003-04-17 2004-10-28 Sharp Kabushiki Kaisha 3-dimensional image creation device, 3-dimensional image reproduction device, 3-dimensional image processing device, 3-dimensional image processing program, and recording medium containing the program
JP2004334833A (en) * 2003-04-17 2004-11-25 Sony Corp 3-dimensional view image processing device, information providing method, image display method
US7889196B2 (en) 2003-04-17 2011-02-15 Sharp Kabushiki Kaisha 3-dimensional image creating apparatus, 3-dimensional image reproducing apparatus, 3-dimensional image processing apparatus, 3-dimensional image processing program and recording medium recorded with the program
US7605776B2 (en) 2003-04-17 2009-10-20 Sony Corporation Stereoscopic-vision image processing apparatus, stereoscopic-vision image providing method, and image display method
US7636088B2 (en) 2003-04-17 2009-12-22 Sharp Kabushiki Kaisha 3-Dimensional image creation device, 3-dimensional image reproduction device, 3-dimensional image processing device, 3-dimensional image processing program, and recording medium containing the program
WO2004093469A1 (en) * 2003-04-17 2004-10-28 Sony Corporation 3-dimensional view image processing device, 3-dimensional view image providing method, and image display method
JP2004349736A (en) * 2003-05-08 2004-12-09 Sharp Corp Apparatus and program for stereoscopic image processing, and recording medium recorded the program
WO2005020591A1 (en) * 2003-08-26 2005-03-03 Sharp Kabushiki Kaisha 3-dimensional video reproduction device and 3-dimensional video reproduction method
JP2005073013A (en) * 2003-08-26 2005-03-17 Sharp Corp Device and method for stereo image display, program for making computer execute the method, and recording medium recording the program
JP2005073049A (en) * 2003-08-26 2005-03-17 Sharp Corp Device and method for reproducing stereoscopic image
US8035683B2 (en) 2003-08-26 2011-10-11 Sharp Kabushiki Kaisha Stereoscopic image reproducing apparatus and stereoscopic image reproducing method
US7705886B2 (en) 2004-03-19 2010-04-27 Sony Corporation Information processing apparatus and method, recording medium, program, and display device
US8441524B2 (en) 2009-01-05 2013-05-14 Fujifilm Corporation Three-dimensional display device and digital zoom correction method
JP2010213084A (en) * 2009-03-11 2010-09-24 Fujifilm Corp Imaging apparatus, image correction method, and image correction program
US8885070B2 (en) 2009-03-11 2014-11-11 Fujifilm Corporation Imaging apparatus, image correction method, and computer-readable recording medium
WO2010104089A1 (en) * 2009-03-11 2010-09-16 Fujifilm Corporation Imaging apparatus, image correction method, and computer-readable recording medium
US8379113B2 (en) 2009-03-11 2013-02-19 Fujifilm Corporation Imaging apparatus, image correction method, and computer-readable recording medium
JP2010263342A (en) * 2009-05-01 2010-11-18 Fujifilm Corp Three-dimensional display device and digital zoom correction method
US20110012998A1 (en) * 2009-07-17 2011-01-20 Yi Pan Imaging device, imaging method and recording medium
CN101959020A (en) * 2009-07-17 2011-01-26 富士胶片株式会社 Imaging device and formation method
US8773509B2 (en) * 2009-07-17 2014-07-08 Fujifilm Corporation Imaging device, imaging method and recording medium for adjusting imaging conditions of optical systems based on viewpoint images
CN101964918A (en) * 2009-07-21 2011-02-02 富士胶片株式会社 Image reproducing apparatus and image reproducing method
JP2011029700A (en) * 2009-07-21 2011-02-10 Fujifilm Corp Image reproducing apparatus and method
JP5496185B2 (en) * 2009-08-25 2014-05-21 パナソニック株式会社 Stereoscopic image editing apparatus and stereoscopic image editing method
US8682061B2 (en) 2009-08-25 2014-03-25 Panasonic Corporation Stereoscopic image editing apparatus and stereoscopic image editing method
JPWO2011024352A1 (en) * 2009-08-25 2013-01-24 パナソニック株式会社 Stereoscopic image editing apparatus and stereoscopic image editing method
WO2011024352A1 (en) * 2009-08-25 2011-03-03 パナソニック株式会社 Stereovision-image editing device and stereovision-image editing method
WO2011036813A1 (en) * 2009-09-28 2011-03-31 株式会社 東芝 Three-dimensional image displaying method and three-dimensional image displaying device
US8614738B2 (en) 2009-09-28 2013-12-24 Kabushiki Kaisha Toshiba Stereoscopic image display method and stereoscopic image display apparatus
JP5296218B2 (en) * 2009-09-28 2013-09-25 株式会社東芝 3D image display method and 3D image display apparatus
US8957950B2 (en) 2010-03-30 2015-02-17 Kabushiki Kaisha Toshiba Electronic apparatus and image output method
JP2013533672A (en) * 2010-05-28 2013-08-22 クゥアルコム・インコーポレイテッド 3D image processing
US9172944B2 (en) 2010-05-28 2015-10-27 Sony Corporation Image processing device, image processing method, non-transitory tangible medium having image processing program, and image-pickup device
US8970672B2 (en) 2010-05-28 2015-03-03 Qualcomm Incorporated Three-dimensional image processing
US9699440B2 (en) 2010-05-28 2017-07-04 Sony Corporation Image processing device, image processing method, non-transitory tangible medium having image processing program, and image-pickup device
JP2011250278A (en) * 2010-05-28 2011-12-08 Mitsubishi Electric Corp Image processing apparatus, image processing method, and image display apparatus
US9357205B2 (en) 2010-05-31 2016-05-31 Fujifilm Corporation Stereoscopic image control apparatus to adjust parallax, and method and program for controlling operation of same
JP5425305B2 (en) * 2010-05-31 2014-02-26 富士フイルム株式会社 Stereoscopic image control apparatus, operation control method thereof, and operation control program thereof
WO2011152167A1 (en) * 2010-05-31 2011-12-08 富士フイルム株式会社 Stereoscopic image control device, operation control method for same, and operation control program for same
EP2393300A3 (en) * 2010-06-01 2014-04-09 LG Electronics Inc. Image display apparatus and method for operating the same
KR20110132036A (en) * 2010-06-01 2011-12-07 엘지전자 주식회사 Image display device and operating method for the same
EP2395761A3 (en) * 2010-06-14 2014-04-09 LG Electronics Inc. Electronic device and depth control method for its stereoscopic image display
JP2012004663A (en) * 2010-06-14 2012-01-05 Nintendo Co Ltd Display control program, display control apparatus, display control method, and display control system
JP2012002875A (en) * 2010-06-14 2012-01-05 Nintendo Co Ltd Stereoscopic image display program, stereoscopic image display device, stereoscopic image display system, and stereoscopic image display method
US9602809B2 (en) 2010-06-14 2017-03-21 Nintendo Co., Ltd. Storage medium storing display control program for providing stereoscopic display desired by user with simpler operation, display control device, display control method, and display control system
US9197873B2 (en) 2010-06-24 2015-11-24 Sony Corporation Stereoscopic display device and display method of stereoscopic display device
JP2013531440A (en) * 2010-06-28 2013-08-01 トムソン ライセンシング Method and apparatus for customizing 3D effect of 3D content
US10154243B2 (en) 2010-06-28 2018-12-11 Interdigital Madison Patent Holdings Method and apparatus for customizing 3-dimensional effects of stereo content
WO2012002070A1 (en) * 2010-06-29 2012-01-05 富士フイルム株式会社 Monocular stereoscopic imaging device
WO2012002307A1 (en) 2010-06-29 2012-01-05 富士フイルム株式会社 Single-lens stereoscopic image capture device
CN102959969B (en) * 2010-06-29 2015-07-15 富士胶片株式会社 Single-lens stereoscopic image capture device
US8878907B2 (en) 2010-06-29 2014-11-04 Fujifilm Corporation Monocular stereoscopic imaging device
JP2013150362A (en) * 2010-06-29 2013-08-01 Fujifilm Corp Monocular three-dimensional imaging device and method for controlling the same
JP5269252B2 (en) * 2010-06-29 2013-08-21 富士フイルム株式会社 Monocular stereoscopic imaging device
CN102959467A (en) * 2010-06-29 2013-03-06 富士胶片株式会社 Monocular stereoscopic imaging device
CN102959969A (en) * 2010-06-29 2013-03-06 富士胶片株式会社 Single-lens stereoscopic image capture device
CN102959968B (en) * 2010-06-30 2016-05-04 富士胶片株式会社 Image processing apparatus, camera head and image processing method
JP5484577B2 (en) * 2010-06-30 2014-05-07 富士フイルム株式会社 Image processing apparatus, imaging apparatus, and image processing method
US9554118B2 (en) 2010-06-30 2017-01-24 Fujifilm Corporation Image proccessing device, imaging device, and image processing method
WO2012002354A1 (en) * 2010-06-30 2012-01-05 富士フイルム株式会社 Image processing device, imaging device and image processing method
WO2012002347A1 (en) * 2010-06-30 2012-01-05 富士フイルム株式会社 Image processing device, imaging device and image processing method
US20120229608A1 (en) * 2010-06-30 2012-09-13 Youichi Sawachi Image proccessing device, imaging device, and image processing method
JP4988971B2 (en) * 2010-06-30 2012-08-01 富士フイルム株式会社 Image processing apparatus, imaging apparatus, and image processing method
CN102577407A (en) * 2010-06-30 2012-07-11 富士胶片株式会社 Image processing device, imaging device and image processing method
CN102959968A (en) * 2010-06-30 2013-03-06 富士胶片株式会社 Image processing device, imaging device and image processing method
JP2012050056A (en) * 2010-07-28 2012-03-08 Panasonic Corp Device and method for imaging three-dimensional video
JP2012032964A (en) * 2010-07-29 2012-02-16 Olympus Imaging Corp Display device
US9224232B2 (en) 2010-09-15 2015-12-29 Sharp Kabushiki Kaisha Stereoscopic image generation device, stereoscopic image display device, stereoscopic image adjustment method, program for causing computer to execute stereoscopic image adjustment method, and recording medium on which the program is recorded
JP2012080294A (en) * 2010-09-30 2012-04-19 Toshiba Corp Electronic device, video processing method, and program
JP2012090063A (en) * 2010-10-19 2012-05-10 Olympus Imaging Corp Imaging apparatus
JP2012090094A (en) * 2010-10-20 2012-05-10 Sony Corp Image processing device, image processing method, and program
JP2012095039A (en) * 2010-10-26 2012-05-17 Fujifilm Corp Three-dimensional image display device, three-dimensional image display method and program
US9024940B2 (en) 2010-10-26 2015-05-05 Fujifilm Corporation Three-dimensional image display device and three-dimensional image display method and program
WO2012060170A1 (en) * 2010-11-02 2012-05-10 シャープ株式会社 3d image display device
EP2458880A2 (en) * 2010-11-26 2012-05-30 LG Electronics Inc. Mobile terminal and operation control method thereof
JP2012114920A (en) * 2010-11-26 2012-06-14 Lg Electronics Inc Portable terminal and operation control method thereof
EP2458880A3 (en) * 2010-11-26 2013-03-27 LG Electronics Inc. Mobile terminal and operation control method thereof
WO2012101917A1 (en) 2011-01-26 2012-08-02 富士フイルム株式会社 Image processing device, image-capturing device, reproduction device, and image processing method
CN103004216A (en) * 2011-01-26 2013-03-27 富士胶片株式会社 Image processing device, image-capturing device, reproduction device, and image processing method
US9161016B2 (en) 2011-01-26 2015-10-13 Fujifilm Corporation Image processing apparatus, imaging apparatus, reproduction apparatus, and image processing method for processing zoom in 3D imaging
CN103004216B (en) * 2011-01-26 2014-07-02 富士胶片株式会社 Image processing device, image-capturing device, reproduction device, and image processing method
JP5243663B2 (en) * 2011-01-26 2013-07-24 富士フイルム株式会社 Image processing apparatus, imaging apparatus, reproduction apparatus, and image processing method
WO2012105347A1 (en) * 2011-02-01 2012-08-09 富士フイルム株式会社 Radiography apparatus and method
JP2012182786A (en) * 2011-02-08 2012-09-20 Jvc Kenwood Corp Three-dimensional image pick-up device
JP2012191608A (en) * 2011-02-22 2012-10-04 Panasonic Corp Stereoscopic imaging apparatus and stereoscopic imaging method
JP5725161B2 (en) * 2011-03-31 2015-05-27 富士通株式会社 Image processing apparatus, image processing method, and image processing program
CN102740103A (en) * 2011-04-08 2012-10-17 索尼公司 Image processing apparatus, image processing method, and program
JP2011229165A (en) * 2011-06-08 2011-11-10 Fujifilm Corp Stereoscopic image display device, compound-eye imaging device and stereoscopic image display program
JP2011223640A (en) * 2011-08-09 2011-11-04 Toshiba Corp Electronic device and image output method
JP2013042227A (en) * 2011-08-11 2013-02-28 Jvc Kenwood Corp Three-dimensional image processing apparatus and method
JP4902012B1 (en) * 2011-08-24 2012-03-21 学校法人 文教大学学園 Zoomable stereo photo viewer
WO2013038781A1 (en) * 2011-09-13 2013-03-21 シャープ株式会社 Image processing apparatus, image capturing apparatus and image displaying apparatus
US9313477B2 (en) 2011-09-20 2016-04-12 Panasonic Intellectual Property Management Co., Ltd. Three-dimensional video processing apparatus and three-dimensional video processing method
WO2013042311A1 (en) * 2011-09-20 2013-03-28 パナソニック株式会社 Stereoscopic video processing device and stereoscopic video processing method
JP5281720B1 (en) * 2011-09-20 2013-09-04 パナソニック株式会社 3D image processing apparatus and 3D image processing method
US8976234B2 (en) 2011-09-29 2015-03-10 Fujifilm Corporation Method for controlling display of stereoscopic image, apparatus for controlling display of stereoscopic image, and imaging apparatus
JP5579329B2 (en) * 2011-09-29 2014-08-27 富士フイルム株式会社 Stereoscopic image display control method, stereoscopic image display control device, and imaging device
WO2013046974A1 (en) * 2011-09-29 2013-04-04 富士フイルム株式会社 Three-dimensional image display control method, three-dimensional image display control device, and image pickup apparatus
WO2013080445A1 (en) * 2011-11-29 2013-06-06 パナソニック株式会社 Three-dimensional imaging device and control method for zoom operation
JP5221827B1 (en) * 2011-11-29 2013-06-26 パナソニック株式会社 Stereoscopic image capturing apparatus and zoom operation control method
JP2012237970A (en) * 2012-01-30 2012-12-06 Bunkyo Daigaku Gakuen Zoomable stereoscopic photograph viewer
US9270982B2 (en) 2012-02-23 2016-02-23 Fujifilm Corporation Stereoscopic image display control device, imaging apparatus including the same, and stereoscopic image display control method
JP5564633B2 (en) * 2012-02-23 2014-07-30 富士フイルム株式会社 Stereoscopic image display control apparatus, imaging apparatus including the same, and stereoscopic image display control method
WO2013125122A1 (en) * 2012-02-23 2013-08-29 富士フイルム株式会社 Stereoscopic display control device, imaging device provided with same, and stereoscopic display control method
JP2012200015A (en) * 2012-06-26 2012-10-18 Toshiba Corp Video processing apparatus and video processing method
JP2015043607A (en) * 2014-10-10 2015-03-05 ソニー株式会社 Image processing apparatus, image processing method, image processing program, and recording medium
JP2016103823A (en) * 2014-11-26 2016-06-02 深▲セン▼超多▲維▼光▲電▼子有限公司 Stereoscopic image display method and portable terminal
US9826225B2 (en) 2014-11-26 2017-11-21 Superd Co. Ltd. 3D image display method and handheld terminal
JP2018500690A (en) * 2014-12-23 2018-01-11 エルビット システムズ リミテッド Method and system for generating magnified 3D images

Also Published As

Publication number Publication date
JP3653790B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP3653790B2 (en) 3D electronic zoom device and 3D image quality control device
US11228748B2 (en) Application processor for disparity compensation between images of two cameras in digital photographing apparatus
US11558595B2 (en) Stereo imaging system with automatic disparity adjustment for displaying close range objects
JP5963422B2 (en) Imaging apparatus, display apparatus, computer program, and stereoscopic image display system
CN108663799B (en) Display control system and display control method of VR image
EP1168852B1 (en) Stereoscopic TV apparatus
EP0817123B1 (en) Stereoscopic display system and method
US8760502B2 (en) Method for improving 3 dimensional effect and reducing visual fatigue and apparatus enabling the same
JP3182009B2 (en) Binocular stereoscopic device
US20070248260A1 (en) Supporting a 3D presentation
CN108632599B (en) Display control system and display control method of VR image
JPH03292093A (en) Three-dimensional display device
JP2023541092A (en) Display eyewear that allows you to adjust the camera direction
KR101769704B1 (en) System and method for calibrating display contents on cylinder display device
KR100726933B1 (en) Image signal processing method for auto convergence control method of two fixed cameras
CN111902859B (en) Information processing device, information processing method, and program
KR100439341B1 (en) Depth of field adjustment apparatus and method of stereo image for reduction of visual fatigue
JP2019029721A (en) Image processing apparatus, image processing method, and program
KR100392381B1 (en) Method and apparatus controlling the disparity of objects in images and a parallel-axis stereo camera system using the apparatus
JP2004320189A (en) Method for converting two-dimensional image into three-dimensional image
JP5741353B2 (en) Image processing system, image processing method, and image processing program
KR100597587B1 (en) The apparatus and method for vergence control of a parallel-axis stereo camera system using compensated image signal processing
JP5838775B2 (en) Image processing method, image processing system, and image processing program
KR20040018858A (en) Depth of field adjustment apparatus and method of stereo image for reduction of visual fatigue
KR101173280B1 (en) Method and apparatus for processing stereoscopic image signals for controlling convergence of stereoscopic images

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

EXPY Cancellation because of completion of term