JPH08160330A - Optical scanning device - Google Patents
Optical scanning deviceInfo
- Publication number
- JPH08160330A JPH08160330A JP32116594A JP32116594A JPH08160330A JP H08160330 A JPH08160330 A JP H08160330A JP 32116594 A JP32116594 A JP 32116594A JP 32116594 A JP32116594 A JP 32116594A JP H08160330 A JPH08160330 A JP H08160330A
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- scanning direction
- sub
- scanning
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Mechanical Optical Scanning Systems (AREA)
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は高解像度光走査装置、特
に温度変化によるバックフォーカス変化を補正した光走
査装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-resolution optical scanning device, and more particularly to an optical scanning device in which back focus change due to temperature change is corrected.
【0002】[0002]
【従来の技術】近年、レーザープリンター等の普及に伴
い、走査光学系は、ますます、小型、安価でしかも高性
能のものが求められている。そのため、レンズ枚数を減
らし、またコンパクト化のために非球面レンズが多用さ
れるが、この非球面レンズを安価に得るために、プラス
チックレンズの利用は不可欠になっている。2. Description of the Related Art In recent years, with the spread of laser printers and the like, scanning optical systems are increasingly required to be small in size, inexpensive, and high in performance. Therefore, an aspherical lens is often used to reduce the number of lenses and to make it compact, but in order to obtain this aspherical lens at low cost, the use of a plastic lens is indispensable.
【0003】しかし走査光学系のレンズがプラスチック
の場合、温度変化による屈折率の変化及び線膨張の影響
が大きいので、ある程度の解像度を要求される場合、プ
ラスチックレンズを利用することにより、使用環境の変
動、特に温度変化により性能を維持できなくなる場合が
ある。それに加えて、光源の波長変化の影響もあり、基
準設計温度に対して温度変化すると、その走査光学系の
像面で主走査方向、副走査方向で各々独立に焦点位置の
移動が発生する。However, when the lens of the scanning optical system is made of plastic, the influence of the change in the refractive index and the linear expansion due to the temperature change is large. Therefore, when a certain degree of resolution is required, the plastic lens is used to improve the environment of use. Performance may not be maintained due to fluctuations, especially temperature changes. In addition, due to the influence of the wavelength change of the light source, when the temperature changes with respect to the reference design temperature, the focus position moves independently in the main scanning direction and the sub scanning direction on the image plane of the scanning optical system.
【0004】このとき温度変化による被走査媒体周辺の
像面湾曲の変化は、この走査光学系の基準設計温度での
像面湾曲の形をほぼ維持する形でデフォーカス方向にシ
フトする傾向にある。またこの焦点位置の移動すなわち
バックフォーカス変化は温度変化に対して単調増加ある
いは単調減少となる。この焦点移動量が走査光学系の像
高方向像面湾曲量を考慮にいれた許容ビーム径深度をこ
えた場合、性能を維持できなくなる。At this time, the change of the field curvature around the medium to be scanned due to the temperature change tends to shift in the defocus direction while substantially maintaining the shape of the field curvature of the scanning optical system at the reference design temperature. . Further, the movement of the focus position, that is, the change in back focus, monotonically increases or monotonically decreases with respect to the temperature change. If the amount of focus movement exceeds the allowable depth of beam diameter in consideration of the amount of curvature of field of the scanning optical system in the image height direction, the performance cannot be maintained.
【0005】温度変化によって性能に影響を及ぼすビー
ムスポット径は深度が小さいほど、すなわちビームウエ
スト径が小さいほど影響を受けやすい。ビームウエスト
径を小さくしていくと同じ焦点移動量でも深度が狭ま
り、焦点移動量により深度が小さくなり精度が維持でき
なくなる。The beam spot diameter, which affects the performance due to temperature change, is more susceptible to the smaller depth, that is, the smaller the beam waist diameter. If the beam waist diameter is made smaller, the depth becomes narrower even with the same focus movement amount, and the depth becomes smaller due to the focus movement amount, and accuracy cannot be maintained.
【0006】この課題を解決するためには、温度変化に
対する走査光学系の像面の変化は、像高方向に対する像
面湾曲がほぼその形を維持したままシフトする傾向にあ
るため、偏向器より光源側の入射光学系で補正すること
が出来る。In order to solve this problem, the change of the image plane of the scanning optical system with respect to the temperature change tends to shift with the curvature of the image plane in the image height direction substantially maintaining its shape. It can be corrected by the incident optical system on the light source side.
【0007】このような設計思想による例として、特開
平1−92714号においては、入射光学系と走査光学
系とにそれぞれ樹脂製のレンズを配設し、そのパワーを
一方を正、他方を負として、副走査方向において、走査
光学系の温度変化に対するバックフォーカス変化を相殺
するようにしている。As an example based on such a design concept, in Japanese Patent Laid-Open No. 1-92714, resin lenses are provided in the incident optical system and the scanning optical system, respectively, and one of them has a positive power and the other has a negative power. As a result, the back focus change with respect to the temperature change of the scanning optical system is offset in the sub-scanning direction.
【0008】特開平5−341215号では、入射光学
系が主走査方向でほぼ平行光にし、副走査方向では収束
光にするアナモフィックレンズと、主走査方向にはほぼ
パワーをもたず副走査方向に負のパワーを持つ単一のシ
リンドリカルレンズとで構成されている。In Japanese Patent Laid-Open No. 5-341215, an anamorphic lens in which an incident optical system makes parallel light in the main scanning direction and convergent light in the sub scanning direction, and a sub scanning direction having almost no power in the main scanning direction. It consists of a single cylindrical lens with negative power.
【0009】特開平5−341216号、特開平5−3
41217号では入射光学系は、それぞれ、コリメータ
レンズに含まれる負の回転対称なプラスチックレンズと
主走査方向にのみ正のパワーを持つアナモフィックなプ
ラスチックレンズ、あるいは光源とプラスチック製の部
材で固定されているコリメータレンズと主走査方向にの
み正のパワーを持つアナモフィックなプラスチックレン
ズの組み合わせを用いて、主走査方向では入射光学系で
のみ温度変化による焦点変動をおさえ、副走査方向につ
いては光学系全体で温度変化による焦点変動を抑えてい
る。JP-A-5-341216 and JP-A-5-3
In No. 41217, the incident optical system is fixed by a negative rotationally symmetric plastic lens included in the collimator lens and an anamorphic plastic lens having a positive power only in the main scanning direction, or by a light source and a plastic member. By using a combination of a collimator lens and an anamorphic plastic lens that has a positive power only in the main scanning direction, focus fluctuation due to temperature change is suppressed only in the incident optical system in the main scanning direction, and the temperature of the entire optical system is decreased in the sub scanning direction. Focus fluctuations due to changes are suppressed.
【0010】さらに、特開平2−161410号におい
ては、入射光学系のコリメータと光源をつなぐ部材の膨
張収縮、光学材料の屈折率変化と膨張収縮、光源の温度
変化に対するバックフォーカス変化を総合して、主走査
方向、副走査方向の両方向の走査光学系の温度変化に対
するバックフォーカス変化を、主走査、副走査の各方向
についてその性能を維持できる深度に入るようにバラン
スを取って補正している。Further, in Japanese Patent Application Laid-Open No. 2-161410, the expansion and contraction of a member connecting a collimator of an incident optical system and a light source, the refractive index change and expansion and contraction of an optical material, and the back focus change with respect to the temperature change of the light source are integrated. , The back focus change with respect to the temperature change of the scanning optical system in both the main scanning direction and the sub scanning direction is balanced and corrected so that the depth can maintain the performance in each of the main scanning direction and the sub scanning direction. .
【0011】しかしながら最近はさらに高解度対応のレ
ーザービームプリンター等のコンパクト化、低コスト化
が要求されるようになり、高解度対応の機種に対応する
走査光学系の樹脂化も必要になっている。このため主走
査方向、副走査方向のビームスポット径もより小さくす
ることが求められ、深度も両方向共に小さくしなければ
ならず、上記の従来技術では対応できなくなる。However, recently, there has been a demand for further downsizing and cost reduction of a laser beam printer or the like corresponding to a higher resolution, and it is also necessary to use a resin for a scanning optical system corresponding to a model corresponding to a higher resolution. ing. Therefore, the beam spot diameters in the main scanning direction and the sub scanning direction must be made smaller, and the depth must be made smaller in both directions, which cannot be dealt with by the above conventional technique.
【0012】具体的には、特開平1−92714号の場
合、副走査方向については、入射光学系の樹脂製の負の
パワーを持つシリンドリカルレンズで、温度変化に対す
る走査光学系のバックフォーカス変化を補正することが
出来るが、主走査方向については、この入射光学系では
温度変化にほとんど影響を及ぼさず、温度変化による走
査光学系のバックフォーカス変化を補正することができ
ない。このため、高解像度の走査光学系の設計への対応
としては不十分である。Specifically, in the case of Japanese Patent Laid-Open No. 1-92714, in the sub-scanning direction, the back focus change of the scanning optical system with respect to the temperature change is made by a resin-made cylindrical lens having a negative power in the incident optical system. Although it can be corrected, in the main scanning direction, this incident optical system has almost no effect on the temperature change, and the back focus change of the scanning optical system due to the temperature change cannot be corrected. For this reason, it is insufficient as a measure for designing a high-resolution scanning optical system.
【0013】特開平5−341215号、特開平5−3
41216号、特開平5−341217号では、効果と
して特開平1−92714号と同じく副走査方向でしか
走査光学系の温度変化に対する補正ができていなく、主
走査方向については走査光学系の温度変化による影響が
そのまま残ってしまう。JP-A-5-341215 and JP-A-5-3
No. 41216 and JP-A-5-341217, as an effect, correction of temperature change of the scanning optical system can be made only in the sub-scanning direction as in JP-A-1-92714, and temperature change of the scanning optical system in the main scanning direction. The effect of remains.
【0014】特開平2−16140号は、光源と固定部
材によって相互に固定されたコリメータの温度変化によ
るバックフォーカス変化で、主走査、副走査両方の変化
を補正しようとするものである。一般に、走査光学系の
温度変化による主走査方向、副走査方向のバックフォー
カス変化量の違い、および入射光学系と走査光学系をあ
わせた全体系での各方向の縦倍率の違いにより、走査光
学系の像面でのバックフォーカスの変化量に対する、光
源とコリメータの温度変化によるバックフォーカス変化
量の影響が、主走査方向と副走査方向とで違うため、コ
リメータの温度変化によるバックフォーカス変化の目標
値が、主走査方向と副走査方向とで異なるのがほとんど
である。これに対して上記コリメータは、光学的に光軸
のまわりに回転対称であるため、コリメータの温度変化
によるバックフォーカス変化は主走査、副走査共に同じ
値で2つの異なる目標値には対応できない。Japanese Unexamined Patent Publication No. 2-16140 is intended to correct changes in both main scanning and sub-scanning due to back focus change due to temperature change of a collimator fixed to each other by a light source and a fixing member. Generally, the scanning optical system is affected by the difference in the back focus change amount in the main scanning direction and the sub scanning direction due to the temperature change of the scanning optical system, and the difference in the vertical magnification in each direction in the entire system including the incident optical system and the scanning optical system. Since the influence of the back focus change amount due to the temperature change of the light source and the collimator on the back focus change amount on the image plane of the system is different in the main scanning direction and the sub-scanning direction, the target of the back focus change due to the temperature change of the collimator Most of the values differ between the main scanning direction and the sub scanning direction. On the other hand, since the collimator is optically rotationally symmetrical about the optical axis, the back focus change due to the temperature change of the collimator is the same value in both main scanning and sub scanning, and cannot correspond to two different target values.
【0015】[0015]
【発明が解決しようとする課題】しかしながら従来はビ
ームウエスト径が大きかったため、性能を維持できる許
容深度も若干幅を持っていた。図2(a)に示されるよ
うに、温度変化によるコリメータのバックフォーカス変
動範囲は、各方向について幅のある目標値(図では主走
査方向は2・△m、副走査方向は2・△s)をもってい
た。このため主走査方向と副走査方向の目標値が異なっ
ていても、主走査方向の幅と副走査方向の幅で重複して
いる部分(例えば、図ではb−△sからa+△mの範
囲)が生じ、これを温度変化によるコリメータのバック
フォーカス変化の目標範囲にすれば良かった。However, since the beam waist diameter has been large in the related art, the permissible depth for maintaining the performance has a slight width. As shown in FIG. 2A, the back focus fluctuation range of the collimator due to temperature change has a target value with a wide range in each direction (in the figure, 2 · Δm in the main scanning direction and 2 · Δs in the sub scanning direction). ) Had. Therefore, even if the target values in the main scanning direction and the sub-scanning direction are different, the overlapping portion in the width in the main scanning direction and the width in the sub-scanning direction (for example, in the range from b-Δs to a + Δm in the figure). ) Occurs, and it should have been set as the target range of the back focus change of the collimator due to the temperature change.
【0016】これに対してより高解度化に対応していく
と主走査、副走査の各々のビーム径は小さく設定しなけ
ればならず、この結果性能を維持できる許容深度は狭く
なり、図2(b)に示されるように温度変化によるコリ
メータのバックフォーカス変動範囲の各方向の許容幅は
小さくなる。その結果図2(b)の様に主走査方向の幅
と副走査方向の幅の重複はなくなり、両方向について温
度変化に対して性能を維持できるコリメータのバックフ
ォーカス変化量の利用可能な範囲はなくなってしまう。
このためこの状態では、従来技術によって温度変化に対
して主走査方向、及び副走査方向の両方向の性能を維持
するように補正することは不可能であった。On the other hand, in order to cope with higher resolution, the beam diameter of each of the main scanning and the sub scanning must be set small, and as a result, the allowable depth for maintaining the performance becomes narrow. As shown in FIG. 2 (b), the allowable width in each direction of the back focus variation range of the collimator due to temperature change becomes small. As a result, the width in the main scanning direction and the width in the sub scanning direction do not overlap as shown in FIG. 2B, and there is no usable range of the back focus change amount of the collimator that can maintain the performance with respect to the temperature change in both directions. Will end up.
For this reason, in this state, it was impossible for the conventional technique to perform correction so as to maintain the performance in both the main scanning direction and the sub scanning direction with respect to the temperature change.
【0017】レーザービームプリンター等の高解像度化
に従い、主走査方向、副走査方向ともにビームウエスト
の許容される深度が狭くなってきているのに加えて、走
査光学系に樹脂レンズを含んでいると温度変化により像
面位置が光軸方向に沿って移動する。このとき狭い深度
の中で温度変化により走査光学系のバックフォーカス位
置が移動すると、上記のように従来の技術では、固定さ
れている被走査媒体上でビーム径を補償できなくなり、
近年の高解像度化の要求に十分に応えられるものではな
かった。この発明は、樹脂レンズを含む光学系におい
て、高解像度化の要求に応えることのできる光走査装置
を得ようとするものである。With the increase in resolution of laser beam printers and the like, the allowable depth of the beam waist is narrowing in both the main scanning direction and the sub-scanning direction, and in addition, the scanning optical system includes a resin lens. The image plane position moves along the optical axis due to the temperature change. At this time, if the back focus position of the scanning optical system moves due to temperature change in a narrow depth, the conventional technique as described above cannot compensate the beam diameter on the fixed scanning medium,
It has not been able to sufficiently meet the recent demand for higher resolution. The present invention intends to obtain an optical scanning device which can meet the demand for higher resolution in an optical system including a resin lens.
【0018】[0018]
【課題を解決するための手段】本発明の光走査装置は、
光源、入射光学系、偏向器、走査光学系、被走査媒体を
含み、光源から出た光が入射光学系を介して偏向器によ
って偏向され、走査光学系を介して被走査媒体上に結像
することによって被走査媒体上を走査する光走査装置に
おいて、走査光学系は少なくとも1つの正のパワーを持
つ樹脂製の光学素子を含むアナモフィックな光学系であ
り、入射光学系は、光源と固定部材により相互に固定さ
れたアナモフィックな光学系であり、主走査方向におい
て光源からでた発散光をほぼ平行光にする第一の光学系
と、該第一の光学系を介した光源からの光を、副走査方
向において偏向器近傍で結像する第二の光学系とからな
り、第一の光学系、あるいは第二光学系のいずれかに副
走査方向に負のパワーを持つ樹脂製の光学素子を含むこ
とを特徴とする。The optical scanning device of the present invention comprises:
Includes a light source, an incident optical system, a deflector, a scanning optical system, and a medium to be scanned, and the light emitted from the light source is deflected by the deflector via the incident optical system to form an image on the medium to be scanned via the scanning optical system. In the optical scanning device that scans on the medium to be scanned, the scanning optical system is an anamorphic optical system including at least one resin optical element having a positive power, and the incident optical system is a light source and a fixing member. Is an anamorphic optical system fixed to each other by a first optical system that makes the divergent light emitted from the light source in the main scanning direction substantially parallel light, and the light from the light source through the first optical system. , A second optical system which forms an image near the deflector in the sub-scanning direction, and a resin optical element having negative power in the sub-scanning direction in either the first optical system or the second optical system. It is characterized by including.
【0019】そして、ωoMを走査光学系の結像面におけ
る主走査方向の光軸上のビームウエスト径、ωoSを走査
光学系の像面における副走査方向の光軸上のビームウエ
スト径、Mmは走査方向(主走査)の全光学系の横倍率
の絶対値、Msは走査方向に垂直な方向(副走査方向)
の全光学系の横倍率の絶対値、△fB2M(△T)、△fB
2S(△T)は温度変化が△Tの時の走査光学系だけによ
る主走査方向、副走査方向各々についてのバックフォー
カス変化、λは使用波長としたとき、 (0.18/λ)・〔(ωoM2/Mm2)+(ωoS2/Ms2)〕 ≦|△fB2M(△Tmax)/Mm2−△fB2S(Tmax)/Ms2| あるいは (0.18/λ)・〔(ωoM2/Mm2)+(ωoS2/Ms2)〕 ≦|△fB2M(△Tmin)/Mm2−△fB2S(Tmin)/Ms2| を満足することが望ましい。但し、ビーム径の定義はビ
ームプロファイルの1/e2の強度の径とし、また△Tm
ax(≧0)、△Tmin(≦0)は、基準設計温度T0に対
する動作仕様の温度範囲に対する温度変化量の上下限 T0+△Tmin ≦ T0 ≦ T0+△Tmax を表わす。ΩoM is the beam waist diameter on the optical axis in the main scanning direction on the image plane of the scanning optical system, ωoS is the beam waist diameter on the optical axis in the sub scanning direction on the image plane of the scanning optical system, and Mm is The absolute value of the lateral magnification of the entire optical system in the scanning direction (main scanning), Ms is the direction perpendicular to the scanning direction (sub-scanning direction)
Absolute value of lateral magnification of all optical systems, ΔfB 2 M (ΔT), ΔfB
2 S (ΔT) is the back focus change in each of the main scanning direction and the sub scanning direction by the scanning optical system only when the temperature change is ΔT, and λ is (0.18 / λ). [(ωoM 2 / Mm 2) + (ωoS 2 / Ms 2) ] ≦ | △ fB 2 M (△ Tmax) / Mm 2 - △ fB 2 S (Tmax) / Ms 2 | or (0.18 / lambda) - [(ωoM 2 / Mm 2) + (ωoS 2 / Ms 2) ] ≦ | △ fB 2 M (△ Tmin) / Mm 2 - △ fB 2 S (Tmin) / Ms 2 | is preferably satisfied. However, the definition of the beam diameter is the diameter of the intensity of 1 / e 2 of the beam profile, and ΔTm
ax (≧ 0) and ΔTmin (≦ 0) represent the upper and lower limits T 0 + ΔTmin ≦ T 0 ≦ T 0 + ΔT max of the temperature change amount with respect to the temperature range of the operation specification with respect to the reference design temperature T 0 .
【0020】上記入射光学系は、具体的にはその第一の
光学系は、光学面が光軸に対して回転対称であるコリメ
ータ光学系であり、光源からみてそのコリメータの後方
にある第二の光学系は、副走査方向に負のパワーを持つ
樹脂製の光学素子を持ち、全体として主走査方向にはほ
ぼパワーがなく副走査方向に正のパワーを持つアナモフ
ィックな光学系であり、コリメータからでた光は主走
査、副走査方向の両方向でほぼ平行光となる。The above-mentioned incident optical system, specifically, the first optical system is a collimator optical system whose optical surface is rotationally symmetric with respect to the optical axis, and a second optical system located behind the collimator as seen from the light source. Is an anamorphic optical system that has a resin optical element that has negative power in the sub-scanning direction, has almost no power in the main scanning direction, and has positive power in the sub-scanning direction. The light emitted from the light source is substantially parallel light in both main scanning and sub-scanning directions.
【0021】または、第一光学系は、主走査方向では発
散光源からの光をほぼ平行光にする作用を有し実質的に
コリメータの作用をし、副走査方向については負のパワ
ーを持つ樹脂製のアナモフィック光学素子を持つアナモ
フィックな光学系であり、第二光学系は、全体として副
走査方向に正のパワーを持つアナモフィックな光学系で
あり、上記第一光学系から出た光は主走査方向ではほぼ
平行光で副走査方向では発散光となる。このとき、副走
査方向に負のパワーを持つ樹脂製のアナモフィック光学
素子はシリンドリカルレンズであってもよい。Alternatively, the first optical system has a function of making the light from the divergent light source substantially parallel light in the main scanning direction and substantially functions as a collimator, and has a negative power in the sub scanning direction. Is an anamorphic optical system having an anamorphic optical element made by, the second optical system is an anamorphic optical system having positive power in the sub scanning direction as a whole, and the light emitted from the first optical system is the main scanning The light is almost parallel in the direction and divergent in the sub-scanning direction. At this time, the anamorphic optical element made of resin having a negative power in the sub-scanning direction may be a cylindrical lens.
【0022】[0022]
【作用】走査光学系においてパワーを持つ樹脂製の光学
素子を含むと、走査光学系の温度変化によるバックフォ
ーカス変化への影響は、樹脂製の光学素子を含まないす
べて硝子製の光学素子からなる光学系に比べてかなり大
きい。また通常、樹脂の場合、基準設計温度より温度が
上昇すると樹脂の屈折率は基準設計の時の屈折率より低
下し、樹脂自身膨張する傾向にある。その他に半導体レ
ーザー等の光源は温度が上昇すると発振波長が長くな
る。この結果、硝子製のレンズでもいえることである
が、正のパワーを持つ樹脂製の光学素子においては、温
度上昇によりバックフォーカスは伸びる傾向となる。こ
のとき基準設計温度における像高に対する走査光学系の
被走査媒体周辺の像面湾曲形状は、温度変化に対して、
その像面湾曲形状がほぼ維持されながらバックフォーカ
ス変化分デフォーカスシフトする傾向にある。When the scanning optical system includes a resin optical element having power, the influence of the temperature change of the scanning optical system on the back focus change is composed of all glass optical elements, not including the resin optical element. It is considerably larger than the optical system. In the case of a resin, generally, when the temperature rises above the reference design temperature, the refractive index of the resin becomes lower than the reference design and the resin itself tends to expand. In addition, a light source such as a semiconductor laser has a longer oscillation wavelength as the temperature rises. As a result, as can be said for a glass lens, in a resin optical element having a positive power, the back focus tends to be extended due to the temperature rise. At this time, the curvature of field around the scanned medium of the scanning optical system with respect to the image height at the reference design temperature is
There is a tendency for defocus shift by the amount of change in back focus while the curved shape of the field surface is substantially maintained.
【0023】そのため走査光学系に樹脂製の光学素子を
含み、主走査方向、副走査方向の各方向について樹脂製
の光学素子のパワーの合計が正となる場合、光の進む方
向を正とすると △fB2M(△T)/△T≧0 (1) △fB2S(△T)/△T≧0 (2) となる。ここで△fB2M(△T)、△fB2S(△T)はそ
れぞれ主走査方向、副走査方向において温度が△Tだけ
変化したときの走査光学系だけによるバックフォーカス
変化量を表わす。Therefore, when the scanning optical system includes a resin optical element and the total power of the resin optical elements in each of the main scanning direction and the sub-scanning direction is positive, it is assumed that the light traveling direction is positive. ΔfB 2 M (ΔT) / ΔT ≧ 0 (1) ΔfB 2 S (ΔT) / ΔT ≧ 0 (2) Here, ΔfB 2 M (ΔT) and ΔfB 2 S (ΔT) represent the back focus change amount due to only the scanning optical system when the temperature changes by ΔT in the main scanning direction and the sub scanning direction, respectively.
【0024】上記のように、走査光学系の像面湾曲形状
は、温度変化に対してほぼその形状を維持しながらデフ
ォーカス方向にシフトするだけであるので、入射光学系
で走査光学系のバツクフォーカス変化を補正することが
できる。このとき入射光学系で走査光学系の温度変化に
よるバックフォーカス変化量を主走査方向、副走査方向
の各方向でそれぞれ補正して、入射光学系と走査光学系
を合わせたときの温度変化による各方向のバックフォー
カス変化量を、性能を維持できる範囲に抑えなければな
らない。すなわち、温度変化△Tに対する入射光学系と
走査光学系を合わせた全体系の被走査媒体上での主走査
方向、副走査方向のバックフォーカス変化量、それぞれ
△fBm(△T)、△fBs(△T)は、以下で述べる性能
を維持できる範囲δ(主走査方向δm、副走査方向δs)
に対して以下の関係を満たさなければならない。 |△fBm(△T)|≦δm (3) |△fBs(△T)|≦δs (4)As described above, the curvature of field of the scanning optical system only shifts in the defocus direction while maintaining its shape with respect to temperature changes. Focus changes can be corrected. At this time, the back focus change amount due to the temperature change of the scanning optical system in the incident optical system is corrected in each of the main scanning direction and the sub-scanning direction, and each of the temperature changes due to the temperature change when the incident optical system and the scanning optical system are combined. The back focus change amount in the direction must be suppressed within a range in which the performance can be maintained. That is, back focus change amounts in the main scanning direction and the sub scanning direction on the medium to be scanned of the entire system including the incident optical system and the scanning optical system with respect to the temperature change ΔT, ΔfBm (ΔT) and ΔfBs ( ΔT) is a range δ (main scanning direction δm, sub scanning direction δs) in which the performance described below can be maintained.
Must satisfy the following relationship. | ΔfBm (ΔT) | ≦ δm (3) | ΔfBs (ΔT) | ≦ δs (4)
【0025】性能を維持できる範囲、δm、δsは性能を
維持できる各方向の片側深度Xom、Xosから走査光学系
の加工誤差、配置誤差による主走査方向、副走査方向の
片側マージンPm、Ps、及び設計で生じる主走査方向、
副走査方向についての像高方向に対する片側設計像面湾
曲マージンDm、Dsを引いた値と定義することができ
る。 δm=Xom−Pm−Dm (5) δs=Xos−Ps−Ds (6) ここで性能を維持できる片側深度Xom、Xosは、走査光
学系の光軸上におけるビームウエスト径、及びその許容
されるビームばらつき、ビーム許容深度で決まる。ここ
で深度の片側を定義している理由は、使用温度が基準設
計温度に対して正方向、負方向両側に変化することを仕
様としている光学装置が多いためである。The ranges in which the performance can be maintained, δm and δs, are the one-side depths Xom and Xos in each direction where the performance can be maintained, from the processing errors of the scanning optical system, the main scanning direction due to the placement error, and the one-side margins Pm and Ps in the sub-scanning direction. And the main scanning direction that occurs in the design,
It can be defined as a value obtained by subtracting the one-side designed field curvature margins Dm and Ds with respect to the image height direction in the sub-scanning direction. δm = Xom-Pm-Dm (5) δs = Xos-Ps-Ds (6) Here, the one-side depths Xom and Xos capable of maintaining the performance are the beam waist diameter on the optical axis of the scanning optical system, and its allowable value. Determined by beam variation and beam allowable depth. The reason that one side of the depth is defined here is that many optical devices have a specification that the operating temperature changes in both the positive direction and the negative direction with respect to the reference design temperature.
【0026】光軸上のビーム許容深度は以下の様に求め
ることができる。ビームはガウシアンビームであると仮
定したとき、ビームが絞られる位置周辺でのビームスポ
ット径ωはThe allowable beam depth on the optical axis can be obtained as follows. Assuming that the beam is a Gaussian beam, the beam spot diameter ω around the position where the beam is focused is
【数1】 で表わされる。ここでλはビームの波長、また図3に示
すようにω0はビームウエスト、xはビームウエスト位
置から所定のビームスポット径(ω)となる位置までの
距離を表わしている。またビーム径の定義はビームプロ
ファイルの1/e2の強度の径を表わしている。ここで、
ビームウエストω0 に対して許容できるビーム径をωs
とすると、そのときの深度2X0 についてそのビーム径
を許容する深度の片側X0 は、(7)式においてω=ω
s 、x=X0 とおくことができ、片側許容深度X0 は[Equation 1] Is represented by Here, λ is the wavelength of the beam, ω 0 is the beam waist as shown in FIG. 3, and x is the distance from the beam waist position to the position where the predetermined beam spot diameter (ω) is obtained. Further, the definition of the beam diameter represents the diameter of the intensity of 1 / e 2 of the beam profile. here,
The allowable beam diameter for the beam waist ω 0 is ωs
Then, one side X 0 of the depth that allows the beam diameter for the depth 2X 0 at that time is ω = ω in the equation (7).
s, x = X 0, and the one-sided allowable depth X 0 is
【数2】 ここで ε=ωs/ω0 : ビーム許容係数 となる。[Equation 2] Here, ε = ωs / ω 0 : Beam tolerance coefficient.
【0027】(8)式において、特に高解像度対応とな
るとビーム径ばらつきに対する要求が厳しくなり、ビー
ム許容係数はε=1.1位にする必要がある。ε=1.
1として、使用波長λを780nmとしたときのビーム
ウエストω0 と片側許容深度X0 との関係をグラフ化し
て図4に示す。この図4をみると、従来のプラスチック
レンズを使用した光学系での例として、光軸上のビーム
ウエスト径は主走査方向70μm、副走査方向100μ
mであると、ε=1.1として主走査片側許容深度約
2.3mm、副走査は約4.5mmという深度を持って
いたが、高解像度化対応として光軸上のビームウエスト
径が主走査50μm、副走査60μmとすると、主走査
片側深度は約1.1mm、副走査片側深度は約1.7m
mとかなり小さくなることがわかる。以上を主走査方
向、副走査方向について改めてまとめると、In the formula (8), the requirement for the beam diameter variation becomes strict, especially for high resolution, and the beam tolerance coefficient must be set to ε = 1.1. ε = 1.
4, the relationship between the beam waist ω 0 and the allowable depth on one side X 0 when the wavelength λ used is 780 nm is shown in FIG. As shown in FIG. 4, as an example of an optical system using a conventional plastic lens, the beam waist diameter on the optical axis is 70 μm in the main scanning direction and 100 μm in the sub scanning direction.
If m is ε = 1.1, the permissible depth on one side of the main scanning was about 2.3 mm, and the depth for sub-scanning was about 4.5 mm. When the scanning is 50 μm and the sub-scanning is 60 μm, the main scanning one side depth is about 1.1 mm, and the sub-scanning one side depth is about 1.7 m.
It can be seen that it is considerably small as m. Summarizing the above in the main scanning direction and the sub scanning direction,
【数3】 となる。ここでω0Mは走査光学系の被走査媒体周辺での
主走査方向の光軸上のビームウエスト径、ω0sは走査光
学系の被走査媒体周辺での副走査方向の光軸上のビーム
ウエスト径である。(Equation 3) Becomes Where ω 0 M is the beam waist diameter on the optical axis in the main scanning direction around the scanned medium of the scanning optical system, and ω 0 s is on the optical axis in the sub-scanning direction around the scanned medium of the scanning optical system. Beam waist diameter.
【0028】主走査方向、副走査方向の片側設計像面湾
曲マージンDm 、Ds は、走査光学系の設計値によるも
のである。通常、走査光学系は、偏向器である回転多面
鏡の反射面の面の出入りの影響で、被走査媒体周辺で像
高方向に対して像面湾曲が発生する。最近は高解像度対
応として、この回転多面鏡の面の出入の影響を補正した
走査光学系の案も発表されているが、これについても像
高方向に対して若干の像面湾曲が残る場合がある。また
像高が大となると収差がビーム内で発生してビーム径が
大きくなり、その分その像高における深度が軸上の深度
に比べて小さくなる傾向がある。この片側像面湾曲マー
ジンは、走査光学系の被走査媒体上での印字幅に相当す
る像高全体で、像面湾曲変動分の片側と像高を持ったビ
ーム内の収差による深度の減少分を表わしたものであ
る。The one-side designed field curvature margins Dm and Ds in the main scanning direction and the sub-scanning direction are based on the design values of the scanning optical system. Usually, in the scanning optical system, the curvature of field is generated around the medium to be scanned in the image height direction under the influence of the entrance and exit of the surface of the reflecting surface of the rotary polygon mirror that is the deflector. Recently, a proposal for a scanning optical system that corrects the influence of the entrance and exit of the surface of this rotating polygon mirror has been announced for high resolution, but this may also cause some field curvature to remain in the image height direction. is there. When the image height becomes large, aberration occurs in the beam and the beam diameter becomes large, and the depth at that image height tends to be smaller than that on the axis. This one-sided field curvature margin is the entire image height corresponding to the print width of the scanning optical system on the medium to be scanned, and the one-sided amount of curvature of field variation and the decrease in depth due to aberration in the beam having the image height. It represents.
【0029】主走査方向、副走査方向についての加工誤
差、配置誤差マージンPm 、Ps は、実際の光走査装置
の光学素子等の加工誤差、あるいは光走査装置の光学素
子等の配置誤差による像高に対する像面湾曲分を表わし
ている。特にビーム径の小さい高解像度光走査装置対応
となると、この影響は大きくなる。The processing errors in the main scanning direction and the sub-scanning direction, and the placement error margins Pm and Ps are image heights due to actual working errors of optical elements of the optical scanning device or placement errors of optical elements of the optical scanning device. Represents the amount of field curvature with respect to. Especially, when it becomes compatible with a high-resolution optical scanning device having a small beam diameter, this influence becomes large.
【0030】この主走査方向、副走査方向の片側設計像
面湾曲マージンと加工誤差、配置誤差マージンを合わせ
たマージンは、特に高解像度対応の光走査装置では深度
が少なくなるため、少なくとも走査光学系の軸上深度の
1/2を見込む必要がある。 Dm+Pm≡X0m/2 (11) Ds+Ps≡X0s/2 (12) 性能を維持できる範囲δm、δsは、(5)式、(6)
式、(9)式、(10)式、(11)式、(12)式か
らThe margin of the one-sided design field curvature margin in the main scanning direction and the sub-scanning direction, the processing error, and the placement error margin is small, especially in a high-resolution optical scanning device. Therefore, at least the scanning optical system is used. It is necessary to allow 1/2 of the on-axis depth of. Dm + Pm≡X 0 m / 2 (11) Ds + Ps≡X 0 s / 2 (12) The ranges δm and δs in which the performance can be maintained are expressed by equation (5), (6).
From the formula, the formula (9), the formula (10), the formula (11), and the formula (12)
【数4】 で表わすことができる。この式からみても、走査光学系
が高解像度化となると軸上ビームウエスト径は小さくな
り、性能を維持できる範囲δm、δsはビームウエスト径
の自乗に比例して小さくなり、許容幅が小さくなること
がわかる。[Equation 4] Can be represented by From this equation, when the scanning optical system has a higher resolution, the axial beam waist diameter becomes smaller, and the ranges δm and δs where the performance can be maintained become smaller in proportion to the square of the beam waist diameter, and the allowable width becomes smaller. I understand.
【0031】入射光学系によって補正する手段として、
入射光学系を、光源と固定部材により相互に固定されて
おり、主走査方向において光源からでた発散光をほぼ平
行光にする第一の光学系と、光源から該第一の光学系を
た光を、副走査方向において偏向器近傍で結像する副走
査方向にパワーを持つシリンドリカル光学系である第二
の光学系とからなり、これに加えて第一の光学系あるい
は第二の光学系のいずれかに副走査方向に負のパワーを
持つ樹脂製の光学素子を含む形の光学系とすれば、主走
査、副走査各方向について、光学系全体の温度変化によ
るバックフォーカス変化量を各方向でそれぞれ零にでき
る可能性がある。温度変化により光学系全体の被走査媒
体周辺でのバックフォーカス変化に、上記入射光学系が
影響を及ぼす大きな要因として以下の3つの要因が考え
られる。 温度変化△Tにより、上記固定部材の膨張収縮による
光源と入射光学系の一部との間隔が変化することによる
被走査媒体周辺でのバックフォーカス変化の影響 主走査方向 △fBML(△T) 副走査方向 △fBSL(△T) 光源の温度変化からくる波長変化による被走査媒体周
辺でのバックフォーカス変化の影響 主走査方向 △fBMλ(△T) 副走査方向 △fBSλ(△T) 温度変化による入射光学系内の光学素子の膨張収縮、
屈折率変化による被走査媒体周辺でのバックフォーカス
変化の影響 主走査方向 △fBMN(△T) 副走査方向 △fBSN(△T)As means for correcting by the incident optical system,
The incident optical system is fixed to each other by a light source and a fixing member, and comprises a first optical system for making divergent light emitted from the light source into substantially parallel light in the main scanning direction, and the first optical system from the light source. A second optical system, which is a cylindrical optical system having a power in the sub-scanning direction, which forms an image of light in the vicinity of the deflector in the sub-scanning direction. In addition to this, the first optical system or the second optical system. In any of the above, if an optical system of a type including a resin optical element having a negative power in the sub-scanning direction is used, the back focus change amount due to the temperature change of the entire optical system in each main scanning and sub-scanning direction There is a possibility that each direction can be zero. The following three factors are considered to be the major factors that the incident optical system influences the back focus change around the medium to be scanned in the entire optical system due to the temperature change. Influence of back focus change around the medium to be scanned due to change in the distance between the light source and a part of the incident optical system due to expansion and contraction of the fixing member due to temperature change ΔT Main scanning direction ΔfBML (ΔT) Sub Scanning direction ΔfBSL (ΔT) Influence of back focus change around scanned medium due to wavelength change due to temperature change of light source Main scanning direction ΔfBMλ (ΔT) Sub scanning direction ΔfBSλ (ΔT) Incident due to temperature change Expansion and contraction of optical elements in the optical system,
Effect of back focus change around scanned medium due to refractive index change Main scanning direction ΔfBMN (ΔT) Sub scanning direction ΔfBSN (ΔT)
【0032】入射光学系と走査光学系を合わせた光学系
全体での被走査媒体周辺での温度変化△Tによる主走査
方向、副走査方向のバックフォーカス変化量△fBm(△
T)、△fBs(△T)は上記入射光学系の3つの温度変
化による影響に走査光学系の温度変化△Tによる主走査
方向、副走査方向のバックフォーカス変化分△fB2M
(△T)、△fB2S(△T)を各方向ごとに加えたもの
であるから、 △fBm(△T) =△fBML(△T)+△fBMλ(△T)+△fBMN(△T)+△fB2M(△T) ・・・ (15) △fBs(△T) =△fBSL(△T)+△fBSλ(△T)+△fBSN(△T)+△fB2S(△T) ・・・ (16) で表わすことができる。このような関係を利用して、走
査光学系の温度変化による影響を入射光学系で補正し、
光学系全体での温度変化によるバックフォーカス変化量
を所定の性能を維持できる範囲に抑えなければならな
い。A back focus change amount ΔfBm (Δ in the main scanning direction and sub scanning direction due to a temperature change ΔT around the medium to be scanned in the entire optical system including the incident optical system and the scanning optical system.
T) and ΔfBs (ΔT) are the back focus change amount ΔfB 2 M in the main scanning direction and the sub scanning direction due to the temperature change ΔT of the scanning optical system due to the influence of the three temperature changes of the incident optical system.
Since (ΔT) and ΔfB 2 S (ΔT) are added for each direction, ΔfBm (ΔT) = ΔfBML (ΔT) + ΔfBMλ (ΔT) + ΔfBMN (Δ T) + ΔfB 2 M (ΔT) (15) ΔfBs (ΔT) = ΔfBSL (ΔT) + ΔfBSλ (ΔT) + ΔfBSN (ΔT) + ΔfB 2 S ( ΔT) can be represented by (16). By utilizing such a relationship, the influence of the temperature change of the scanning optical system is corrected by the incident optical system,
The back focus change amount due to the temperature change in the entire optical system must be suppressed within a range in which a predetermined performance can be maintained.
【0033】この発明の光走査装置において入射光学系
は、少なくともその主走査方向で光源から出た光をほぼ
平行光にする作用を持つ光学系部分まで、光源と固定部
材により相互に固定されている。その固定部材により相
互に固定されている光源と入射光学系の第一光学系の1
例を図5に示す。図5において、1が光源である半導体
レーザー、2が発散光を主走査方向でほぼ平行光にする
入射光学系の第一の光学系であり、2’がその光学系の
鏡枠である。この光学系の鏡枠と半導体レーザーは3の
固定部材に相互に固定されている。ここで固定部材3は
その温度変化に対する線膨張率が鏡枠2’やスペーサの
温度変化よりも大きい材料を使用する。In the optical scanning device of the present invention, the incident optical system is fixed by the light source and the fixing member to each other at least up to the optical system portion having a function of making the light emitted from the light source in the main scanning direction substantially parallel light. There is. One of the light source and the first optical system of the incident optical system, which are fixed to each other by the fixing member.
An example is shown in FIG. In FIG. 5, reference numeral 1 is a semiconductor laser as a light source, 2 is a first optical system of an incident optical system for converting divergent light into substantially parallel light in the main scanning direction, and 2'is a lens frame of the optical system. The lens frame of this optical system and the semiconductor laser are fixed to each other by three fixing members. Here, the fixing member 3 is made of a material having a coefficient of linear expansion larger than that of the lens frame 2'and the spacer due to temperature change.
【0034】通常、部材の温度変化に対する線膨張係数
は正であるから、温度が上昇したときは固定部材は膨張
して、上記光学系の鏡枠2’と光源1の間隔は若干のび
る。その結果、入射光学系からみると光源は光の進行方
向に対して負の方向に動くことになる。固定部材への光
源の取り付け部から上記鏡枠の固定部材への取り付け部
の間隔をlx とし(間隔lx は、固定部材への光源の取
り付け部と、入射光学系の取り付け部との間隔である
が、実際には取り付け構造により変わってくる。この間
隔に相当する値を算出するため実験を何回か行ったが、
その結果、主走査方向における入射光学系の焦点距離と
ほぼ等しいことがわかっている。)、また固定部材の線
膨張係数をLとすると、温度が△T変化したときの入射
光学系からみたときの光源の移動量を△S(△T)とす
ると △S(△T)=−L・lx・△T (17) となる。Since the linear expansion coefficient of the member with respect to the temperature change is usually positive, the fixing member expands when the temperature rises, and the distance between the lens frame 2'of the optical system and the light source 1 slightly increases. As a result, the light source moves in the negative direction with respect to the traveling direction of the light when viewed from the incident optical system. The distance between the mounting portion of the light source to the fixing member and the mounting portion of the lens frame to the fixing member is lx (the spacing lx is the distance between the mounting portion of the light source to the fixing member and the mounting portion of the incident optical system). Actually, it depends on the mounting structure.I experimented several times to calculate the value corresponding to this interval,
As a result, it is known that it is almost equal to the focal length of the incident optical system in the main scanning direction. ), Where L is the linear expansion coefficient of the fixing member, and ΔS (ΔT) is the amount of movement of the light source when viewed from the incident optical system when the temperature changes by ΔT, ΔS (ΔT) =- L·lx · ΔT (17)
【0035】全体系での主走査方向での横倍率の絶対値
をMm、副走査方向での横倍率の絶対値をMsとする
と、温度変化△Tによる上記固定部材の膨張収縮による
光源と入射光学系の一部との間隔変化による被走査媒体
周辺での主走査方向のバックフォーカス変化△fBML
(△T) 、副走査方向の変化△fBSL(△T) はそれ
ぞれ △fBML(△T)=Mm2・△S=−Mm2・L・lx・△T (18) △fBSL(△T)=Ms2・△S=−Ms2・L・lx・△T (19) となる。温度変化に対する線膨張係数はL≧O、光源と
光学系の間隔lx≧0 でであるから、 主走査方向△fBML(△T)/△T≦O (20) 副走査方向△fBSL(△T)/△T≦O (21) となる。(1)(2)から正のパワーを持つ走査光学系
の温度変化によるバックフォーカスの変化は正となり、
(15)、(16)、(20)、(21)式から温度変
化による光源と上記光学系をとりつける固定部材の影響
は、走査光学系の被走査媒体周辺でのバックフォーカス
の負の変化となり、互いに打ち消しあう傾向となる。When the absolute value of the lateral magnification in the main scanning direction in the entire system is Mm and the absolute value of the lateral magnification in the sub-scanning direction is Ms, the light source enters the light source due to the expansion and contraction of the fixing member due to the temperature change ΔT. Back focus change in the main scanning direction around the medium to be scanned due to the change in the distance from the optical system ΔfBML
(ΔT) and change in the sub-scanning direction ΔfBSL (ΔT) are ΔfBML (ΔT) = Mm 2 · ΔS = -Mm 2 · L·lx · ΔT (18) ΔfBSL (ΔT) = Ms 2 · ΔS = −Ms 2 · L·lx · ΔT (19) Since the linear expansion coefficient with respect to temperature change is L ≧ O and the distance lx ≧ 0 between the light source and the optical system, ΔfBML (ΔT) / ΔT ≦ O in the main scanning direction (20) Sub-scanning direction ΔfBSL (ΔT ) / ΔT ≦ O (21). From (1) and (2), the change in back focus due to the temperature change of the scanning optical system having a positive power becomes positive,
From the expressions (15), (16), (20), and (21), the influence of the fixing member that attaches the light source and the optical system to the temperature change is a negative change in the back focus around the medium to be scanned of the scanning optical system. , Tend to cancel each other out.
【0036】温度が変化することにより、特に光源が半
導体レーザーの場合、発振波長が若干変化する。これに
より入射光学系内の光学材料の屈折率が変化して、その
影響でも走査光学系の被走査媒体周辺でのバックフォー
カス位置が変化する。主走査方向で見た場合、入射光学
系は光源から発する光線をほぼ平行光にする作用を持つ
ので、そのバックフォーカス位置は無限に近い位置とな
る。そのため、入射光学系だけでそのまま温度変化によ
るバックフォーカス変化位置を議論するのは難しい。こ
の議論を簡略化するために、主走査方向については入射
光学系に対して、温度変化によって波長変化した平行光
を光源と反対側から入射したときの、光源位置周辺での
温度変化による光源の波長変化が原因となるバックフォ
ーカス変化量をもとめ、入射光学系と走査光学系を合わ
せた全体系の縦倍率の関係から、上記影響による被走査
媒体でのバックフォーカス変化を算出すればよい。When the light source is a semiconductor laser, the oscillation wavelength slightly changes due to the temperature change. As a result, the refractive index of the optical material in the incident optical system changes, and the back focus position around the medium to be scanned in the scanning optical system also changes due to the change. When viewed in the main scanning direction, the incident optical system has a function of making the light beam emitted from the light source substantially parallel light, so that the back focus position thereof is close to infinity. Therefore, it is difficult to discuss the back focus change position due to the temperature change as it is with only the incident optical system. To simplify this discussion, in the main scanning direction, when parallel light whose wavelength has changed due to temperature change is incident on the incident optical system from the side opposite to the light source, The back focus change amount due to the wavelength change may be obtained, and the back focus change on the medium to be scanned due to the above influence may be calculated from the relationship of the vertical magnification of the entire system including the incident optical system and the scanning optical system.
【0037】この主走査方向において入射光学系の光源
の波長変化による影響に対して、光源の反対側から波長
変化した平行光が入射したときの入射光学系の光源周辺
でのバックフォーカス変化量を△fB1Mλ(△T)とす
ると、主走査方向での被走査媒体周辺での入射光学系の
波長変化の影響によるバックフォーカス変化△fBMλ
(△T)は △fBMλ(△T)=△fB1Mλ(△T)・Mm2 (22) という関係となる。With respect to the influence of the wavelength change of the light source of the incident optical system in the main scanning direction, the back focus change amount in the periphery of the light source of the incident optical system when parallel light of which the wavelength is changed is incident from the opposite side of the light source, If ΔfB 1 Mλ (ΔT), the back focus change ΔfBMλ due to the influence of the wavelength change of the incident optical system around the medium to be scanned in the main scanning direction
(ΔT) has a relationship of ΔfBMλ (ΔT) = ΔfB 1 Mλ (ΔT) · Mm 2 (22).
【0038】副走査方向で見た場合は、光源からでた光
は入射光学系を介して、一旦偏向器近傍で集光する。そ
のため温度変化によって生じる光源の波長変化による入
射光学系の偏向器近傍でのバックフォーカス変化を△f
B1Sλ(△T)として、入射光学系の副走査方向の横倍
率の絶対値をM1s、走査光学系の横倍率の絶対値をM2s
とすると、副走査方向での被走査媒体周辺での入射光学
系の波長変化によるバックフォーカス変化△fBSλ(△
T)は、 △fBSλ(△T)=△fB1Sλ(△T)・M2s2 (23) で表わせる。また倍率関係は Ms=M1s・M2s (24) となる。以上が入射光学系の温度変化で生じる波長変化
によるバックフォーカス変化が被走査媒体周辺に及ぼす
影響である。When viewed in the sub-scanning direction, the light emitted from the light source is once condensed near the deflector via the incident optical system. Therefore, the back focus change near the deflector of the incident optical system due to the wavelength change of the light source caused by the temperature change is Δf.
As B 1 Sλ (ΔT), the absolute value of the lateral magnification of the incident optical system in the sub-scanning direction is M 1 s, and the absolute value of the lateral magnification of the scanning optical system is M 2 s.
Then, the back focus change ΔfBSλ (Δ due to the wavelength change of the incident optical system around the medium to be scanned in the sub-scanning direction
T) can be represented by ΔfBSλ (ΔT) = ΔfB 1 Sλ (ΔT) · M 2 s 2 (23). The magnification relationship is Ms = M 1 s · M 2 s (24). The above is the effect of the back focus change due to the wavelength change caused by the temperature change of the incident optical system on the periphery of the medium to be scanned.
【0039】入射光学系の温度変化で生じる光源の波長
変化によるバックフォーカス変化は、さらに次のような
形に分解することができる。fB1M、fB1Sを入射光学系
でのバックフォーカス値とすると、 △fB1Mλ(△T)/△T ≒∂fB1M/∂λ・∂λ/∂T =Σ∂fB1M/∂ni・∂ni/∂λ・∂λ/∂T (25) △fB1Sλ(△T)/△T =Σ∂fB1s/∂ni・∂ni/∂λ・∂λ/∂T (26) ここでni は入射光学系のi番目の光学素子の屈折率
を、λは光源の発する光の波長を表わす。The back focus change due to the wavelength change of the light source caused by the temperature change of the incident optical system can be further decomposed into the following forms. fB 1 M, fB 1 when S is referred to as back focus value at the incident optical system, △ fB 1 Mλ (△ T ) / △ T ≒ ∂fB 1 M / ∂λ · ∂λ / ∂T = Σ∂fB 1 M / ∂ni ・ ∂ni / ∂λ ・ ∂λ / ∂T (25) △ fB 1 Sλ (△ T) / △ T = Σ∂fB 1 s / ∂ni ・ ∂ni / ∂λ ・ ∂λ / ∂T (26) Here, ni represents the refractive index of the i-th optical element of the incident optical system, and λ represents the wavelength of the light emitted from the light source.
【0040】(∂λ/∂T)は、光源として半導体レー
ザーを用いると温度があがると波長が若干上昇するため
正となる。(∂λ/∂T≧0) また(∂ni/∂λ)は通常の光学素材であれば負であ
る。(∂ni/∂λ≦0) また主走査方向についてみるとΣ(∂fB1M/∂ni・∂
ni/∂λ)はその光学素子のパワー配置のとりかたで
正にも負にも変えることが出来る。そのため、光学素材
の選定およびパワー配置等を他の要因による温度変化に
よる影響と組み合わせて決定して行けば良い。しかしな
がら、あえてこの波長変化による影響をコントロールす
るためパワー配置までもコントロールするとなると、光
学素子の数も余計に増えコストアップとなる。この入射
光学系は主走査方向、副走査方向共に全体として正のパ
ワーを持っている。そのためあえて波長変化による影響
をパワー配置でコントロールしないとすれば、波長変化
による影響について、入射光学系において正のパワーを
持つ光学素子の影響の方が大きい傾向となり、正のパワ
ーを持つ光学素子の∂fB1M/∂niは負となるため、
(25)式は正となる可能性が大きい。(26)式の副
走査方向でも上記と同様のことがいえる。このように波
長変化による影響ではない他の要因からなる温度変化に
よる影響を考慮にいれながら、温度変化による波長変化
による被走査媒体でのバックフォーカス変化をコントロ
ールしていくことについては、それにあった入射光学系
の光学素子の光学材料の選定をしてゆけばよい。(∂λ / ∂T) is positive when a semiconductor laser is used as a light source because the wavelength slightly rises when the temperature rises. (∂λ / ∂T ≧ 0) Further, (∂ni / ∂λ) is negative for ordinary optical materials. (∂ni / ∂λ≤0) Looking at the main scanning direction, Σ (∂fB 1 M / ∂ni ・ ∂
ni / ∂λ) can be changed to positive or negative depending on the power arrangement of the optical element. Therefore, the selection of the optical material, the power allocation, and the like may be determined in combination with the influence of the temperature change due to other factors. However, if the power allocation is also controlled in order to control the influence of this wavelength change, the number of optical elements will increase unnecessarily and the cost will increase. This incident optical system has positive power as a whole in both the main scanning direction and the sub scanning direction. Therefore, if the influence of the wavelength change is not controlled by the power allocation, the influence of the wavelength change of the optical element having the positive power in the incident optical system tends to be larger, and the influence of the optical element having the positive power of the incident optical system tends to be larger. Since ∂fB 1 M / ∂ni is negative,
Expression (25) is likely to be positive. The same applies to the sub-scanning direction of the equation (26). In this way, it was necessary to control the back focus change in the medium to be scanned due to the wavelength change due to the temperature change while taking into consideration the influence due to the temperature change due to other factors not the influence due to the wavelength change. The optical material of the optical element of the incident optical system should be selected.
【0041】温度変化により光学素材は膨張収縮し、ま
たその屈折率は変化する。入射光学系におけるこの変化
による被走査媒体でのバックフォーカス変化の主走査方
向の影響△fBMN(△T) 、および副走査方向の影響△
fBSN(△T) は △fBMN(△T)=△fB1MN(△T)・Mm2 (27) △fBSN(△T)=△fB1SN(△T)・M2s2 (28) となる。ここで上記温度変化で生じる光源の波長変化に
よる影響の説明で述べたのと同じ形で、△fB1MN(△
T)は、主走査方向について入射光学系に対して光源と
反対方向から平行光を入射したときの光源周辺での入射
光学系のバックフォーカス変化を表わし、△fB1SN(△
T)は、副走査方向での入射光学系の偏向器周辺でのバ
ックフォーカス変化量を表わす。The optical material expands and contracts due to temperature changes, and its refractive index changes. Influence of main focus direction ΔfBMN (ΔT) and sub-scan direction influence of back focus change on the medium to be scanned due to this change in the incident optical system.
fBSN (ΔT) is ΔfBMN (ΔT) = ΔfB 1 MN (ΔT) · Mm 2 (27) ΔfBSN (ΔT) = ΔfB 1 SN (ΔT) · M 2 s 2 (28) Becomes Here, in the same manner as described in the explanation of the influence of the wavelength change of the light source caused by the temperature change, ΔfB 1 MN (Δ
T) represents the back focus change of the incident optical system around the light source when parallel light is incident on the incident optical system in the main scanning direction from the direction opposite to the light source, and ΔfB 1 SN (Δ
T) represents the back focus change amount around the deflector of the incident optical system in the sub-scanning direction.
【0042】このとき入射光学系の主走査方向での温度
変化によるバックフォーカス変化△fB1MN(△T)は、
温度変化による光学素材の屈折率の変化、及び光学素材
の膨張収縮によるものであるからさらに分解すると、 △fB1MN(△T)/△T ≒Σ∂fB1M/∂ni・∂ni/∂T+Σ∂fB1M/∂Di・∂Di/∂T +Σ∂fB1M/∂Smj・∂Smj/∂T (29) で表わされる。ここでni は第i番目光学素子の材料の
屈折率を表わし、Di は第i番目の光学素子の軸上厚を
表わし、Smjは第j番目の主走査側の光学素子面を表
わす。∂Di/∂T、∂Sj∂/∂Tは第j番目の面を持
つ第i番目の光学素材の線膨張係数Lniによる効果で ∂Di/∂T=Lni・Di (30) また∂Smj/∂Tはi番目の光学素子にあるj番目の
光学面が主走査方向の曲率半径Rmj の球面であるとす
ると ∂Smj/∂T=∂Rmj/∂T=Lni・Rmj (31) となる。この場合は球面であるが、非球面の場合は線膨
張係数分の比例拡大縮小で計算すれば良い。At this time, the back focus change ΔfB 1 MN (ΔT) due to the temperature change in the main scanning direction of the incident optical system is
Change in the refractive index of the optical material due to temperature changes, and further decomposed because due expansion and contraction of the optical material, △ fB 1 MN (△ T ) / △ T ≒ Σ∂fB 1 M / ∂ni · ∂ni / ∂T + Σ∂fB 1 M / ∂Di ・ ∂Di / ∂T + Σ∂fB 1 M / ∂Smj ・ ∂Smj / ∂T (29) Here, ni represents the refractive index of the material of the i-th optical element, Di represents the axial thickness of the i-th optical element, and Smj represents the j-th main scanning side optical element surface. ∂Di / ∂T and ∂Sj ∂ / ∂T are the effects of the linear expansion coefficient Lni of the i-th optical material having the j-th surface ∂Di / ∂T = Lni · Di (30) and ∂Smj / ∂T is ∂Smj / ∂T = ∂Rmj / ∂T = Lni · Rmj (31), assuming that the jth optical surface of the ith optical element is a spherical surface having a radius of curvature Rmj in the main scanning direction. In this case, it is a spherical surface, but in the case of an aspherical surface, it may be calculated by proportional expansion / contraction of the linear expansion coefficient.
【0043】ここで光学素子の軸上厚変化によるバック
フォーカス変化∂fB1M/∂Diは他の要因に比べて変化
が小さいことにより ∂fB1M/∂Di・∂Di/∂T〜0 (32) とおける。この結果(29)式は △fB1MN(△T)/△T =Σ∂fB1M/∂ni・∂ni/∂T+Σ∂fB1M/∂Smj・∂Smj/∂T (33) とおくことができる。副走査方向についても同様で、第
j番目の副走査方向の面の状態をSsj とすると △fB1SN (△T)/△T =Σ∂fB1S/∂ni・∂ni/∂T+Σ∂fB1S/∂Ssj・∂Ssj/∂T (34) となる。Here, the back focus change ∂fB 1 M / ∂Di due to the axial thickness change of the optical element is smaller than the other factors, and therefore ∂fB 1 M / ∂Di / ∂Di / ∂T ~ 0. (32) It can be said. As a result, the formula (29) is expressed as ΔfB 1 MN (ΔT) / ΔT = Σ∂fB 1 M / ∂ni ・ ∂ni / ∂T + Σ∂fB 1 M / ∂Smj ・ ∂Smj / ∂T (33) Can be set. The same applies to the sub-scanning direction. If the state of the j-th surface in the sub-scanning direction is Ssj, ΔfB 1 SN (ΔT) / ΔT = Σ∂fB 1 S / ∂ni ・ ∂ni / ∂T + Σ∂ fB 1 S / ∂Ssj / ∂Ssj / ∂T (34)
【0044】光学素子が樹脂製の場合、光学素材が硝子
製の場合に比べて温度変化による線膨張係数Lniがは
るかに大きく、∂Smj/∂Tや∂Ssj/∂Tは大きく
なる。また光学素材が樹脂製の場合、温度変化による屈
折率変化∂ni/∂Tも硝子に比べて大きい。j番目の
負のパワーの面と、j+1番目のパワーを持たない面と
を持つi番目の負のパワーを持つ光学素子が樹脂製で、
温度が上昇した場合、j番目の面の膨張の影響でバック
フォーカスは短くなる方向となり、これに加えて温度が
上昇すると屈折率がさがり、しかも負のパワーをもつた
め屈折率が下がるとさらにバックフォーカスが短くなる
方向である。以上のことより温度変化により入射光学系
の主走査方向、副走査方向の各方向に違うバックフォー
カス変化を持たせて、走査光学系の温度変化を全体とし
て補正する。特に、樹脂製の、主走査と副走査とに違う
パワーを持つ少なくとも1つの光学素子を用いれば、主
走査方向、副走査方向の各方向を独立して補正すること
が可能となる。When the optical element is made of resin, the linear expansion coefficient Lni due to temperature change is much larger than when the optical material is made of glass, and ∂Smj / ∂T and ∂Ssj / ∂T are large. When the optical material is made of resin, the change in refractive index due to temperature change ∂ni / ∂T is also larger than that of glass. The optical element having the j-th negative power and the j + 1-th surface not having the power is made of resin,
When the temperature rises, the back focus tends to be shortened due to the influence of the expansion of the j-th surface, and in addition to this, the refractive index decreases when the temperature rises, and since it has negative power, the back focus further decreases. This is the direction in which the focus becomes shorter. From the above, different back focus changes are made in the main scanning direction and the sub-scanning direction of the incident optical system due to the temperature change, and the temperature change of the scanning optical system is corrected as a whole. In particular, by using at least one optical element made of resin and having different powers for the main scanning and the sub scanning, it is possible to independently correct each of the main scanning direction and the sub scanning direction.
【0045】以上より、入射光学系の温度変化による被
走査媒体への影響として3つの要因を考慮した全体系の
温度変化の式(15)、式(16)は、式(18)、式
(19)、式(22)、式(23)、式(27)、式
(28)式より △fBm(△T) =Mm2・(−L・lx・△T+fB1Mλ(△T)+△fB1MN(△T)) +△fB2M(△T) (35) △fBs(△T) =−Ms2・L・lx・△T +M2s2・(△fB1Sλ(△T)+△fB1SN(△T))+△fB2S(△T) (36) と表わすことができる。このように走査光学系の主走査
方向、副走査方向の走査光学系の温度変化によるバック
フォーカス変化を、各方向独自に入射光学系で補正する
には、まず主走査方向で上記3つの影響を考慮して固定
部材の材料および光学素材を選定して主走査方向の温度
変化による走査光学系のバックフォーカス変化をほぼ打
ち消し、次に副走査方向において上記3つの影響を考慮
して、上記材料の主走査方向での選定の他に、入射光学
系の副走査方向に負のパワーを持つ樹脂製の光学素子の
パワーを選定して、副走査方向の温度変化による走査光
学系のバックフォーカス変化をほぼ打ち消すような手順
で入射光学系を設計すればよい。From the above, the equations (15) and (16) of the temperature change of the entire system considering the three factors as the influence of the temperature change of the incident optical system on the medium to be scanned are given by the equations (18) and ( 19), the formula (22), the formula (23), the formula (27), and the formula (28), ΔfBm (ΔT) = Mm 2 · (−L·lx · ΔT + fB 1 Mλ (ΔT) + Δ fB 1 MN (△ T)) + △ fB 2 M (△ T) (35) △ fBs (△ T) = -Ms 2・ L ・ lx ・ △ T + M 2 s 2・ (△ fB 1 Sλ (△ T ) + ΔfB 1 SN (ΔT)) + ΔfB 2 S (ΔT) (36) In this way, in order to correct the back focus change due to the temperature change of the scanning optical system in the main scanning direction and the sub scanning direction of the scanning optical system by the incident optical system independently in each direction, first, the above three influences in the main scanning direction are applied. In consideration of the above three influences in the sub-scanning direction, the back focus change of the scanning optical system due to the temperature change in the main scanning direction is almost canceled by selecting the material of the fixing member and the optical material. In addition to the selection in the main scanning direction, the power of the resin optical element having a negative power in the sub scanning direction of the incident optical system is selected to reduce the back focus change of the scanning optical system due to the temperature change in the sub scanning direction. The incident optical system may be designed in a procedure that almost cancels it.
【0046】主走査方向、副走査方向の各方向について
の走査光学系の深度と全体系の倍率、走査光学系の温度
変化によるバックフォーカス変化量の関係から、従来の
技術、例えば特開平2−161410号に開示された公
知の手段が適用可能かどうかがきまる。本発明を用いる
と、特開平2−161410号よりもコストアップとな
る場合が多いため、もし該公知の手段を利用可能であれ
ばこれを採用した方が良い。逆に本発明の場合、公知の
手段が適用できないとき有用である。このため、この発
明が有用な条件、すなわち公知の手段が適用不可能な条
件設定が必要となる。From the relationship between the depth of the scanning optical system in each of the main scanning direction and the sub-scanning direction, the magnification of the entire system, and the back focus change amount due to the temperature change of the scanning optical system, a conventional technique, for example, Japanese Unexamined Patent Publication No. Whether the known means disclosed in 161410 is applicable is determined. When the present invention is used, the cost is often higher than that in JP-A-2-161410. Therefore, if the known means can be used, it is preferable to adopt this. On the contrary, the present invention is useful when known means cannot be applied. Therefore, it is necessary to set conditions under which the present invention is useful, that is, conditions to which known means cannot be applied.
【0047】該公知の手段は、入射光学系が、光源と固
定部材により相互に固定されているコリメータと、副走
査方向に正のパワーを持つ硝子製のシリンドリカルレン
ズからなる光学系を用い、その入射光学系の 温度変化による光源とコリメータを取り付けている固
定部材の変化の影響 温度変化で生じる光源の波長変化による影響 温度変化による入射光学系内の光学素子の膨張、収
縮、屈折率変化による影響 の3つの温度変化の要因をコントロールして、走査光学
系の温度変化△Tによるバックフォーカス変化、主走査
方向では△fB2M(△T)、副走査方向では△fB2S(△
T)を補正し、入射光学系と走査光学系を合わせた光学
系全体のバックフォーカス変化、主走査方向では△fBm
(△T)、副走査方向では△fBs(△T)を各々各方向
の性能を維持できる範囲δm、δsにおさえるという方
法である。すなわち、 |△fBm(△T)|≦δm (37) |△fBs(△T)|≦δs (38) を満たさなければならない。The known means uses an optical system in which an incident optical system is composed of a collimator fixed to each other by a light source and a fixing member, and a cylindrical lens made of glass having a positive power in the sub-scanning direction. Effects of changes in the light source and the fixing member that mounts the collimator due to changes in the temperature of the incident optical system Effects of changes in the wavelength of the light source caused by changes in temperature Effects of expansion, contraction, and changes in the refractive index of optical elements in the incident optical system due to changes in temperature By controlling the three temperature change factors, the back focus change due to the temperature change ΔT of the scanning optical system, ΔfB 2 M (ΔT) in the main scanning direction, and ΔfB 2 S (ΔT in the sub scanning direction.
T) is corrected to change the back focus of the entire optical system including the incident optical system and the scanning optical system, and ΔfBm in the main scanning direction.
(ΔT) and ΔfBs (ΔT) in the sub-scanning direction are kept within the ranges δm and δs where the performance in each direction can be maintained. That is, | ΔfBm (ΔT) | ≦ δm (37) | ΔfBs (ΔT) | ≦ δs (38) must be satisfied.
【0048】入射光学系は次のように構成される。すな
わち、光源からでた光はコリメータを介して主走査方
向、副走査方向共にほぼ平行光となる。そして主走査方
向にはほぼパワーがなく、副走査方向に正のパワーを持
つ硝子製のシリンドリカルレンズを介して、偏向器近傍
で主走査方向はほぼそのまま平行光、副走査方向では集
光する光学系となっている。このため入射光学系で走査
光学系の温度変化によるバックフォーカス変化を補正す
るには、光源と固定部材により取り付けられたコリメー
タの温度変化による変化で上記3つの要因を用いてコン
トロールすることになる。コリメータの温度変化△Tに
よる上記3つの要因を合わせたバックフォーカス変化量
を△fBCOL(△T)とする。この値はコリメータが光学
的に光軸のまわりに回転対称であるため、主走査方向、
及び副走査方向の値は同じ値となる。The incident optical system is constructed as follows. That is, the light emitted from the light source becomes substantially parallel light in the main scanning direction and the sub scanning direction via the collimator. An optical system that has almost no power in the main scanning direction and, through a glass cylindrical lens having a positive power in the sub scanning direction, collimates the main scanning direction as it is in the vicinity of the deflector and condenses it in the sub scanning direction. It is a system. Therefore, in order to correct the back focus change due to the temperature change of the scanning optical system in the incident optical system, the change due to the temperature change of the collimator attached by the light source and the fixing member is controlled by using the above three factors. The back focus change amount that combines the above three factors due to the temperature change ΔT of the collimator is ΔfBCOL (ΔT). This value is because the collimator is optically rotationally symmetrical about the optical axis, so
And the values in the sub-scanning direction are the same.
【0049】副走査方向に正のパワーを持つシリンドリ
カルレンズは、主走査方向にはパワーを持たず、しかも
主走査方向においてはこのシリンドリカルレンズを通る
光はほぼ平行光であるため、主走査方向においてはシリ
ンドリカルレンズにより温度変化による影響は受けな
い。副走査方向におけるシリンドリカルレンズの温度変
化△Tによるバックフォーカス変化を△fBCY(△T)
とし、全体系の主走査横倍率の絶対値をMm、副走査横
倍率の絶対値をMs、走査光学系の副走査横倍率の絶対
値をM2sとすると、光学系全体での温度変化△Tによる
バックフォーカス変化量[主走査方向は△fBm(△
T)、副走査方向は△fBs(△T)]は以下の様にな
る。 主走査方向 △fBm(△T)=△fBCOL(△T)・Mm2+△fB2M(△T) (39) 副走査方向 △fBs(△T)=△fBCOL(△T)・Ms2+△fBCY(△T)・M2s2 +△fB2S(△T) (40)The cylindrical lens having a positive power in the sub-scanning direction has no power in the main scanning direction, and the light passing through the cylindrical lens in the main scanning direction is almost parallel light. Therefore, in the main scanning direction. Is not affected by temperature changes due to the cylindrical lens. The change in back focus due to the temperature change ΔT of the cylindrical lens in the sub-scanning direction is ΔfBCY (ΔT)
And the absolute value of the main scanning lateral magnification of the entire system is Mm, the absolute value of the sub-scanning lateral magnification is Ms, and the absolute value of the sub-scanning lateral magnification of the scanning optical system is M 2 s, the temperature change in the entire optical system Back focus change amount due to ΔT [ΔfBm (Δ in the main scanning direction
T) and ΔfBs (ΔT)] in the sub-scanning direction are as follows. Main scanning direction ΔfBm (ΔT) = ΔfBCOL (ΔT) · Mm 2 + ΔfB 2 M (ΔT) (39) Sub-scanning direction ΔfBs (ΔT) = ΔfBCOL (ΔT) · Ms 2 + △ fBCY (△ T) ・ M 2 s 2 + △ fB 2 S (△ T) (40)
【0050】ここで、公知例ではシリンドリカルレンズ
は硝子製であり、シリンドリカルレンズのバックフォー
カス変化量は小さく、また走査光学系の副走査縦倍率も
他の全系の倍率に比べて小さいため、(40)式の△f
BCY(△T)・M2s2項は △fBCOL(△T)・Ms2+△fB2S(△T)≫△fBCY(△T)・M2s2 (41) となり、△fBCY(△T)・M2s2〜0とおくことができ
る。このことにより副走査方向は(40)式から 副走査方向 △fBs(△T)=△fBCOL(△T)・Ms2+△fB2S(△T) (42) となる。(39)式、(42)式から、公知の手段を用
いた入射光学系による走査光学系の温度補償法は、主走
査方向、副走査方向共にコリメータの温度変化△Tによ
るバックフォーカス変化量△fBCOL(△T)の1つの値
に依存することが分かる。Here, in the known example, the cylindrical lens is made of glass, the back focus change amount of the cylindrical lens is small, and the sub-scanning vertical magnification of the scanning optical system is smaller than that of all other systems. Δf in the equation 40)
BCY (△ T) ・ M 2 s 2 term is △ fBCOL (△ T) ・ Ms 2 + △ fB 2 S (△ T) ≫ △ fBCY (△ T) ・ M 2 s 2 (41), which can be set as ΔfBCY (ΔT) · M 2 s 2 ˜0. As a result, the sub-scanning direction becomes from the formula (40) to the sub-scanning direction ΔfBs (ΔT) = ΔfBCOL (ΔT) · Ms 2 + ΔfB 2 S (ΔT) (42). From equations (39) and (42), the temperature compensation method of the scanning optical system by the incident optical system using the known means is the back focus change amount Δ due to the temperature change ΔT of the collimator in both the main scanning direction and the sub scanning direction. It can be seen that it depends on one value of fBCOL (ΔT).
【0051】該公知の手段が適用可能な条件は、上記
(39)、(42)式を同時に満たす温度変化△Tの時
のコリメータのバックフォーカス変化量△fBCOL(△T)
の目標値が、温度保証範囲に対応する保証温度変化範囲
△Tminから△Tmaxの範囲で常に存在する場合である。
これを図2でも説明したが改めて図6に示すと、図6
(a)の様に(39)式を満たす主走査の△fBCOL(△
T)の範囲と(42)式を満たす△fBCOL(△T)の範
囲が重複する場合である。また図6(b−1)や図6
(b−2)の場合は、主走査方向の(39)式と副走査
方向の(42)式を同時に満たす△fBCOL(△T)が存
在しない場合を表わし、本発明が必要となる範囲であ
る。The condition to which the known means can be applied is that the back focus change amount ΔfBCOL (ΔT) of the collimator when the temperature change ΔT simultaneously satisfies the expressions (39) and (42).
The target value of is always present in the guaranteed temperature change range ΔTmin to ΔTmax corresponding to the temperature guaranteed range.
This has been described with reference to FIG. 2, but when it is shown again in FIG.
As in (a), the main scanning ΔfBCOL (Δ
This is a case where the range of T) and the range of ΔfBCOL (ΔT) satisfying the expression (42) overlap. 6 (b-1) and FIG.
The case (b-2) represents the case where there is no ΔfBCOL (ΔT) that simultaneously satisfies the expression (39) in the main scanning direction and the expression (42) in the sub-scanning direction, within the range where the present invention is required. is there.
【0052】本発明を適用しなければならないための条
件を導くため、まず公知手段が適用できる範囲を再度算
出する。これは(39)式、(42)式の各方向の光学
系全体の温度△Tによるバックフォーカス変化を(3
7)式、(38)式に示される性能を維持できる範囲δ
m、δsに抑えなければならないので、(37)、(3
8)式を書き替えると 主走査方向 −δm≦△fBCOL(△T)・Mm2+△fB2M(△T)≦ δm (43) 副走査方向 −δs≦△fBCOL(△T)・Ms2+△fB2S(△T)≦ δs (44) で表わされる。さらに変形すると 主走査方向 −(δm+△fB2M(△T))/Mm2≦ △fBCOL(△T) ≦(δm−△fB2M(△T))/Mm2 (45) 副走査方向 −(δs+△fB2S(△T))/Ms2≦ △fBCOL(△T) ≦(δs−△fB2S(△T))/Ms2 (46) となる。In order to derive the conditions for applying the present invention, the range to which the known means can be applied is first calculated again. This is because the back focus change due to the temperature ΔT of the entire optical system in each direction of equations (39) and (42) is (3
Range δ in which the performance shown in the equations (7) and (38) can be maintained
Since it must be suppressed to m and δs, (37), (3
Rewriting equation 8), main scanning direction −δm ≦ ΔfBCOL (ΔT) · Mm 2 + ΔfB 2 M (ΔT) ≦ δm (43) Sub scanning direction −δs ≦ ΔfBCOL (ΔT) · Ms 2 + ΔfB 2 S (ΔT) ≦ δs (44) When further deformed, the main scanning direction − (δm + ΔfB 2 M (ΔT)) / Mm 2 ≦ ΔfBCOL (ΔT) ≦ (δm−ΔfB 2 M (ΔT)) / Mm 2 (45) Sub scanning direction − (Δs + ΔfB 2 S (ΔT)) / Ms 2 ≦ ΔfBCOL (ΔT) ≦ (δs−ΔfB 2 S (ΔT)) / Ms 2 (46)
【0053】ここで本発明を適用しなければならないの
は、図6(b−1)、図6(b−2)の様に主走査方向
及び副走査方向の両方向で、(45)式、(46)式を
同時に満足する△fBCOL(△T)の目標値が存在しない
場合がその条件となる。すなわち(45)式、(46)
式から 図6(b−1)の場合 (δm−△fB2M(△T))/Mm2≦ −(δs+△fB2S(△T))/Ms2 (47) 図6(b−2)の場合 (δs−△fB2S(△T))/Ms2≦ −(δm+△fB2M(△T))/Mm2 (48) となり、(47)式あるいは(48)式のいずれかを満
足する範囲であれば、公知の手段が適用不可能となり、
本発明が必要となる範囲となる。The present invention should be applied to the equation (45) in both the main scanning direction and the sub-scanning direction as shown in FIGS. 6 (b-1) and 6 (b-2). The condition is that there is no target value of ΔfBCOL (ΔT) that simultaneously satisfies the expression (46). That is, equation (45), (46)
From the formula, in the case of FIG. 6 (b-1) (δm−ΔfB 2 M (ΔT)) / Mm 2 ≦ − (δs + ΔfB 2 S (ΔT)) / Ms 2 (47) FIG. 6 (b− In the case of 2), (δs-ΔfB 2 S (ΔT)) / Ms 2 ≦-(δm + ΔfB 2 M (ΔT)) / Mm 2 (48), which is the formula (47) or (48). If any of the ranges is satisfied, known means cannot be applied,
This is within the scope of the present invention.
【0054】さらに(47)、(48)式を変形する
と、 δm/Mm2+δs/Ms2 ≦ |△fB2M(△T)/Mm2−△fB2S(△T)/Ms2| (49) 上記(49)式のδm、δsの性能維持範囲は主走査、
副走査のビーム許容深度から設計による像面湾曲マージ
ン、加工誤差、配置誤差マージンを引いた実質性能を維
持できる範囲で、(13)式、(14)式で記載した形
となる。また高解像度化に対してはビーム許容係数は少
なくともε=1.1位にしなければならない。このよう
な事項を(49)式に代入すると (0.18/λ)・[(ω0M2/Mm2)+(ω0S2/Ms2)] ≦|△fB2M(△T)/Mm2−△fB2S(△T)/Ms2| (50) となる。ここで、ω0Mは主走査方向の走査光学系の光軸
上の被走査媒体周辺でのビームウエスト径、ω0Sは副走
査方向の走査光学系の光軸上の被走査媒体周辺でのビー
ムウエスト径、λは光源から発する光の波長を表わす。By further modifying the equations (47) and (48), δm / Mm 2 + δs / Ms 2 ≤ | ΔfB 2 M (ΔT) / Mm 2 −ΔfB 2 S (ΔT) / Ms 2 | (49) The performance maintaining range of δm and δs in the above formula (49) is the main scanning,
The form described by the equations (13) and (14) is obtained within a range in which the substantial performance can be maintained by subtracting the field curvature margin by design, the processing error, and the placement error margin from the allowable beam depth of the sub-scan. Further, for higher resolution, the beam acceptance coefficient must be at least ε = 1.1. Substituting such an item into the equation (49), (0.18 / λ) · [(ω 0 M 2 / Mm 2 ) + (ω 0 S 2 / Ms 2 )] ≦ | ΔfB 2 M (ΔT ) / Mm 2 −ΔfB 2 S (ΔT) / Ms 2 | (50). Where ω 0 M is the beam waist diameter around the scanned medium on the optical axis of the scanning optical system in the main scanning direction, and ω 0 S is around the scanned medium on the optical axis of the scanning optical system in the sub-scanning direction. The beam waist diameter of λ, λ represents the wavelength of the light emitted from the light source.
【0055】また△Tmax(≧0)、△Tmin(≦0)は
基準設計温度T0 に対する、動作仕様の温度範囲に対す
る温度変化量の上下限を表わすとすると、 T0+△Tmin ≦ T0 ≦ T0+△Tmax (51) この温度範囲の中で(50)式を満たす温度変化量△T
が少しでも存在すれば、公知の手段を用いることは不可
能となり、本発明の手段が必要となる条件となる。通常
温度変化に対する各光学系のバックフォーカス変化は、
温度変化に対して単調増加あるいは単調減少である。こ
のため、この光走査装置の動作温度保証範囲の下限温度
T0+△Tmin(すなわち△T=△Tmin)と上限温度T
0 +△Tmax (すなわち△T=△Tmax)のいずれかが
(50)式を満たせば、本発明が必要となる条件とな
る。これを式で表すと (0.18/λ)・[(ω0M2/Mm2)+(ω0S2/Ms2)] ≦|△fB2M(△Tmax)/Mm2−△fB2S(△Tmax)/Ms2| (52) あるいは (0.18/λ)・[(ω0M2/Mm2)+(ω0S2/Ms2)] ≦|△fB2M(△Tmin)/Mm2−△fB2S(△Tmin)/Ms2| (53) となる。If ΔTmax (≧ 0) and ΔTmin (≦ 0) represent the upper and lower limits of the amount of temperature change with respect to the reference design temperature T 0 with respect to the temperature range of the operating specification, then T 0 + ΔT min ≦ T 0 ≦ T 0 + ΔTmax (51) Temperature change amount ΔT satisfying the equation (50) within this temperature range
If there is even a little, it becomes impossible to use the known means, which is a condition that requires the means of the present invention. The back focus change of each optical system with respect to the normal temperature change is
It increases or decreases monotonically with temperature changes. Therefore, the lower limit temperature T 0 + ΔTmin (that is, ΔT = ΔTmin) and the upper limit temperature T of the operating temperature guarantee range of this optical scanning device are set.
If any of 0 + ΔTmax (that is, ΔT = ΔTmax) satisfies the expression (50), the condition for the present invention is required. This can be expressed by an equation: (0.18 / λ) · [(ω 0 M 2 / Mm 2 ) + (ω 0 S 2 / Ms 2 )] ≦ | ΔfB 2 M (ΔTmax) / Mm 2 −Δ fB 2 S (ΔTmax) / Ms 2 | (52) or (0.18 / λ) · [(ω 0 M 2 / Mm 2 ) + (ω 0 S 2 / Ms 2 )] ≦ | ΔfB 2 M (ΔTmin) / Mm 2 −ΔfB 2 S (ΔTmin) / Ms 2 | (53).
【0056】本発明においては、光源と共に固定部材に
取り付けられており、光学面が光軸に対して回転対称で
あるコリメータである第一光学系と、光源からみてコリ
メータの後方にある副走査方向に負のパワーをもつ樹脂
製のシリンドリカルレンズを含む第二光学系からなる、
全体として副走査方向に正のパワーを持つアナモフィッ
ク光学系である入射光学系を用いる。コリメータ光学系
の温度変化によるすでに述べた3つの要因からなる影響
で、走査光学系の温度変化による主走査方向のバックフ
ォーカス変化を補正する。このとき、副走査方向につい
ては、上記コリメータによる補正だけでは補正不足とな
り、シリンドリカル光学系の負のパワーを持つシリンド
リカルレンズのパワーでその不足分を補正しようとする
ものである。この光学装置の場合、コリメータをでた光
は主走査、副走査共に平行光であるため、コリメータ光
学系、シリンドリカル光学系については各々無限光学系
となり、2つの光学系を分離して設計、および実機評価
が可能となり、また配置についても調整しやすい光学装
置である。In the present invention, the first optical system, which is a collimator whose optical surface is rotationally symmetrical with respect to the optical axis, is attached to the fixed member together with the light source, and the sub-scanning direction behind the collimator when viewed from the light source. Consisting of a second optical system including a resin cylindrical lens with negative power
An incident optical system, which is an anamorphic optical system having a positive power in the sub-scanning direction as a whole, is used. The back focus change in the main scanning direction due to the temperature change of the scanning optical system is corrected by the influence of the above-mentioned three factors due to the temperature change of the collimator optical system. At this time, in the sub-scanning direction, the correction is insufficient only by the correction by the collimator, and the shortage is corrected by the power of the cylindrical lens having the negative power of the cylindrical optical system. In the case of this optical device, since the light emitted from the collimator is parallel light in both main scanning and sub-scanning, the collimator optical system and the cylindrical optical system are infinite optical systems, respectively, and the two optical systems are designed separately. It is an optical device that allows evaluation of actual equipment and makes it easy to adjust the layout.
【0057】また他の構成として、光源からみて順に、
光源と共に固定部材により固定されている、主走査方向
では発散光源からの光をほぼ平行光にし、副走査方向に
ついては負のパワーを持つ樹脂製のアナモフィック光学
素子を持つアナモフィックな第一光学系と、全体として
副走査方向に正のパワーを持つシリンドリカル光学系か
らなる第二光学系とによって構成される入射光学系とし
てもよい。この装置は、主走査方向の温度変化による走
査光学系のバックフォーカス変化を、樹脂製のアナモフ
ィック光学素子を含めて光源と共に取り付けられている
固定部材の温度変化の影響、温度変化で生じる光源の波
長変化の影響、温度変化による樹脂製のアナモフィック
光学素子を含む光学系内の屈折率変化、および光学素子
の膨張、収縮による影響で補正し、副走査方向の温度変
化による走査光学系のバックフォーカス変化を、これら
3つの影響の他にこのアナモフィックレンズの負のパワ
ーの影響で補正を行なう装置である。シリンドリカル光
学系は正のパワーを持つ硝子製のシリンドリカルレンズ
を用いればよく、温度変化に対して大きな影響を及ぼさ
ない。As another configuration, when viewed from the light source,
An anamorphic first optical system, which is fixed by a fixing member together with the light source, makes the light from the divergent light source almost parallel in the main scanning direction and has a resin anamorphic optical element with negative power in the sub scanning direction. , And the second optical system composed of a cylindrical optical system having a positive power in the sub-scanning direction as a whole. This device measures the back focus change of the scanning optical system due to the temperature change in the main scanning direction, the influence of the temperature change of the fixing member mounted together with the light source including the resin anamorphic optical element, and the wavelength of the light source caused by the temperature change. Back focus change of the scanning optical system due to temperature change in the sub-scanning direction is corrected by the effect of change, the refractive index change in the optical system including the anamorphic optical element made of resin due to temperature change, and the effect due to expansion and contraction of the optical element. Is a device for performing correction by the influence of the negative power of the anamorphic lens in addition to these three influences. The cylindrical optical system may use a cylindrical lens made of glass having a positive power, and does not have a great influence on the temperature change.
【0058】もしこのアナモフィック光学素子が主走査
方向に正のパワーを持つ場合、主走査方向の温度変化に
よるバックフォーカス変化が小さい走査光学系にしか適
用できないが、第一の光学系の光学素子の数を減らせる
可能性がある。もしこのアナモフィック光学素子が主走
査方向に負のパワーを持つ場合、温度変化による主走査
方向のバックフォーカス変化量が大きく、この変化に対
して補正効果を及ぼす固定部材の温度変化による膨張、
収縮だけでは補正しきれない走査光学系の追加補正分と
なり有用になる。もしアナモフィック光学素子が主走査
方向にパワーをほとんど持たない場合、すなわち副走査
方向に負のパワーを持つシリンドリカルレンズの場合、
アナモフィックレンズに比べて加工しやすい。If this anamorphic optical element has a positive power in the main scanning direction, it can be applied only to the scanning optical system in which the back focus change due to the temperature change in the main scanning direction is small, but that of the optical element of the first optical system. May reduce the number. If this anamorphic optical element has negative power in the main scanning direction, the back focus change amount in the main scanning direction due to temperature change is large, and the expansion due to temperature change of the fixing member exerts a correction effect on this change,
This is useful as an additional correction amount for the scanning optical system that cannot be corrected only by contraction. If the anamorphic optical element has almost no power in the main scanning direction, that is, in the case of a cylindrical lens having negative power in the sub-scanning direction,
Easier to process than anamorphic lenses.
【0059】[0059]
【実施例】ここでは本発明の入射光学系と走査光学系の
実施例を示す。図1は後に述べる入射光学系の実施例と
走査光学系の1例とを合わせた図である。この光学系は
レーザー光源1、レーザー光源と固定部材2’に取り付
けられている第一の光学系2、第二の光学系であるシリ
ンドリカルレンズ系4からなる入射光学系と、偏向装置
である回転多面鏡5と樹脂製レンズ7、8からなる走査
光学系である。EXAMPLES Examples of the incident optical system and the scanning optical system of the present invention will be described below. FIG. 1 is a diagram combining an example of an incident optical system and an example of a scanning optical system described later. This optical system includes a laser light source 1, an incident optical system including a laser light source, a first optical system 2 attached to a fixing member 2 ', and a cylindrical lens system 4 which is a second optical system, and a rotating device which is a deflecting device. The scanning optical system includes a polygon mirror 5 and resin lenses 7 and 8.
【0060】レーザー光源1からの光は入射光学系の第
一の光学系2、入射光学系のシリンドリカルレンズ系あ
るいは第二の光学系4を通り回転多面鏡5に入射する。
このとき回転多面鏡近傍では、光束は主走査方向はほぼ
平行光、副走査方向では1回集光する。その回転多面鏡
5は回転の中心6が走査光学系の光軸9からずれて配設
されている。この回転多面鏡5により反射された光は、
走査光学系の結像レンズ7、8により被走査面10に結
像されると共に、副走査面内においては回転多面鏡の反
射面と被走査面が幾何光学的にほぼ共役関係にある。こ
のときの走査光学系(図1において6以降)の1例を表
1に示す。このときの基準設計波長は780nmであ
る。なお、ポリゴンミラー内仮想瞳を面番号1とする。Light from the laser light source 1 passes through the first optical system 2 of the incident optical system, the cylindrical lens system of the incident optical system or the second optical system 4 and enters the rotary polygon mirror 5.
At this time, in the vicinity of the rotary polygon mirror, the light beam is almost parallel in the main scanning direction and once in the sub scanning direction. The rotating polygonal mirror 5 is arranged such that the center of rotation 6 is displaced from the optical axis 9 of the scanning optical system. The light reflected by the rotating polygon mirror 5 is
An image is formed on the surface to be scanned 10 by the imaging lenses 7 and 8 of the scanning optical system, and in the sub-scanning surface, the reflecting surface of the rotary polygon mirror and the surface to be scanned are in a substantially geometrically conjugate relationship. Table 1 shows an example of the scanning optical system (6 or later in FIG. 1) at this time. The reference design wavelength at this time is 780 nm. Note that the virtual pupil in the polygon mirror is plane number 1.
【0061】表1の走査光学系は図7に示すように、2
つの樹脂製レンズ7、8からなり、走査第一レンズ7の
S2面は球面、走査第一レンズ7のS3面、走査第二レ
ンズ8のS5面はAs shown in FIG. 7, the scanning optical system shown in Table 1 has 2
The scanning first lens 7 has an S2 surface which is a spherical surface, the scanning first lens 7 has an S3 surface, and the scanning second lens 8 has an S5 surface.
【数5】 φ2=y2+z2 C*=C+A2 C*:近軸曲率 で表わされる軸対称非球面である。S4面は、図8に示
すように、回転多面鏡の反射面の出入りにより、各ふれ
角の仮想瞳の位置が異なってくるために生じる副走査方
向の像面湾曲を補正するための非対称アナモフィック面
で、副走査方向断面内の曲率半径の変化が光軸からの距
離hに対して非対称な面を含み、回転多面鏡に入射され
るレーザー光源からの光と走査光学系の光軸とのなす角
をα、回転多面鏡の内接円半径をRp 、面数をn、光軸
非対称面の光軸を含む主走査方向断面内における曲率半
径をR、光軸を含む副走査方向断面内における曲率半径
をr0 、走査光学系の光軸を中心として回転多面鏡の回
転中心を含む主走査側を−側、その反対側を+側とした
ときに、図8に示すように+側と−側とは非対称であ
り、主走査方向に光軸から+、−にそれぞれhだけ離れ
た位置で光軸に平行な副走査断面内における曲率半径r
h(+)、rh(−)は rh(±)=r0+{1+k(±)・Rp・α/n}・R・[1−cos{sin-1(h/R)}] (55) で表わされる。またこの走査光学系の印字幅はほぼA4
サイズに対応する220mmであり、性能保証する像高
は−110mmから+110mmまでとする。(Equation 5) φ 2 = y 2 + z 2 C * = C + A 2 C *: Axisymmetric aspherical surface represented by paraxial curvature. As shown in FIG. 8, the S4 surface is an asymmetric anamorphic for correcting the field curvature in the sub-scanning direction caused by the position of the virtual pupil at each deflection angle being different due to the entrance and exit of the reflecting surface of the rotary polygon mirror. In the surface, the change in the radius of curvature in the cross section in the sub-scanning direction includes a surface asymmetric with respect to the distance h from the optical axis, and the light from the laser light source incident on the rotating polygon mirror and the optical axis of the scanning optical system are The angle is α, the radius of the inscribed circle of the rotary polygon mirror is Rp, the number of surfaces is n, the radius of curvature in the main scanning direction cross section including the optical axis of the optical axis asymmetric surface is R, and the sub scanning direction cross section including the optical axis. When the radius of curvature at is 0 , the main scanning side including the rotation center of the rotary polygonal mirror about the optical axis of the scanning optical system is the − side, and the opposite side is the + side, as shown in FIG. And − are asymmetrical, and are separated from the optical axis by + h in the main scanning direction. Radius of curvature r in the sub-scan section parallel to the optical axis at the position
h (+) and rh (−) are rh (±) = r 0 + {1 + k (±) · Rp · α / n} · R · [1-cos {sin −1 (h / R)}] (55 ) Is represented. The print width of this scanning optical system is approximately A4.
The height is 220 mm corresponding to the size, and the image height that guarantees the performance is from -110 mm to +110 mm.
【0062】この走査光学系は、以上のように非対称面
を用いることにより、回転多面鏡の面の出入りの影響に
よる像面湾曲を補正している。この時の主走査方向、及
び副走査方向の像面を図9(a)に、また各方向の基準
像面でのビーム径を図9(b)に示す。このときの走査
光学系の被走査面付近の走査光学系の光軸上のビームウ
エスト径は、主走査方向については48μm、副走査に
ついては56μmと設定しており、ビーム径の高解像化
にも対応可能となっている。ここで、ビーム径の定義は
ビームプロファイルの1/e2 の強度の径を表わしてい
る。この走査光学系の光軸上での主走査方向、副走査方
向のビーム許容深度はX0m、X0s 、主走査方向の光軸
上のビームウエスト径ω0M=0.048mm、副走査方
向の光軸上のビームウエスト径ω0S=0.056mmで
波長λ=780nmであるため、ε=1.1として
(9)、(10)式より、 X0m=1.0mm X0s=1.4mm となり、走査光学系の軸上深度は従来に比べて小さい。
またこの走査光学系の像高に対する像面湾曲の状態を表
わす図9(a)をみると、像高−110mmの範囲で、
主走査方向は像高に対してレンジで0.4mm、副走査
方向は像高に対してレンジで1.2mm像面が変動して
いる。そのため設計値の像面湾曲マージンは少なくとも
主走査方向は0.2mm、副走査方向は0.6mmはあ
る。これを含めて、像高を光軸からはなれたとき設計的
に生じるビーム内の収差による深度減少、及び配置、加
工マージンを考慮にいれると、以前の述べたように性能
を維持できる片側範囲、主走査方向δm、副走査方向δ
sは、光軸上のビーム許容深度の少なくとも1/2は必
要であるから δm=0.5mm δs=0.7mm となる。すなわちこの走査光学系を含めた全体系では、
温度変化分のマージンはこの性能維持マージン以下にお
さえなければならない。By using the asymmetric surface as described above, this scanning optical system corrects the field curvature due to the influence of the entrance and exit of the surface of the rotary polygon mirror. The image planes in the main scanning direction and the sub-scanning direction at this time are shown in FIG. 9A, and the beam diameter on the reference image plane in each direction is shown in FIG. 9B. At this time, the beam waist diameter on the optical axis of the scanning optical system in the vicinity of the surface to be scanned of the scanning optical system is set to 48 μm in the main scanning direction and 56 μm in the sub-scanning. Is also available. Here, the definition of the beam diameter represents the diameter of the intensity of 1 / e 2 of the beam profile. The allowable beam depths in the main scanning direction and the sub-scanning direction on the optical axis of this scanning optical system are X 0 m and X 0 s, the beam waist diameter ω 0 M on the optical axis in the main scanning direction is 0.048 mm, Since the beam waist diameter on the optical axis in the scanning direction is ω 0 S = 0.056 mm and the wavelength is λ = 780 nm, ε = 1.1 is set and X 0 m = 1.0 mm X from Equations (9) and (10) Since 0 s = 1.4 mm, the axial depth of the scanning optical system is smaller than that of the conventional one.
Further, looking at FIG. 9A showing the state of the field curvature with respect to the image height of this scanning optical system, in the range of the image height −110 mm,
In the main scanning direction, the range is 0.4 mm with respect to the image height, and in the sub scanning direction, the range is 1.2 mm with respect to the image height. Therefore, the field curvature margin of the design value is at least 0.2 mm in the main scanning direction and 0.6 mm in the sub scanning direction. Including this, considering the depth reduction due to the aberration in the beam that occurs by design when the image height is deviated from the optical axis, and the arrangement and the processing margin, one-sided range in which the performance can be maintained as described above, Main scanning direction δm, Sub scanning direction δ
Since s requires at least 1/2 of the allowable beam depth on the optical axis, δm = 0.5 mm and δs = 0.7 mm. That is, in the whole system including this scanning optical system,
The margin of temperature change must be kept below this performance maintenance margin.
【0063】この走査光学系の基準設計温度は25度
で、動作温度保証範囲は通常少なくとも10度から50
度の範囲が必要となる。ここでは、この走査光学系の温
度変化による影響が、下限の10度(温度変化量△T=
−15度)に比べて上限の50度(温度変化量△T=+
25度)で大きく、また光学系の温度変化によるバック
フォーカス等の影響は単調増加、あるいは単調減少であ
るので、温度変化による影響の大きい上限の50度すな
わち△Tmax =+25度について議論する。基準設計温
度に対して25℃上がったとすると、樹脂の屈折率の変
化、及び線膨張率、によって、図10(a)のような像
面となる。図9(a)と比較すると主走査、副走査各像
面が、全体的にほぼ同様の像面湾曲形状を保ちながら以
下の様に像面位置シフトしている。 主走査 △fB2M(△T=+25度)=+1.725mm 副走査 △fB2S(△T=+25度)=+1.499mm となる。ここで△fB2M(△T=+25)、△fB2S(△
T=+25)は△T=+25℃だけ基準設計温度より上
昇したときの、走査光学系だけによるバックフォーカス
への影響を表わす。またこのとき温度変化△Tに対する
屈折率変化△nは △n/△T=−12×10-5/℃ またレンズ構成素材の線膨張係数L2 は L2 =7×10-5/℃ 温度変化△Tに対する光源の波長変化△λは △λ/△T=0.2nm/℃ として算出を行なった。このため、基準設計温度で波長
が780nmである光源は、基準設計温度より25度上昇
すると785nmの波長の光を発することになる。上記の
ようにε=1.1(許容ビーム径主走査52.8μm、
副走査61.6μm)とした場合、主走査方向約1m
m、副走査方向約1.4mmの片側深度しかなく、この
像面湾曲のシフト量では主走査方向、副走査方向共に許
容ビーム径より大きくなる。実際に図10(b)は基準
設計温度より25℃上昇したときの基準像面でのビーム
径を表わす。この図を見るとかなりビーム径が変化して
おり、このままでは使用不可能である。このように、こ
の高解像対応の走査光学系においては以下の実施例で示
す入射光学系で補正しなければならない。The standard design temperature of this scanning optical system is 25 degrees, and the operating temperature guarantee range is usually at least 10 degrees to 50 degrees.
A range of degrees is needed. Here, the influence of the temperature change of the scanning optical system is the lower limit of 10 degrees (temperature change amount ΔT =
Compared to −15 degrees, the upper limit is 50 degrees (temperature change ΔT = +
Since the influence of back focus and the like due to the temperature change of the optical system is monotonically increasing or decreasing, the upper limit of 50 degrees, ie, ΔTmax = + 25 degrees, which is greatly influenced by the temperature change, will be discussed. If the temperature rises by 25 ° C. with respect to the reference design temperature, the image plane as shown in FIG. 10A is obtained due to the change in the refractive index of the resin and the linear expansion coefficient. As compared with FIG. 9A, the image planes of main scanning and sub-scanning have image plane position shifts as described below while maintaining substantially the same curved image plane shape. Main scan ΔfB 2 M (ΔT = + 25 degrees) = + 1.725 mm Sub-scan ΔfB 2 S (ΔT = + 25 degrees) = + 1.499 mm Where ΔfB 2 M (ΔT = + 25), ΔfB 2 S (Δ
T = + 25) represents the influence of the scanning optical system alone on the back focus when ΔT = + 25 ° C. is raised from the reference design temperature. At this time, the refractive index change Δn with respect to the temperature change ΔT is Δn / ΔT = −12 × 10 −5 / ° C. Further, the linear expansion coefficient L 2 of the lens constituent material is L 2 = 7 × 10 −5 / ° C. Temperature The wavelength change Δλ of the light source with respect to the change ΔT was calculated as Δλ / ΔT = 0.2 nm / ° C. Therefore, a light source having a wavelength of 780 nm at the reference design temperature emits light having a wavelength of 785 nm when the temperature rises by 25 degrees from the reference design temperature. As described above, ε = 1.1 (allowable beam diameter main scanning 52.8 μm,
When sub-scanning is 61.6 μm), main scanning direction is about 1 m
There is only one side depth of m, about 1.4 mm in the sub-scanning direction, and the shift amount of the field curvature becomes larger than the allowable beam diameter in both the main scanning direction and the sub-scanning direction. Actually, FIG. 10B shows the beam diameter on the reference image plane when the temperature rises by 25 ° C. from the reference design temperature. Looking at this figure, the beam diameter has changed considerably, and it cannot be used as it is. As described above, in the high resolution scanning optical system, the incident optical system shown in the following embodiments must be used for correction.
【0064】ここで主走査方向、副走査方向について、
各々の方向のビームウエスト径を48μm、56μmと
するために、入射光学系、走査光学系の仕様は表2のよ
うになる。入射光学系は図1において光源1から回転多
面鏡5の近傍までの範囲を表わし、光源1からでた光は
主走査方向では光学系2から4でほぼ平行光となり、副
走査方向では光学系2から4で回転多面鏡近傍で結像す
る。上記走査光学系の仕様から、走査光学系の光軸上の
主走査方向のビームウエスト径はω0M=48μmであ
り、副走査方向のビームウエスト径はω0S=56μmで
あるため、上述の動作温度保証範囲の上限の基準設計温
度との差△Tmax=+25度を(52)式に代入する
と、(0.18/λ)・[(ω0M2/Mm2)+(ω0S2/Ms
2)]=7.48×10-3(mm)≦|△fB2M(△T)/Mm2
−△fB2S(△T)/Ms2|=1.02×10-2(mm)とな
り、(52)式を満足する。この結果、この走査光学系
は公知の手段で温度補正することは不可能であることが
わかり、本発明による入射光学系を用いなければならな
い。Here, regarding the main scanning direction and the sub-scanning direction,
Table 2 shows the specifications of the incident optical system and the scanning optical system so that the beam waist diameters in each direction are 48 μm and 56 μm. The incident optical system represents the range from the light source 1 to the vicinity of the rotating polygonal mirror 5 in FIG. 1, and the light emitted from the light source 1 becomes almost parallel light in the optical systems 2 to 4 in the main scanning direction and the optical system in the sub scanning direction. From 2 to 4, an image is formed near the rotary polygon mirror. From the specifications of the scanning optical system, the beam waist diameter in the main scanning direction on the optical axis of the scanning optical system is ω 0 M = 48 μm, and the beam waist diameter in the sub-scanning direction is ω 0 S = 56 μm. When the difference ΔTmax = + 25 degrees from the upper limit of the guaranteed operating temperature range of ΔTmax = + 25 degrees is substituted into the expression (52), (0.18 / λ) · [(ω 0 M 2 / Mm 2 ) + (ω 0 S 2 / Ms
2 )] = 7.48 × 10 −3 (mm) ≦ | ΔfB 2 M (ΔT) / Mm 2
−ΔfB 2 S (ΔT) / Ms 2 | = 1.02 × 10 −2 (mm), which satisfies the expression (52). As a result, it has been found that this scanning optical system cannot be temperature-corrected by known means, and therefore the incident optical system according to the present invention must be used.
【0065】上記表2に記載されている仕様で表1の走
査光学系に適合した入射光学系の本発明の実施例を以下
に示す。 実施例1 表3(a)(b)に示される実施例は、入射光学系が光
源と固定部材により相互に固定されている光学面が光軸
に対して回転対称であるコリメータと、副走査方向に負
のパワーをもつ樹脂製の光学素子を持ち、全体として副
走査方向に正のパワーを持つアナモフィック光学系から
なり、主走査方向と副走査方向の温度変化に対する走査
光学系のバックフォーカス変化を補正する手段を形成し
ている例である。表中の記号は Ri :光源側から第i番目の頂点曲率半径 di :光源側から第i番目のレンズ面間隔 ni :光源側から第i番目のレンズ素材の波長780nm
での屈折率 ni':光源側から第i番目のレンズ素材の波長785nm
での屈折率 とするThe following is an example of the present invention of an incident optical system adapted to the scanning optical system of Table 1 with the specifications described in Table 2 above. Example 1 In Examples shown in Tables 3 (a) and 3 (b), a collimator in which an optical surface of which an incident optical system is fixed to each other by a light source and a fixing member is rotationally symmetric with respect to an optical axis, and sub-scanning is performed. The anamorphic optical system has a resin optical element that has negative power in the main scanning direction and positive power in the sub scanning direction as a whole. The back focus change of the scanning optical system with respect to temperature changes in the main scanning direction and the sub scanning direction. This is an example of forming a means for correcting. Symbols in the table are: Ri: i-th vertex radius of curvature from the light source side di: i-th lens surface distance from the light source side ni: wavelength of the i-th lens material from the light source side 780 nm
Refractive index ni ': wavelength of the i-th lens material from the light source side is 785 nm
And the refractive index at
【0066】ここで表3(a)は主走査方向のデータ、
表3(b)は副走査方向のデータを示す。またこの光学
系の断面図を、主走査方向は図11(a)、副走査方向
は図11(b)に示す。コリメータは、表3(a)、
(b)において第1面から第6面までの光学系からな
り、このコリメータ鏡枠は固定部材により光源と相互に
固定されている。この固定部材の材質はアルミニウムを
用いている。このとき、コリメータ鏡枠の材質は、上記
固定部材の材質に比べて温度変化に対する線膨張係数が
小さいものを使用している。アナモフィック光学系は第
7面から第10面からなり、このうち第9面、第10面
は樹脂製のシリンドリカルレンズである。またコリメー
タの焦点距離はfCOL=8.707mmで、アナモフィ
ック光学系の副走査方向の焦点距離fCY=93.129
mmであり、これに伴い第一の光学系における副走査方
向の倍率はM1s=10.70倍となる。Table 3 (a) shows data in the main scanning direction,
Table 3 (b) shows data in the sub-scanning direction. A cross-sectional view of this optical system is shown in FIG. 11A for the main scanning direction and FIG. 11B for the sub-scanning direction. The collimator is shown in Table 3 (a),
In (b), it comprises an optical system from the first surface to the sixth surface, and this collimator lens frame is fixed to the light source by a fixing member. Aluminum is used as the material of the fixing member. At this time, the collimator lens frame is made of a material having a smaller linear expansion coefficient with respect to temperature change than the material of the fixing member. The anamorphic optical system includes seventh to tenth surfaces, of which the ninth and tenth surfaces are resin cylindrical lenses. The focal length of the collimator is fCOL = 8.707 mm, and the focal length of the anamorphic optical system in the sub-scanning direction is fCY = 93.129.
mm, and accordingly, the magnification in the sub-scanning direction in the first optical system becomes M 1 s = 10.70 times.
【0067】この入射光学系と上記走査光学系を組み合
わせて、温度△T=+25度変化したときの全体光学系
のバックフォーカス変化量を算出する。入射光学系の主
走査方向において、温度が25度上昇したときの光学素
材の屈折率変化、膨張収縮による、入射光学系に対して
光源と反対方向から平行光を入射したときの光源付近で
のバックフォーカスの変化量△fB1MN(△T=+25
度)は △fB1MN(△T=+25度)=1.56×10-4mm 入射光学系の主走査方向において、温度が25度上昇し
たときの光源の波長変化による、入射光学系に対して光
源と反対方向から平行光を入射したときの光源付近での
バックフォーカスの変化量△fB1Mλ(△T=+25
度)は △fB1Mλ(△T=+25度)=1.863×10-3mmBy combining this incident optical system and the above scanning optical system, the back focus change amount of the entire optical system when the temperature ΔT changes by +25 degrees is calculated. In the main scanning direction of the incident optical system, due to the refractive index change and expansion / contraction of the optical material when the temperature rises by 25 degrees, the light near the light source when parallel light is incident on the incident optical system from the direction opposite to the light source Back focus change amount ΔfB 1 MN (ΔT = + 25
Degree) is ΔfB 1 MN (ΔT = + 25 degrees) = 1.56 × 10 −4 mm In the main scanning direction of the incident optical system, the incident optical system is affected by the wavelength change of the light source when the temperature rises by 25 degrees. On the other hand, the amount of change in the back focus near the light source when parallel light is incident from the direction opposite to the light source ΔfB 1 Mλ (ΔT = + 25
Degree) is ΔfB 1 Mλ (ΔT = + 25 degrees) = 1.863 × 10 −3 mm
【0068】入射光学系の副走査方向において、温度が
25度上昇したときの光学素材内の屈折率、膨張収縮に
よるバックフォーカスの変化量△fB1SN(△T=+25
度)は △fB1SN(△T=+25度)=−0.929mm 入射光学系の副走査方向において、温度が25度上昇し
たときの光源の波長変化によるバックフォーカス変化量
△fB1Sλ(△T=+25度)は △fB1Sλ(△T=+25度)=+0.233mm となる。In the sub-scanning direction of the incident optical system, when the temperature rises by 25 degrees, the refractive index in the optical material and the change amount of the back focus due to expansion and contraction ΔfB 1 SN (ΔT = + 25
Degree) is ΔfB 1 SN (ΔT = + 25 degrees) = − 0.929 mm In the sub-scanning direction of the incident optical system, the back focus change amount ΔfB 1 Sλ (due to the wavelength change of the light source when the temperature rises 25 degrees. △ T = + 25 °) is △ fB 1 Sλ (△ T = + 25 °) = + a 0.233Mm.
【0069】光源と入射光学系の一部を相互に固定して
いる固定部材の影響を求めるために、温度変化△T=+
25度変化したときの、入射光学系から見た光源の移動
量△Sをもとめるため(17)式を用いると △S=−L・lx・△T となる。ここで固定部材の線膨張係数はアルミニウムの
線膨張係数から L=23×10-6/℃ となる。lx は前述の通り入射光学系の主走査方向の焦
点距離f1M=8.707mmとおく。この結果、上式△
Sは △S=−5.01×10-3 (mm) となる。In order to obtain the influence of the fixing member that fixes the light source and a part of the incident optical system to each other, the temperature change ΔT = +
When the equation (17) is used to obtain the amount of movement ΔS of the light source as seen from the incident optical system when changing by 25 °, ΔS = −L·lx · ΔT. Here, the linear expansion coefficient of the fixing member is L = 23 × 10 −6 / ° C. from the linear expansion coefficient of aluminum. As described above, lx is set to the focal length f 1 M of the incident optical system in the main scanning direction = 8.707 mm. As a result, the above formula △
S is ΔS = −5.01 × 10 −3 (mm).
【0070】尚、入射光学系内の各レンズの温度による
屈折率変化量△n/△T及び線膨張係数Lnについて
は、以下の数値を用いて各バックフォーカス変化量を計
算している。 レンズNo. 面No. △n/△T(/℃) Ln(/℃) 1 1、2 2.8×10-6 74×10-7 2 3、4 6.6×10-6 59×10-7 3 5、6 3.0×10-6 62×10-7 4 7、8 2.8×10-6 74×10-7 5 9、10 −12×10-5 6×10-5 但し、このときレンズ面間隔については、(32)式で
述べたようにバックフォーカスへの影響が微少なため、
線膨張をかけないで計算をおこなっている。また温度に
対する光源の波長変化量△λ/△Tは △λ/△T=0.2nm/℃ としている。このため、△λ(△T=25℃)=5nm
となり、λ(△T=25℃)=785nmとなる。For the refractive index change amount Δn / ΔT and the linear expansion coefficient Ln depending on the temperature of each lens in the incident optical system, the back focus change amount is calculated using the following numerical values. Lens No. Surface No. Δn / ΔT (/ ° C) Ln (/ ° C) 1 1, 2 2.8 × 10 -6 74 × 10 -7 2 3, 4 6.6 x 10 -6 59 x 10 -7 3 5, 6 3.0 x 10 -6 62 x 10 -7 4 7, 8 2.8 x 10 -6 74 x 10 -7 5 9, 10 −12 × 10 −5 6 × 10 −5 However, at this time, the lens surface distance has a small influence on the back focus as described in the equation (32),
Calculation is performed without applying linear expansion. The amount of wavelength change Δλ / ΔT of the light source with respect to temperature is Δλ / ΔT = 0.2 nm / ° C. Therefore, Δλ (ΔT = 25 ° C) = 5 nm
And λ (ΔT = 25 ° C.) = 785 nm.
【0071】また 光学系全体の主走査横倍率絶対値 Mm=f2M/f1M=22.970倍 (Mm2=527.6倍) 走査光学系の副走査横倍率絶対値 M2s=0.988倍 光学系全体の副走査横倍率絶対値 Ms=M1s・M2s=10.568倍 (Ms2=111.7倍) であり、温度が△T=+25度変化したときの走査光学
系のバックフォーカス変化量は 主走査方向△fB2M(△T=25度)=1.725mm 副走査方向△fB2S(△T=25度)=1.499mm であるから、これらを(35)式、(36)式に代入す
ると、走査光学系、入射光学系をあわせた光学系全体
で、温度が25度上昇したときのバックフォーカス変化
量の値、主走査方向fBm(△T=+25度)、副走査方
向fBs(△T=+25度)は以下の様になる。 主走査方向 △fBm(△T) =Mm2・{−L・lx・△T+△fB1Mλ(△T)+△fB1MN(△T)}+△fB2M(△T) =527.6・(−5.01×10-3+1.863×10-3+1.56×10-4)+1.725mm =0.147mm 副走査方向 △fBs(△T) =−Ms2・L・lx・△T +M2s2・{△fB1Sλ(△T)+△fB1SN(△T)}+△fB2S(△T) =−111.7・5.01×10-3+(0.988)2・(0.233-0.929)+1.499 =0.260mmAbsolute main scanning lateral magnification of the entire optical system Mm = f 2 M / f 1 M = 22.970 times (Mm 2 = 527.6 times) Sub scanning lateral magnification absolute value of the scanning optical system M 2 s = 0.988 times, the absolute value of the sub-scanning lateral magnification of the entire optical system is Ms = M 1 s · M 2 s = 10.568 times (Ms 2 = 111.7 times), and the temperature changes by ΔT = + 25 degrees. At this time, the back focus change amount of the scanning optical system is ΔfB 2 M (ΔT = 25 degrees) = 1.725 mm in the main scanning direction and ΔfB 2 S (ΔT = 25 degrees) = 1.499 mm in the sub scanning direction. By substituting these into the equations (35) and (36), the value of the back focus change amount when the temperature rises by 25 degrees and the main scanning direction fBm in the entire optical system including the scanning optical system and the incident optical system. (ΔT = + 25 degrees) and the sub-scanning direction fBs (ΔT = + 25 degrees) are as follows. Main scanning direction ΔfBm (ΔT) = Mm 2 · {-L·lx · ΔT + ΔfB 1 M λ (ΔT) + ΔfB 1 MN (ΔT)} + ΔfB 2 M (ΔT) = 527.6・ (-5.01 × 10 -3 + 1.863 × 10 -3 + 1.56 × 10 -4 ) +1.725 mm = 0.147 mm Sub-scanning direction △ fBs (△ T) = -Ms 2・ L ・ lx ・ △ T + M 2 s 2・ {△ fB 1 S λ (△ T) + △ fB 1 SN (△ T)} + △ fB 2 S (△ T) = -111.7 ・ 5.01 × 10 -3 + (0.988) 2・ (0.233 -0.929) + 1.499 = 0.260mm
【0072】この光学系全体でのバックフォーカス変化
は、性能を維持できる範囲にはいらなければならない。
このため(3)式、(4)式を満たさなければならな
い。この走査光学系の性能を維持できる範囲は主走査方
向δm=0.5mm、副走査方向δs=0.7mmであ
るから |△fBm(△T=+25度)=0.147mm| ≦0.5mm |△fBs(△T=+25度)=0.260mm| ≦0.7mm となり、(3)式、(4)式を満足する。これにより、
この実施例は温度変化による走査光学系のバックフォー
カス変化を主走査方向、副走査方向の各方向について入
射光学系で十分補正できていることがわかる。The change in the back focus of the entire optical system must be within the range where the performance can be maintained.
Therefore, the expressions (3) and (4) must be satisfied. The range in which the performance of this scanning optical system can be maintained is δm = 0.5 mm in the main scanning direction and δs = 0.7 mm in the sub scanning direction. | ΔfBm (ΔT = + 25 degrees) = 0.147 mm | ≦ 0.5 mm | ΔfBs (ΔT = + 25 degrees) = 0.260 mm | ≦ 0.7 mm, which satisfies the equations (3) and (4). This allows
In this embodiment, it is understood that the back focus change of the scanning optical system due to the temperature change can be sufficiently corrected by the incident optical system in each of the main scanning direction and the sub scanning direction.
【0073】(実施例2)表4(a)(b)に示す実施
例は、入射光学系が光源と固定部材により相互に固定さ
れ、主走査方向で発散光源からの光をほぼ平行光にする
作用を有し、副走査方向については負のパワーを持つア
ナモフィックレンズを持つアナモフィックな第一の光学
系と、全体として副走査方向に正のパワーを持つアナモ
フィック光学系からなる第二の光学系からなり、主走査
方向と副走査方向の温度変化に対する走査光学系の温度
変化によるバックフォーカス変化を補正する手段を構成
する実施例である。ここでは上記アナモフィックレンズ
として、加工が容易なシリンドリカルレンズを採用して
いる。表4(a)は主走査方向のデータ、表4(b)は
副走査方向のデータを表わす。またこの実施例の光学系
の断面図を、主走査方向は図13(a)、副走査方向は
図13(b)に示す。主走査方向においては、表1の第
1面から第8面までの光学系は、光源からでた光をほぼ
平行光にする作用をもち、副走査方向においては、入射
光学系全体で、光源から出射した光を回転多面鏡周辺に
結像する作用を持つ。そのうち第3面から第4面は主走
査方向ではパワーがほぼ0で、副走査方向においては負
のパワーを持つ樹脂製のシリンドリカルレンズであり、
第9面から第10面は主走査方向のパワーはほぼ0で、
副走査方向においては正のパワーを持つシリンドリカル
レンズである。(Example 2) In the examples shown in Tables 4 (a) and 4 (b), the incident optical system is fixed to each other by the light source and the fixing member, and the light from the divergent light source is made into substantially parallel light in the main scanning direction. And an anamorphic first optical system having an anamorphic lens having negative power in the sub-scanning direction, and a second optical system consisting of an anamorphic optical system having positive power in the sub-scanning direction as a whole. In this embodiment, the means for correcting the back focus change due to the temperature change of the scanning optical system with respect to the temperature change in the main scanning direction and the sub scanning direction is constituted. Here, as the anamorphic lens, a cylindrical lens that is easy to process is adopted. Table 4 (a) shows data in the main scanning direction, and Table 4 (b) shows data in the sub-scanning direction. A cross-sectional view of the optical system of this embodiment is shown in FIG. 13A for the main scanning direction and FIG. 13B for the sub-scanning direction. In the main scanning direction, the optical system from the first surface to the eighth surface in Table 1 has a function of making the light emitted from the light source substantially parallel light, and in the sub-scanning direction, the entire incident optical system includes the light source. It has the function of focusing the light emitted from the periphery of the rotating polygon mirror. Of these, the third surface to the fourth surface are resin cylindrical lenses having a power of almost 0 in the main scanning direction and a negative power in the sub scanning direction,
From the 9th surface to the 10th surface, the power in the main scanning direction is almost 0,
It is a cylindrical lens having a positive power in the sub-scanning direction.
【0074】この入射光学系の全光学素子について、そ
の鏡枠が固定部材により光源と相互に固定されている。
固定部材の材質にはアルミニウムを用いている。このと
き上記鏡枠の材質の温度変化による線膨張係数は、上記
固定部材の材質の線膨張係数より小さい材料からなって
いる。また主走査方向の焦点距離fCOL=8.707m
mで、入射光学系における副走査方向の倍率はM1s =
10.70倍となる。The lens frame of all the optical elements of this incident optical system is fixed to the light source by a fixing member.
Aluminum is used as the material of the fixing member. At this time, the coefficient of linear expansion of the material of the lens frame due to temperature change is smaller than that of the material of the fixing member. Also, the focal length in the main scanning direction fCOL = 8.707m
m, the magnification in the sub-scanning direction in the incident optical system is M 1 s =
It becomes 10.70 times.
【0075】この入射光学系と上記走査光学系を組み合
わせて、温度が+25度上昇したときの光学系全体のバ
ックフォーカス変化を算出する。実施例1の算出方法を
もちいて、 主走査方向 △fB1MN(△T=+25度)=−7.75×10-4mm △fB1Mλ(△T=+25度)=2.149×10-3mm 副走査方向 △fB1SN(△T=+25度)=−1.042mm △fB1Sλ(△T=+25度)=0.303mm となる。また固定部材の温度変化による線膨張係数は、
L=23×10-6/℃、固定部材への光源の取り付け部
から、固定部材への入射光学系の取り付け部までの間隔
lx を、実施例1と同じく入射光学系の主走査方向の焦
点距離とすると、lx=8.707mmとなる。この結
果、入射光学系から見た時の温度変化△Tを+25度と
したときの光源の移動量△Sは △S=−5.01×10-3(mm) となる。By combining this incident optical system and the above scanning optical system, the back focus change of the entire optical system when the temperature rises by +25 degrees is calculated. Using the calculation method of Example 1, main scanning direction ΔfB 1 MN (ΔT = + 25 degrees) = − 7.75 × 10 −4 mm ΔfB 1 Mλ (ΔT = + 25 degrees) = 2.149 × 10 −3 mm Sub-scanning direction ΔfB 1 SN (ΔT = + 25 degrees) = − 1.042 mm ΔfB 1 Sλ (ΔT = + 25 degrees) = 0.303 mm. Also, the coefficient of linear expansion due to the temperature change of the fixing member is
L = 23 × 10 −6 / ° C., the distance lx from the mounting portion of the light source to the fixing member to the mounting portion of the incident optical system to the fixing member is the same as in Example 1, the focal point in the main scanning direction of the incident optical system. In terms of distance, lx = 8.707 mm. As a result, the amount of movement ΔS of the light source is ΔS = −5.01 × 10 −3 (mm) when the temperature change ΔT viewed from the incident optical system is +25 degrees.
【0076】尚、入射光学系内の各レンズの温度による
屈折率変化量△n/△T及び線膨張係数Lnについて以
下の数値を用いて、各バックフォーカス変化量を計算し
ている。 レンズNo. 面No. △n/△T(/℃) Ln(/℃) 1 1、2 2.8×10-6 74×10-7 2 3、4 −12×10-5 6×10-5 3 5、6 5.3×10-6 86×10-7 4 7、8 3.0×10-6 62×10-7 5 9、10 2.8×10-6 74×10-7 但し、このときレンズ面間隔については、バックフォー
カスへの影響が微少なため線膨張をかけないで計算をお
こなっている。また温度に対する光源の波長変化量△λ
/△Tは △λ/△T=0.2nm/℃ としている。このため、△T=25℃では△λ=5nm
となる。The back focus change amount is calculated using the following numerical values for the refractive index change amount Δn / ΔT and the linear expansion coefficient Ln depending on the temperature of each lens in the incident optical system. Lens No. Surface No. Δn / ΔT (/ ° C) Ln (/ ° C) 1 1, 2 2.8 × 10 -6 74 × 10 -7 2 3, 4 -12 x 10 -5 6 x 10 -5 3 5, 6 5.3 x 10 -6 86 x 10 -7 4 7, 8 3.0 x 10 -6 62 x 10 -7 5 9, 10 2.8 × 10 −6 74 × 10 −7 However, at this time, the lens surface distance is calculated without linear expansion because the influence on the back focus is small. Also, the amount of wavelength change of the light source with respect to temperature Δλ
/ ΔT is Δλ / ΔT = 0.2 nm / ° C. Therefore, at ΔT = 25 ° C, Δλ = 5 nm
Becomes
【0077】また 光学系全体の主走査横倍率絶対値 Mm=f2M/f1M=22.970倍 (Mm2=527.6倍) 走査光学系の副走査横倍率絶対値 M2s=0.988倍 光学系全体の副走査横倍率絶対値 Ms=M1s・M2s=10.568倍 (Ms2=111.7倍) であり、温度が△T=+25度変化したときの走査光学
系のバックフォーカス変化量は 主走査方向△fB2M(△T=25度)=1.725mm 副走査方向△fB2S(△T=25度)=1.499mm であるから、これらを(35)式、(36)式に代入す
ると、走査光学系、入射光学系をあわせた光学系全体
で、温度が25度上昇したときのバックフォーカス変化
量の値、主走査方向fBm(△T=+25度)、副走査方
向fBs(△T=+25度)は以下の様になる。 主走査方向 △fBm(△T) =Mm2・{−L・lx・△T+△fB1Mλ(△T)+△fB1MN(△T)}+△fB2M(△T) =527.6・(−5.01×10-3+2.149×10-3−7.75×10-4)+1.725mm =−0.193mm 副走査方向 △fBs(△T) =−Ms2・L・lx・△T +M2s2・{△fB1Sλ(△T)+△fB1SN(△T)}+△fB2S(△T) =−111.7・5.01×10-3+(0.988)2・(0.303−1.042)+1.499 =0.218mmAbsolute main scanning lateral magnification of the entire optical system Mm = f 2 M / f 1 M = 22.970 times (Mm 2 = 527.6 times) Sub scanning lateral magnification absolute value of the scanning optical system M 2 s = 0.988 times, the absolute value of the sub-scanning lateral magnification of the entire optical system is Ms = M 1 s · M 2 s = 10.568 times (Ms 2 = 111.7 times), and the temperature changes by ΔT = + 25 degrees. At this time, the back focus change amount of the scanning optical system is ΔfB 2 M (ΔT = 25 degrees) = 1.725 mm in the main scanning direction and ΔfB 2 S (ΔT = 25 degrees) = 1.499 mm in the sub scanning direction. By substituting these into the equations (35) and (36), the value of the back focus change amount when the temperature rises by 25 degrees and the main scanning direction fBm in the entire optical system including the scanning optical system and the incident optical system. (ΔT = + 25 degrees) and the sub-scanning direction fBs (ΔT = + 25 degrees) are as follows. Main scanning direction ΔfBm (ΔT) = Mm 2 · {-L·lx · ΔT + ΔfB 1 M λ (ΔT) + ΔfB 1 MN (ΔT)} + ΔfB 2 M (ΔT) = 527.6・ (-5.01 × 10 -3 + 2.149 × 10 -3 -7.75 × 10 -4 ) + 1.725mm = -0.193mm Sub-scanning direction △ fBs (△ T) = -Ms 2・ L ・ lx ・ △ T + M 2 s 2 · {△ fB 1 S λ (△ T) + △ fB 1 SN (△ T)} + △ fB 2 S (△ T) = -111.7 ・ 5.01 × 10 -3 + (0.988) 2・ (0.303 -1.042) + 1.499 = 0.218 mm
【0078】この光学系全体でのバックフォーカス変化
は性能を維持できる範囲にはいらなければならない。こ
の走査光学系の性能を維持できる範囲は主走査方向δm
=0.5mm、副走査方向δs=0.7mmであるから ‖△fBm(△T=+25度)=−0.193mm‖ ≦0.5mm ‖△fBs(△T=+25度)= 0.218mm‖ ≦0.7mm となり、この実施例も温度変化による走査光学系のバッ
クフォーカス変化を、主走査方向、副走査方向の各方向
について入射光学系で十分補正できていることがわか
る。The back focus change in the entire optical system must be within the range where the performance can be maintained. The range in which the performance of this scanning optical system can be maintained is δm in the main scanning direction.
= 0.5 mm and δs = 0.7 mm in the sub-scanning direction ‖ΔfBm (ΔT = + 25 degrees) = − 0.193 mm‖ ≦ 0.5 mm ‖ΔfBs (ΔT = + 25 degrees) = 0.218 mm ‖ ≦ 0.7 mm, and it can be seen that in this embodiment, the back focus change of the scanning optical system due to the temperature change can be sufficiently corrected by the incident optical system in each of the main scanning direction and the sub scanning direction.
【0079】[0079]
【表1】 走査光学系の例 面番号 R(mm) r0(mm) d(mm) n(780nm) n’(785nm) 1 ∞ 29.0 2 -67.865 6.5 1.51922 1.51913 3 -40.774 92.0 4 -290.000 32.380 3.0 1.51922 1.51913 5 -606.715 103.5 非球面係数 第3面 k =−0.36231 A4 =−0.41334×10-7 P1= 4 A6 =−0.30407×10-9 P2= 6 A8 =−0.87238×10-14 P3= 8 A10=+0.49223×10-19 P4=10 第5面 k =−0.13137 A4 =−0.21906×10-6 P1= 4 A6 =+0.15502×10-10 P2= 6 A8 =−0.14610×10-14 P3= 8 A10=+0.55053×10-19 P4=10 入射光線角度 α = 1.5708(rad) 回転多面鏡内接円半径 Rp =17.3205(mm) 回転多面鏡面数 n =6 走査光学系主走査方向焦点距離 f2M=200mm 副走査方向の横倍率 M2s=−0.988 非対称面形状 k(−)=−1.125 k(+)=−1.020 使用波長 λ =780nm[Table 1] Example of scanning optical system Surface number R (mm) r 0 (mm) d (mm) n (780nm) n '(785nm) 1 ∞ 29.0 2 -67.865 6.5 1.51922 1.51913 3 -40.774 92.0 4 -290.000 32.380 3.0 1.51922 1.51913 5 -606.715 103.5 aspherical coefficients third surface k = -0.36231 A 4 = -0.41334 × 10 -7 P1 = 4 A 6 = -0.30407 × 10 -9 P2 = 6 A 8 = −0.87238 × 10 −14 P3 = 8 A 10 = + 0.49223 × 10 −19 P4 = 10 Fifth surface k = −0.13137 A 4 = −0.21906 × 10 −6 P1 = 4 A 6 = + 0.15502 × 10 −10 P2 = 6 A 8 = −0.14610 × 10 −14 P3 = 8 A 10 = + 0.55053 × 10 −19 P4 = 10 Incident ray angle α = 1.5708 (rad) Rotation polyhedral Radius of inscribed circle Rp = 17.3205 (mm) Number of rotating polygon mirror surfaces n = 6 Scanning optical system main scanning method Focal length f 2 M = 200 mm subscanning direction lateral magnification M 2 s = -0.988 asymmetric surface shape k (-) = - 1.125 k (+) = - 1.020 using the wavelength lambda = 780 nm
【0080】[0080]
【表2】 入射光学系、走査光学系の仕様 (走査光学系) 主走査方向焦点距離 f2M=200mm 副走査方向横倍率の絶対値 M2s=0.988倍 印字幅 像高−110mmから像高+110mm 温度△T=+25度変化したときの走査光学系のバックフォーカス変化 主走査方向△fB2M(△T=25度)= 1.725mm 副走査方向△fB2S(△T=25度)= 1.499mm 入射光学系 主走査方向の焦点距離 f1M= 8.707mm(NA0.30) 副走査方向横倍率の絶対値 M1s=10.70倍 光学系全体 主走査横倍率絶対値 Mm=f2M/f1M=22.970倍(Mm2=527.6倍) 副走査横倍率絶対値 Ms=M1s・M2s=10.568倍(Ms2=111.7倍)[Table 2] Specifications of incident optical system and scanning optical system (scanning optical system) Focal length in main scanning direction f 2 M = 200 mm Absolute value of lateral magnification in sub scanning direction M 2 s = 0.988 times Print width Image height -110 mm Image height +110 mm Change in back focus of scanning optical system when temperature ΔT = + 25 ° changes Main scanning direction ΔfB 2 M (ΔT = 25 °) = 1.725 mm Sub scanning direction ΔfB 2 S (ΔT = 25 degrees) = 1.499 mm Focal length in the main scanning direction of the incident optical system f 1 M = 8.707 mm (NA 0.30) Absolute value of lateral magnification in the sub scanning direction M 1 s = 10.70 times Overall main scanning lateral of the optical system Absolute magnification Mm = f 2 M / f 1 M = 22.970 times (Mm 2 = 527.6 times) Sub-scanning lateral magnification absolute value Ms = M 1 s · M 2 s = 10.568 times (Ms 2 = (111.7 times)
【0081】[0081]
【表3】実施例1 (a) 主走査方向 レンズ面No. Ri di ni ni' 1 ∞ 6.00 1.51072 1.51062 2 ∞ 1.00 3 −17.349 1.50 1.79323 1.79301 4 −6.801 0.20 5 ∞ 1.50 1.76203 1.76185 6 −18.509 3.00 7 ∞ 1.50 1.51072 1.51062 8 ∞ 1.00 9 ∞ 1.50 1.48595 1.48585 10 ∞ (b) 副走査方向 レンズ面No. Ri di ni ni' 1 ∞ 6.00 1.51072 1.51062 2 ∞ 1.00 3 −17.349 1.50 1.79323 1.79301 4 −6.801 0.20 5 ∞ 1.50 1.76203 1.76185 6 −18.509 3.00 7 19.320 1.50 1.51072 1.51062 8 ∞ 1.00 9 ∞ 1.50 1.48595 1.48585 10 28.501Table 3 Example 1 (a) Main scanning direction lens surface No. Ri di ni ni '1 ∞ 6.00 1.51072 1.51062 2 ∞ 1.00 3 -17.349 1.50 1.79323 1 .79301 4 -6.801 0.20 5 ∞ 1.50 1.76203 1.76185 6 -18.509 3.00 7 ∞ 1.50 1.51072 1.51062 8 ∞ 1.00 9 ∞ 1.50 1.48595 1.48585 10 ∞ (b) Sub-scanning direction Lens surface No. Ri di ni ni '1 ∞ 6.00 1.51072 1.51062 2 ∞ 1.00 3 -17.349 1.50 1.79323 1.79301 4 -6.801 0.20 5 ∞ 1.50 1.76203 1.76185 6 -18.509 3.00 7 19.320 1.50 1.51072 1.5 062 8 ∞ 1.00 9 ∞ 1.50 1.48595 1.48585 10 28.501
【0082】[0082]
【表4】実施例2 (a) 主走査方向 レンズ面No. Ri di ni ni' 1 ∞ 4.00 1.51072 1.51062 2 ∞ 1.00 3 ∞ 1.00 1.48595 1.48585 4 ∞ 1.00 5 −12.007 1.50 1.67496 1.67473 6 −5.954 0.20 7 ∞ 1.50 1.76203 1.76185 8 −14.424 4.00 9 ∞ 1.50 1.51072 1.51062 10 ∞ (b) 副走査方向 レンズ面No. Ri di ni ni' 1 ∞ 4.00 1.51072 1.51062 2 ∞ 1.00 3 −13.000 1.00 1.48595 1.48585 4 ∞ 1.00 5 −12.007 1.50 1.67496 1.67473 6 −5.954 0.20 7 ∞ 1.50 1.76203 1.76185 8 −14.424 4.00 9 23.554 1.50 1.51072 1.51062 10 ∞Table 4 Example 2 (a) Main scanning direction Lens surface No. Ri di ni ni '1 ∞ 4.00 1.51072 1.51062 2 ∞ 1.00 3 ∞ 1.00 1.48595 1.48585 4 ∞ 1.00 5 -12.007 1.50 1.67496 1.67473 6 -5.954 0.25 1.50 1.76203 1.76185 8 -14.424 4.09 ∞ 1.50 1.51072 1.51062 10 ∞ (b) Sub-scanning direction Lens surface No. Ri di ni ni '1 ∞ 4.00 1.51072 1.51062 2 ∞ 1.00 3 -13.000 1.00 1.48595 1.48585 4 ∞ 1.00 5 -12.007 1.50 1.67496 1.67473 6 -5.954 0.20 7 ∞ 1.50 1.76203 1.76185 8 -14.424 4.00 9 23.554 1.50 1.51072 1.51062 10 ∞
【0083】[0083]
【発明の効果】本発明の光走査装置は、各実施例から明
らかなように、入射光学系と光源とを固定し、その固定
部材の熱膨張と、入射光学系及び走査光学系中のアナモ
フィック光学系を総合的に考慮することにより、簡単な
構成で、仕様限界の温度変化に対しても、被走査面近傍
での焦点移動を所定の範囲に収めることができ、プラス
チックレンズを用いた光学系によって、環境温度の変化
にかかわらず従来に見ない高解像度を維持できる走査光
学系を実現できたものである。As is apparent from each embodiment, the optical scanning device of the present invention fixes the incident optical system and the light source, and the thermal expansion of the fixing member and the anamorphic optics in the incident optical system and the scanning optical system. By comprehensively considering the optical system, it is possible to keep the focal point movement in the vicinity of the surface to be scanned within a predetermined range with a simple configuration even with temperature changes at the specification limit. The system made it possible to realize a scanning optical system capable of maintaining high resolution unprecedented regardless of changes in environmental temperature.
【図1】本発明の光走査装置の全体構成を示す光学配置
図である。FIG. 1 is an optical layout diagram showing an overall configuration of an optical scanning device of the present invention.
【図2】温度変化によるコリメータのバックフォーカス
の変化の許容範囲の説明図である。FIG. 2 is an explanatory diagram of a permissible range of a change in back focus of a collimator due to a change in temperature.
【図3】ガウシアンビームのビームウエスト付近の形状
の説明図である。FIG. 3 is an explanatory diagram of a shape near a beam waist of a Gaussian beam.
【図4】ビームウエストと片側許容深度との関係を示す
グラフである。である。FIG. 4 is a graph showing a relationship between a beam waist and an allowable depth on one side. Is.
【図5】光源と入射光学系が固定部材で相互に固定され
ている構造の1例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of a structure in which a light source and an incident optical system are mutually fixed by a fixing member.
【図6】温度変化によるコリメータのバックフォーカス
の変化の許容範囲の設定法の説明図である。FIG. 6 is an explanatory diagram of a method for setting an allowable range of back focus change of a collimator due to temperature change.
【図7】本発明の走査装置における走査光学系の1例を
示す断面図である。FIG. 7 is a sectional view showing an example of a scanning optical system in the scanning device of the present invention.
【図8】上記図7に示す走査光学系に用いられるアナモ
フィック面の形状の説明図である。8 is an explanatory diagram of a shape of an anamorphic surface used in the scanning optical system shown in FIG.
【図9】上記図7に示す走査光学系の(a)は像面、
(b)はビーム径を示す線図である。9 (a) of the scanning optical system shown in FIG. 7 is an image plane,
(B) is a diagram showing a beam diameter.
【図10】温度変化を生じた場合の走査光学系の(a)
は像面、(b)はビーム径を示す線図である。FIG. 10 (a) of the scanning optical system when a temperature change occurs
Is an image plane, and (b) is a diagram showing a beam diameter.
【図11】本発明の入射光学系の実施例1の(a)は主
走査方向、(b)は副走査方向の断面図である。FIG. 11A is a cross-sectional view of Example 1 of the incident optical system of the present invention in the main scanning direction, and FIG. 11B is a cross-sectional view in the sub-scanning direction.
【図12】本発明の入射光学系の実施例2の(a)は主
走査方向、(b)は副走査方向の断面図である。FIG. 12A is a sectional view of a second embodiment of the incident optical system of the present invention in the main scanning direction, and FIG. 12B is a sectional view in the sub scanning direction.
1 光源 2 入射光学系中の第1の光学系
2’ 鏡枠 3 固定部材 4 第2の光学系
5 回転多面鏡 6 回転中心 7,8 結像レンズ
9 光軸 10 被走査面1 Light source 2 First optical system in incident optical system
2'Mirror frame 3 Fixing member 4 Second optical system
5 Rotating polygon mirror 6 Rotation center 7,8 Imaging lens
9 Optical axis 10 Scanned surface
Claims (5)
系、被走査媒体を含み、光源から出た光が入射光学系を
介して偏向器によって偏向され、走査光学系を介して被
走査媒体上に結像することによって被走査媒体上を走査
する光走査装置において、 走査光学系は少なくとも1つの正のパワーを持つ樹脂製
の光学素子を含むアナモフィックな光学系であり、 入射光学系は、光源と固定部材により相互に固定された
アナモフィックな光学系であり、主走査方向において光
源からでた発散光をほぼ平行光にする第一の光学系と、
該第一の光学系を介した光源からの光を、副走査方向に
おいて偏向器近傍で結像する第二の光学系とからなり、 第一の光学系、あるいは第二光学系のいずれかに副走査
方向に負のパワーを持つ樹脂製の光学素子を含むことを
特徴とする光走査装置。1. A light source, an incident optical system, a deflector, a scanning optical system, and a medium to be scanned, the light emitted from the light source is deflected by the deflector via the incident optical system, and scanned via the scanning optical system. In an optical scanning device that scans a scanned medium by forming an image on the medium, the scanning optical system is an anamorphic optical system including at least one resin optical element having positive power, and the incident optical system is A first optical system that is an anamorphic optical system that is fixed to each other by a light source and a fixing member, and that makes divergent light emitted from the light source in the main scanning direction to be substantially parallel light,
A second optical system which forms an image of light from the light source through the first optical system in the vicinity of the deflector in the sub-scanning direction, and is provided in either the first optical system or the second optical system. An optical scanning device comprising an optical element made of resin having a negative power in the sub-scanning direction.
光学系の結像面における主走査方向の光軸上のビームウ
エスト径、ωoSを走査光学系の結像面における副走査方
向の光軸上のビームウエスト径、Mmは主走査方向の全
光学系の横倍率の絶対値、Msは副走査方向の全光学系
の横倍率の絶対値、△fB2M(△T)、△fB2S(△T)
は温度変化が△Tの時の走査光学系だけによる主走査方
向、副走査方向各々についてのバックフォーカス変化、
λは使用波長を表わす。但し、ビーム径の定義はビーム
プロファイルの1/e2の強度の径とし、また△Tmax
(≧0)、△Tmin(≦0)は、基準設計温度T0に対す
る動作仕様の温度範囲に対する温度変化量の上下限 T0+△Tmin ≦ T0 ≦ T0+△Tmax を表わす。2. The method of claim 1] (0.18 / λ) · [(ωoM 2 / Mm 2) + (ωoS 2 / Ms 2) ] ≦ | △ fB 2 M (△ Tmax) / Mm 2 - △ fB 2 S (Tmax ) / Ms 2 | or (0.18 / λ) · [(ωoM 2 / Mm 2) + (ωoS 2 / Ms 2) ] ≦ | △ fB 2 M (△ Tmin) / Mm 2 - △ fB 2 S ( The optical scanning device according to claim 1, wherein Tmin) / Ms 2 | is satisfied. Here, ωoM is the beam waist diameter on the optical axis in the main scanning direction on the imaging plane of the scanning optical system, ωoS is the beam waist diameter on the optical axis in the sub-scanning direction on the imaging surface of the scanning optical system, and Mm is the main Absolute value of lateral magnification of all optical systems in the scanning direction, Ms is absolute value of lateral magnification of all optical systems in the sub-scanning direction, ΔfB 2 M (ΔT), ΔfB 2 S (ΔT)
Is the back focus change in the main scanning direction and the sub scanning direction by only the scanning optical system when the temperature change is ΔT,
λ represents the wavelength used. However, the definition of the beam diameter is the diameter of the intensity of 1 / e 2 of the beam profile, and ΔTmax
(≧ 0) and ΔTmin (≦ 0) represent the upper and lower limits T 0 + ΔTmin ≦ T 0 ≦ T 0 + ΔTmax of the temperature change amount with respect to the temperature range of the operation specification with respect to the reference design temperature T 0 .
互に固定されており、光軸に対して回転対称な光学面を
持つコリメータである第一の光学系と、光源からみてそ
のコリメータの後方にある副走査方向に負のパワーを持
つ樹脂製の光学素子を持ち、全体として主走査方向には
ほぼパワーがなく副走査方向に正のパワーを持つアナモ
フィックな第二の光学系とからなり、コリメータからで
た光は主走査、副走査の両方向でほぼ平行光となる請求
項1の光学装置。3. The first optical system, which is a collimator in which an incident optical system is fixed to each other by a light source and a fixing member, and has a rotationally symmetric optical surface with respect to the optical axis, and the collimator of the collimator when viewed from the light source. It has a resin optical element that has negative power in the sub-scanning direction behind it, and consists of an anamorphic second optical system that has almost no power in the main-scanning direction and positive power in the sub-scanning direction as a whole. 2. The optical device according to claim 1, wherein the light emitted from the collimator becomes substantially parallel light in both main scanning and sub scanning directions.
互に固定されており、主走査方向では発散光源からの光
をほぼ平行光にして実質的にコリメータの作用をし、副
走査方向では負のパワーを持つ樹脂製のアナモフィック
光学素子を持つアナモフィックな第一光学系と、全体と
して副走査方向に正のパワーを持つアナモフィック光学
系である第二光学系とからなり、上記第一光学系から出
た光は主走査方向ではほぼ平行光で副走査方向では発散
光となる請求項1の光走査装置。4. The incident optical system is fixed to each other by a light source and a fixing member, and in the main scanning direction, the light from the divergent light source is made into substantially parallel light to substantially act as a collimator, and in the sub scanning direction. An anamorphic first optical system having a resin-made anamorphic optical element having a negative power, and a second optical system which is an anamorphic optical system having a positive power in the sub-scanning direction as a whole, the first optical system. The optical scanning device according to claim 1, wherein the light emitted from the light source is substantially parallel light in the main scanning direction and divergent light in the sub scanning direction.
査方向に負のパワーを持つシリンドリカルレンズである
請求項4の光学装置5. The optical device according to claim 4, wherein the anamorphic optical element made of resin is a cylindrical lens having a negative power in the sub-scanning direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32116594A JPH08160330A (en) | 1994-12-01 | 1994-12-01 | Optical scanning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32116594A JPH08160330A (en) | 1994-12-01 | 1994-12-01 | Optical scanning device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08160330A true JPH08160330A (en) | 1996-06-21 |
Family
ID=18129532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32116594A Withdrawn JPH08160330A (en) | 1994-12-01 | 1994-12-01 | Optical scanning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08160330A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6369927B2 (en) | 1998-02-13 | 2002-04-09 | Ricoh Company, Ltd. | Optical scanning apparatus |
US6509995B1 (en) | 1999-09-01 | 2003-01-21 | Ricoh Company, Ltd. | Optical scanning device, line-image forming optical system therein, imaging adjustment method in the device and image forming apparatus |
JP2003043391A (en) * | 2001-07-30 | 2003-02-13 | Ricoh Co Ltd | Scanning image formation optical system, optical scanner and imaging apparatus |
JP2004361941A (en) * | 2003-05-15 | 2004-12-24 | Pentax Corp | Scanning optical system |
JP2007193349A (en) * | 2001-09-20 | 2007-08-02 | Ricoh Co Ltd | Optical scanner and image formation apparatus |
JP2008170982A (en) * | 2006-12-15 | 2008-07-24 | Hoya Corp | Scanning optical system and scanning optical device |
JP2011018055A (en) * | 2001-09-20 | 2011-01-27 | Ricoh Co Ltd | Optical scanner and image forming apparatus |
US8456502B2 (en) | 2010-03-11 | 2013-06-04 | Ricoh Company, Ltd. | Optical scanner and image forming apparatus using the same |
-
1994
- 1994-12-01 JP JP32116594A patent/JPH08160330A/en not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6445482B1 (en) | 1998-02-13 | 2002-09-03 | Ricoh Technology Research, Inc. | Optical scanning apparatus |
US6369927B2 (en) | 1998-02-13 | 2002-04-09 | Ricoh Company, Ltd. | Optical scanning apparatus |
US6788446B2 (en) | 1998-02-13 | 2004-09-07 | Ricoh Company, Ltd. | Optical scanning apparatus |
US6801351B2 (en) | 1999-09-01 | 2004-10-05 | Ricoh Company, Ltd. | Optical scanning device, line-image forming optical system therein, imaging adjustment method in the device and image forming apparatus |
US6509995B1 (en) | 1999-09-01 | 2003-01-21 | Ricoh Company, Ltd. | Optical scanning device, line-image forming optical system therein, imaging adjustment method in the device and image forming apparatus |
US6606179B2 (en) | 1999-09-01 | 2003-08-12 | Ricoh Company, Ltd. | Optical scanning device, line-image forming optical system therein, imaging adjustment method in the device and image forming apparatus |
JP2003043391A (en) * | 2001-07-30 | 2003-02-13 | Ricoh Co Ltd | Scanning image formation optical system, optical scanner and imaging apparatus |
JP4495883B2 (en) * | 2001-07-30 | 2010-07-07 | 株式会社リコー | Scanning imaging optical system, optical scanning device, and image forming apparatus |
JP2007193349A (en) * | 2001-09-20 | 2007-08-02 | Ricoh Co Ltd | Optical scanner and image formation apparatus |
JP2011018055A (en) * | 2001-09-20 | 2011-01-27 | Ricoh Co Ltd | Optical scanner and image forming apparatus |
JP2004361941A (en) * | 2003-05-15 | 2004-12-24 | Pentax Corp | Scanning optical system |
JP4565890B2 (en) * | 2003-05-15 | 2010-10-20 | Hoya株式会社 | Scanning optical system |
JP2008170982A (en) * | 2006-12-15 | 2008-07-24 | Hoya Corp | Scanning optical system and scanning optical device |
US8456502B2 (en) | 2010-03-11 | 2013-06-04 | Ricoh Company, Ltd. | Optical scanner and image forming apparatus using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5838480A (en) | Optical scanning system with diffractive optics | |
US6067106A (en) | Scanning optical apparatus | |
JP3222023B2 (en) | Optical scanning device | |
JP4395691B2 (en) | Laser scanner | |
US7586661B2 (en) | Optical scanning device and image forming apparatus | |
ITTO960119A1 (en) | OPTICAL ANALYZER | |
US7557974B2 (en) | Optical scanning apparatus and image forming apparatus using the same including relationship between interval between deflector and scanned surface and a natural convergent point | |
US6512623B1 (en) | Scanning optical device | |
US7414766B2 (en) | Optical beam scanning device having two sets of fθ mirrors where the mirror base and mirror face have differing coefficients of linear expansion | |
JP2001194610A (en) | Optical scanner and image forming device using same | |
JP3397638B2 (en) | Optical scanning optical system and image forming apparatus using the same | |
JPH08160330A (en) | Optical scanning device | |
US7375869B2 (en) | Tandem type scanning optical system | |
KR100435023B1 (en) | Multi-beam scanning optical system, mult-beam scanning optical apparatus, and image forming apparatus | |
KR102021173B1 (en) | Optical scanning apparatus | |
JPH0519202A (en) | Light beam scanning optical device | |
JP2007187739A (en) | Scanner | |
JP6115105B2 (en) | Scanning optical device | |
JP2019028453A (en) | Optical scanner | |
JP4366819B2 (en) | Optical scanning device | |
US20050152013A1 (en) | Scanning optical system | |
US6178030B1 (en) | Light-scanning optical system having wobble-correcting function and light-scanning apparatus using the same | |
JP2002090675A (en) | Optical scanner | |
JPH05341217A (en) | Temperature compensated scanning optical system | |
JP5332087B2 (en) | Optical scanning apparatus and image forming apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020205 |