Nothing Special   »   [go: up one dir, main page]

JPH08148966A - Surface acoustic wave element electrode - Google Patents

Surface acoustic wave element electrode

Info

Publication number
JPH08148966A
JPH08148966A JP28472994A JP28472994A JPH08148966A JP H08148966 A JPH08148966 A JP H08148966A JP 28472994 A JP28472994 A JP 28472994A JP 28472994 A JP28472994 A JP 28472994A JP H08148966 A JPH08148966 A JP H08148966A
Authority
JP
Japan
Prior art keywords
electrode
grain size
crystal grain
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28472994A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ota
康博 太田
Akitsuna Yuhara
章綱 湯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28472994A priority Critical patent/JPH08148966A/en
Publication of JPH08148966A publication Critical patent/JPH08148966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE: To provide a durable surface acoustic wave element electrode for which the power resistance of an electrode film is high, internal loss is less and characteristics are improved. CONSTITUTION: In the fine structure of the electrode film, the ratio of (the standard deviation of a crystal grain size/the average grain size of the crystal grain size) is defined as being equal to or less than 0.3, the ratio of (an average crystal grain size/a film thickness) is defined as being equal to or more than 0.2 and equal to or less than 1.0 and AlxMy (where M is at least one of Ti, Pd, Nb, Sc, Ni, Mg, Ge, Si, Co, Zn, Li, Ta, Au, Ag, Pt, Cf, Hf, Zr, Cd, W, V and Cu and (x) and (y) are 0<(y)<=20 and (x)+(y)=100 in wt.% display) is defined as electrode film material composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧電性基板上に金属薄
膜から成る多結晶体の電極を形成して成る弾性表面波素
子の電極(即ち弾性表面波素子電極)に関するものであ
り、特に、高い入力電力に対しても破損しない耐電力性
を備え、内部損失の低減も図って長期使用に耐えるよう
にした弾性表面波素子電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode of a surface acoustic wave device (that is, a surface acoustic wave device electrode) formed by forming a polycrystalline electrode made of a metal thin film on a piezoelectric substrate. The present invention relates to a surface acoustic wave element electrode having power resistance that is not damaged even with high input power and capable of withstanding long-term use by reducing internal loss.

【0002】[0002]

【従来の技術】近年、弾性表面波素子は、小形高性能な
バンドパスフィルタ及び共振子として応用範囲が拡大
し、動作周波数も数百MHzから数GHzと高周波化す
ると同時に高出力化が要求されるようになってきてい
る。また、高出力化を図るために、内部損失の低減及び
高耐電力性を持つ新しい構造が要求されるようになって
きている。高周波化を図るには、使用するすだれ状くし
形電極のピッチを狭くすると同時に電極幅も狭くする必
要が有り、中心周波数1GHzの時には電極幅は約1μ
mとなる。このような微細電極を用いた弾性表面波素子
の信頼性面での問題は、動作時に、弾性表面波によって
生じる基板表面の歪みが、表面上に形成された電極膜に
内部応力を発生させ、その応力が電極膜に作用すること
により、経過時間と共に電極材料原子が結晶粒界を通路
として移動し、電極に空隙(ボイド),突起(ヒロッ
ク)を発生させ、特性の劣化及び電極破壊が発生する点
がある。この問題に対処するため、従来から、例えば、
特公昭61−47010号公報に記載されているよう
に、使用する電極材料として、AlにCuを少量添加
し、電極の金属薄膜を硬化させることが行なわれてい
る。電極膜を硬化させる手段は、Cuの他にも、Ti,
Ni,Mg,Pd等を添加する方法も行なわれている。
2. Description of the Related Art In recent years, surface acoustic wave devices have expanded the range of applications as compact high-performance bandpass filters and resonators, and have been required to have high operating power as well as operating frequencies of several hundred MHz to several GHz. Is becoming more common. Further, in order to achieve higher output, a new structure with reduced internal loss and high power resistance has been required. In order to increase the frequency, it is necessary to narrow the pitch of the comb-shaped electrodes used and at the same time to narrow the electrode width. When the center frequency is 1 GHz, the electrode width is about 1 μm.
m. The problem in terms of reliability of the surface acoustic wave device using such a fine electrode is that the distortion of the substrate surface caused by the surface acoustic wave during operation causes internal stress in the electrode film formed on the surface, As the stress acts on the electrode film, the electrode material atoms move with the passage of the crystal grain boundaries along the passage of time, causing voids (voids) and protrusions (hillocks) in the electrode, resulting in deterioration of characteristics and electrode destruction. There is a point to do. To address this issue, traditionally, for example,
As described in Japanese Patent Publication No. 61-47010, it has been practiced to add a small amount of Cu to Al as an electrode material to be used and cure the metal thin film of the electrode. The means for curing the electrode film is not only Cu but also Ti,
A method of adding Ni, Mg, Pd, etc. is also performed.

【0003】しかし、従来の弾性表面波素子電極は、A
l膜にCu,Ti,Ni,Mg,Pd等を少量添加し電
極膜の硬化を行なう際に、添加量を増加するに伴い硬化
強度は増大し耐電力性は増大するが、一方、電極膜の比
抵抗が増加するために内部損失が増大するという問題が
あり、添加する元素および添加する量に大幅な制限があ
り、電極膜の微細構造に関する最適化がなされていなか
った。
However, the conventional surface acoustic wave device electrode is
When a small amount of Cu, Ti, Ni, Mg, Pd or the like is added to the 1 film to cure the electrode film, the curing strength increases and the power resistance increases as the addition amount increases. However, there is a problem that the internal loss is increased due to the increase in the specific resistance, the element to be added and the amount to be added are significantly limited, and the fine structure of the electrode film has not been optimized.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術は、電極
膜の硬化強度を増大させて耐電力性の向上を図ること、
電極膜の比抵抗を減少させて動作時の内部損失を低減さ
せることの、両方を同時に実現させることについては考
慮されていなかった。
SUMMARY OF THE INVENTION The above prior art is to increase the hardening strength of the electrode film to improve the electric power resistance.
It has not been considered to reduce the specific resistance of the electrode film to reduce the internal loss during operation, and to realize both at the same time.

【0005】本発明の目的は、耐電力性が高く、しかも
動作時の内部損失が低い弾性表面波素子電極の微細構造
および電極材料を提供することにある。
An object of the present invention is to provide a fine structure of an electrode of a surface acoustic wave device and an electrode material having high power resistance and low internal loss during operation.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明では圧電性基板上に金属薄膜よりなる多結晶
体の電極を形成して成る弾性表面波素子の電極におい
て、先ず、膜状の電極に対して透過型電子顕微鏡観察を
行った際、電極の結晶粒径の標準偏差と電極の結晶粒径
の平均粒径の比、即ち(結晶粒径の標準偏差/結晶粒径
の平均粒径)の値が0.3以下であるようにした。
In order to achieve the above object, in the present invention, an electrode of a surface acoustic wave device in which a polycrystalline electrode made of a metal thin film is formed on a piezoelectric substrate is used. When a transmission electron microscope observation was performed on a circular electrode, the ratio of the standard deviation of the crystal grain size of the electrode to the average grain size of the crystal grain size of the electrode, that is, (standard deviation of the crystal grain size / The value of (average particle size) was set to 0.3 or less.

【0007】また、圧電性基板上に金属薄膜よりなる多
結晶体の電極を形成して成る弾性表面波素子の電極にお
いて、膜状の電極に対して透過型電子顕微鏡観察を行っ
た際、電極の平均結晶粒径と電極の膜厚の比、即ち(平
均結晶粒径/膜厚)の値が0.2以上であり1.0以下
であるようにした。
Further, in an electrode of a surface acoustic wave device in which a polycrystalline electrode made of a metal thin film is formed on a piezoelectric substrate, when the film-shaped electrode is observed by a transmission electron microscope, the electrode is The ratio of the average crystal grain size to the film thickness of the electrode, that is, the value of (average crystal grain size / film thickness) is 0.2 or more and 1.0 or less.

【0008】更に上記条件のもとで、弾性表面波素子電
極を構成する金属薄膜の膜厚方向の平均組成が、Alx
Myなる合金(Alをx重量%、金属Mをy重量%含む
合金)で表させるようにした。但し、金属MはTi,P
d,Nb,Sc,Ni,Mg,Ge,Si,Co,Z
n,Li,Ta,Au,Ag,Pt,Cr,Hf,Z
r,Cd,W,V,Cuの中から選ばれた少なくとも一
つの金属を表し、かつ、0<y≦20,x+y=100
なる条件を満たすものとする。
Further, under the above conditions, the average composition in the film thickness direction of the metal thin film forming the surface acoustic wave element electrode is Alx.
The alloy is called My (alloy containing x% by weight of Al and y% by weight of metal M). However, the metal M is Ti, P
d, Nb, Sc, Ni, Mg, Ge, Si, Co, Z
n, Li, Ta, Au, Ag, Pt, Cr, Hf, Z
represents at least one metal selected from r, Cd, W, V and Cu, and 0 <y ≦ 20, x + y = 100
The following conditions shall be satisfied.

【0009】[0009]

【作用】圧電性基板に電極膜を形成する方法は、スパッ
タリング法及び真空蒸着法が用いられるが、膜の緻密性
及び合金膜の組成安定性の点から主にスパッタリング法
が用いられる。スパッタリング法により形成された電極
膜は多くの結晶粒からなる多結晶薄膜になることが殆ん
どであり、従って、膜組成が同一であっても膜の微細構
造、例えば、平均結晶粒径、結晶粒径の標準偏差、配向
性によりその膜特性は千差万別である。
As a method of forming an electrode film on a piezoelectric substrate, a sputtering method and a vacuum vapor deposition method are used, but the sputtering method is mainly used from the viewpoint of the denseness of the film and the composition stability of the alloy film. In most cases, the electrode film formed by the sputtering method is a polycrystalline thin film composed of many crystal grains. Therefore, even if the film composition is the same, the fine structure of the film, for example, the average crystal grain size, The film characteristics vary widely depending on the standard deviation of crystal grain size and orientation.

【0010】本発明者は、電極薄膜の平均結晶粒径及び
結晶粒径の標準偏差から成る結晶粒径分布に着目し検討
を加えた結果、耐電力および比抵抗の観点から最適な結
晶粒径分布の範囲が存在することを見出した。即ち、電
極膜の透過型電子顕微鏡観察により結晶粒径分布のヒス
トグラムを作成後、結晶粒径の平均結晶粒径及び標準偏
差を導出し、(結晶粒径の標準偏差/結晶粒径の平均粒
径)の値及び(平均結晶粒径/膜厚)の値と耐電力性の
関係を検討した結果、その値が低いほど耐電力性が向上
することを確認した。
The present inventor has paid attention to the crystal grain size distribution consisting of the average crystal grain size of the electrode thin film and the standard deviation of the crystal grain size. As a result, the inventors have found that the optimum crystal grain size is from the viewpoint of power resistance and specific resistance. It was found that a range of distribution exists. That is, after creating a histogram of the crystal grain size distribution by observing the electrode film with a transmission electron microscope, the average crystal grain size and standard deviation of the crystal grain size are derived, and ((standard deviation of crystal grain size / average grain size of crystal grain size As a result of examining the relationship between the value of (diameter) and the value of (average crystal grain size / film thickness) and the power resistance, it was confirmed that the lower the value, the higher the power resistance.

【0011】実験の結果、良好な耐電力性を得るために
は、(結晶粒径の標準偏差/結晶粒径の平均粒径)の値
は、0.3以下が好ましく、0.2以下が更に好ましい
ことを明らかにした。(平均結晶粒径/膜厚)の値は、
耐電力性及び比抵抗に影響を与える。平均結晶粒径が小
さいほど耐電力性は向上する傾向を示すが、一方、比抵
抗は増加し内部損失が増大する傾向を示すため、平均粒
径には最適範囲が存在する。実験の結果、(平均結晶粒
径/膜厚)の値が1.0以下の時、耐電力性向上に有効
であるが、0.2未満になると比抵抗が増加し内部損失
が増大するために好ましくないことを明らかにした。従
って、(平均結晶粒径/膜厚)の値は、0.2以上1.
0以下の範囲内にする必要がある。
As a result of the experiment, in order to obtain good power resistance, the value of (standard deviation of crystal grain size / average grain size of crystal grain size) is preferably 0.3 or less, and 0.2 or less. It has been clarified that it is more preferable. The value of (average crystal grain size / film thickness) is
Affects power resistance and specific resistance. The smaller the average crystal grain size, the more the power resistance tends to improve, while the specific resistance tends to increase and the internal loss tends to increase. Therefore, the average grain size has an optimum range. As a result of the experiment, when the value of (average crystal grain size / film thickness) is 1.0 or less, it is effective in improving the power resistance, but when it is less than 0.2, the specific resistance increases and the internal loss increases. Clarified that it is not preferable to. Therefore, the value of (average crystal grain size / film thickness) is 0.2 or more and 1.
It must be within the range of 0 or less.

【0012】そして、(結晶粒径の標準偏差/結晶粒径
の平均粒径)の値及び(平均結晶粒径/膜厚)の値を上
記数値範囲に設定し、かつ、電極を構成する金属薄膜の
膜厚方向の平均組成をAlxMyなる合金(Alをx重
量%、金属Mをy重量%含む合金)にすることにより大
幅な耐電力性向上及び内部損失の低減を実現することが
できる。金属Mは、Ti,Pd,Nb,Sc,Ni,M
g,Ge,Si,Co,Zn,Li,Ta,Au,A
g,Pt,Cr,Hf,Zr,Cd,W,V,Cuの中
から選ばれた少なくとも一つの金属を表し、かつ、0<
y≦20,x+y=100なる条件を満たすものとす
る。金属Mは、20重量%より多く含有しても耐電力性
の向上にほとんど効果は無く、むしろ、電極膜の比抵抗
を増大させ、内部損失の増大を招くのみであるため、2
0重量%以下にする必要がある。
The value of (standard deviation of crystal grain size / average grain size of crystal grain size) and the value of (average crystal grain size / film thickness) are set in the above numerical ranges, and the metal constituting the electrode is set. By making the average composition in the film thickness direction of the thin film an alloy of AlxMy (alloy containing x% by weight of Al and y% by weight of metal M), it is possible to realize a great improvement in power resistance and reduction of internal loss. Metal M is Ti, Pd, Nb, Sc, Ni, M
g, Ge, Si, Co, Zn, Li, Ta, Au, A
represents at least one metal selected from g, Pt, Cr, Hf, Zr, Cd, W, V and Cu, and 0 <
It is assumed that the conditions of y ≦ 20 and x + y = 100 are satisfied. Even if the metal M is contained in an amount of more than 20% by weight, it has almost no effect on improving the electric power resistance, and rather increases the specific resistance of the electrode film and causes an increase in internal loss.
It should be 0% by weight or less.

【0013】[0013]

【実施例】以下、本発明を図面を用いて更に詳細に説明
する。
The present invention will be described in more detail below with reference to the drawings.

【0014】(実施例1)図1は、電極膜材料がAl−
0.6wt%Ti(チタンが0.6wt%で、アルミニ
ウムが残りの99.4wt%である合金)であるとき
の、(結晶粒径の標準偏差/結晶粒径の平均粒径)の値
と寿命との関係を示す特性である。(結晶粒径の標準偏
差/結晶粒径の平均粒径)の値は、電極膜のスパッタ成
膜条件を変化させて得ることができる。加速劣化試験条
件は、周囲温度120℃,出力1Wである。比率が低い
ほど寿命(耐電力性)が向上していることを示してい
る。本加速劣化試験では、10時間以上の寿命を保持す
ることが実用上必要になるため、(結晶粒径の標準偏差
/結晶粒径の平均粒径)の値は0.3以下が好ましく、
0.25以下が次に好ましく、0.2以下が更に好まし
い。
Example 1 In FIG. 1, the electrode film material is Al--
The value of (standard deviation of crystal grain size / average grain size of crystal grain size) in the case of 0.6 wt% Ti (alloy in which titanium is 0.6 wt% and aluminum is the remaining 99.4 wt%) It is a characteristic showing the relationship with the life. The value of (standard deviation of crystal grain size / average grain size of crystal grain size) can be obtained by changing the sputtering film forming conditions of the electrode film. The accelerated deterioration test conditions are an ambient temperature of 120 ° C. and an output of 1W. It is indicated that the lower the ratio is, the longer the life (power resistance) is. In this accelerated deterioration test, it is practically necessary to maintain a life of 10 hours or more. Therefore, the value of (standard deviation of crystal grain size / average grain size of crystal grain size) is preferably 0.3 or less,
0.25 or less is next preferable, and 0.2 or less is further preferable.

【0015】図2(a)は、図1の特性を得る加速劣化
試験に用いた素子構造を示す平面図、図2(b)は、図
2(a)におけるA−A’線に沿った断面図である。圧
電性基板1はSHモードの擬似表面波を伝搬する36°
回転Y軸切断、X軸伝搬のLiTaO3から成るもので
ある。
FIG. 2A is a plan view showing an element structure used in the accelerated deterioration test for obtaining the characteristics of FIG. 1, and FIG. 2B is taken along the line AA 'in FIG. 2A. FIG. The piezoelectric substrate 1 propagates SH surface pseudo surface waves at 36 °
It is composed of rotating Y-axis cutting and X-axis propagating LiTaO 3 .

【0016】電極構成は、入力電極2、出力電極3が交
互に配置されており、入出力電極の個数は、入力電極2
は2個、出力電極3は3個の多電極型構造となってい
る。入力電極2及び出力電極3は、それぞれくし形電極
指4から構成され、図2(b)の断面図に示すように、
くし形電極指4の電極幅とくし形電極指4のない部分
(スペース部)の幅は等しくなっている。また、入出力
電極2,3の間には接地用電極パターン5が形成されて
いる。更に、圧電性基板1表面は、入出力電極2,3及
び接地用電極パターン5と電気的に絶縁された浮き電極
パターン6で覆った構造としている。
In the electrode structure, the input electrodes 2 and the output electrodes 3 are alternately arranged, and the number of input / output electrodes is the same as that of the input electrodes 2
Has a multi-electrode structure with two and three output electrodes 3. Each of the input electrode 2 and the output electrode 3 is composed of a comb-shaped electrode finger 4, and as shown in the sectional view of FIG.
The electrode width of the comb-shaped electrode fingers 4 is equal to the width of the portion (space portion) where the comb-shaped electrode fingers 4 are not present. A ground electrode pattern 5 is formed between the input / output electrodes 2 and 3. Further, the surface of the piezoelectric substrate 1 is covered with a floating electrode pattern 6 which is electrically insulated from the input / output electrodes 2 and 3 and the ground electrode pattern 5.

【0017】尚、この多電極型弾性表面波素子の中心周
波数は880MHzで、入出力電極2,3のくし形電極
指の電極幅、スペース幅は共に1.2μm、接地用電極
パターン5の幅は5μmである。電極は、DCマグネト
ロンスパッタリング法により成膜し、膜厚は約100n
mである。フォトリソグラフィ技術によりパターニング
を行ない作成した。寿命は、中心周波数での損失が0.
5dB増加した時間とした。
The center frequency of this multi-electrode type surface acoustic wave device is 880 MHz, the electrode width and space width of the comb-shaped electrode fingers of the input / output electrodes 2 and 3 are both 1.2 μm, and the width of the grounding electrode pattern 5. Is 5 μm. The electrode is formed by the DC magnetron sputtering method, and the film thickness is about 100n.
m. It was created by patterning by photolithography technology. The life is zero loss at the center frequency.
The time was increased by 5 dB.

【0018】(実施例2)図3は、Al−0.6wt%
Ti電極膜において、素子電極の寿命は、(平均結晶粒
径/膜厚)の値により大きな影響を受ける事を示した特
性図である。即ち、図3は、電極膜厚に対する電極膜の
平均粒径の比率と、素子電極の寿命の関係を●印の曲線
で示している。加速劣化試験条件及び素子は、実施例1
に示したそれと同様である。
Example 2 FIG. 3 shows Al-0.6 wt%.
It is a characteristic diagram showing that the life of the device electrode in the Ti electrode film is greatly influenced by the value of (average crystal grain size / film thickness). That is, FIG. 3 shows the relationship between the ratio of the average particle size of the electrode film to the electrode film thickness and the life of the device electrode by the curve of ●. The accelerated deterioration test conditions and the device are the same as those in Example 1.
It is similar to that shown in.

【0019】電極膜厚に対する電極膜の平均結晶粒径の
比率は、電極膜のスパッタ成膜条件を変化させて得るこ
とができる。(結晶粒径の標準偏差/結晶粒径の平均粒
径)の値は、0.24から0.3の間に入っている。比
率が低くなると共に寿命は向上し、本加速劣化試験で
は、10時間以上の寿命を保持することが実用上必要に
なるため、比率は1.0以下にする必要がある。
The ratio of the average crystal grain size of the electrode film to the electrode film thickness can be obtained by changing the sputtering film forming conditions of the electrode film. The value of (standard deviation of crystal grain size / average grain size of crystal grain size) is between 0.24 and 0.3. The life is improved as the ratio becomes lower, and it is practically necessary to maintain the life of 10 hours or more in this accelerated deterioration test. Therefore, the ratio needs to be 1.0 or less.

【0020】一方、比率が0.2より低くなると、黒四
角印の特性において示すように、電極膜の比抵抗が増大
するようになる。比抵抗の増加は素子の内部損失の増加
を招くために好ましくない。従って、上記両条件から好
ましい比率は0.2以上1.0以下であることになる。
On the other hand, when the ratio is lower than 0.2, the specific resistance of the electrode film increases as shown by the characteristics of the black square marks. An increase in specific resistance causes an increase in internal loss of the device, which is not preferable. Therefore, from the above two conditions, the preferable ratio is 0.2 or more and 1.0 or less.

【0021】(実施例3)(結晶粒径の標準偏差/結晶
粒径の平均粒径)比率を0.3以下に、また、(平均結
晶粒径/膜厚)比率を0.2〜1.0になるように成膜
条件を設定し、Al膜への添加元素と寿命との関係を表
1に示す。寿命の評価は、Al膜に対する寿命倍率で行
った。加速劣化試験条件および素子構造は、先に説明し
たそれと同様である。
(Example 3) (standard deviation of crystal grain size / average grain size of crystal grain size) ratio is 0.3 or less, and (average crystal grain size / film thickness) ratio is 0.2 to 1 Table 1 shows the relationship between the additive element to the Al film and the life, with the film forming conditions set so as to be 0.0. The life was evaluated by the life magnification for the Al film. The accelerated deterioration test conditions and device structure are the same as those described above.

【0022】[0022]

【表1】 [Table 1]

【0023】寿命の向上には、Ti,Pd,Nb,S
c,Ni,Mg,Ge,Co,Zn,Li,Ta,A
u,Ag,Pt,Cr,Hf,Zr,Cd,W,V,C
uの少なくとも1元素をAlに添加することが有効であ
ることが、表1の試料番号1〜27のデータから分か
る。
To improve the life, Ti, Pd, Nb, S
c, Ni, Mg, Ge, Co, Zn, Li, Ta, A
u, Ag, Pt, Cr, Hf, Zr, Cd, W, V, C
It can be seen from the data of sample numbers 1-27 in Table 1 that it is effective to add at least one element of u to Al.

【0024】表1の試料番号28〜30は、添加元素と
してSb,In,Snは有効でないことを参考までに示
したものである。添加元素の添加量は、20wt%より
多い場合には比抵抗が高くなり、素子としての内部損失
が大きく実用不適の為、20wt%以下にすることが必
要であった。
For reference, sample numbers 28 to 30 in Table 1 show that Sb, In and Sn are not effective as additive elements. If the added amount of the additional element is more than 20 wt%, the specific resistance becomes high, the internal loss as an element is large and it is not suitable for practical use, and therefore it was necessary to set it to 20 wt% or less.

【0025】以上、本実施例では、単層膜からなる電極
について示したが、複数層の多層膜でも有効である。ま
た、電極膜の膜厚は本実施例では100nmとしたが、
さらに厚くとも薄くとも差し支えない。圧電性基板は、
本実施例のLiTaO3に限定するものではなく、水
晶、LiNbO3,Li247,ZnO,AlN等でも
よい。また、素子構造も、本実施例の多電極型構造に限
定する必要はなく、共振器型構造等でもよい。
As described above, in the present embodiment, the electrode made of a single layer film is shown, but a multilayer film having a plurality of layers is also effective. Further, although the thickness of the electrode film is 100 nm in this embodiment,
It does not matter whether it is thicker or thinner. The piezoelectric substrate is
The material is not limited to LiTaO 3 in this embodiment, but may be quartz, LiNbO 3 , Li 2 B 4 O 7 , ZnO, AlN, or the like. Further, the element structure does not have to be limited to the multi-electrode structure of this embodiment, and may be a resonator structure or the like.

【0026】[0026]

【発明の効果】本発明によれば、弾性表面波素子電極に
おいて、大幅に耐電力性向上が図れ、電極膜の比抵抗が
低減できることから弾性表面波素子の内部損失を低減す
ることが可能となる。従って、本発明による弾性表面波
素子電極は、比較的高いパワーを伝送するSAWフィル
タ用として好適である。
According to the present invention, in the surface acoustic wave device electrode, the power resistance can be greatly improved and the specific resistance of the electrode film can be reduced, so that the internal loss of the surface acoustic wave device can be reduced. Become. Therefore, the surface acoustic wave device electrode according to the present invention is suitable for a SAW filter transmitting relatively high power.

【図面の簡単な説明】[Brief description of drawings]

【図1】電極膜材料がAl−0.6wt%Tiであると
きの、(結晶粒径の標準偏差/結晶粒径の平均粒径)比
率、と寿命の関係を示す特性図。
FIG. 1 is a characteristic diagram showing the relationship between (standard deviation of crystal grain size / average grain size of crystal grain size) ratio and life when the electrode film material is Al-0.6 wt% Ti.

【図2】本発明一実施例の弾性表面波素子の説明図。FIG. 2 is an explanatory diagram of a surface acoustic wave device according to an embodiment of the present invention.

【図3】電極膜材料がAl−0.6wt%Tiであると
きの、(平均結晶粒径/膜厚)と寿命および規格化比抵
抗の関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between (average crystal grain size / film thickness) and life and normalized specific resistance when the electrode film material is Al-0.6 wt% Ti.

【符号の説明】[Explanation of symbols]

1…圧電性基板、2…入力電極、3…出力電極、4…く
し形電極指、5…接地用電極パターン、6…浮き電極パ
ターン。
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric substrate, 2 ... Input electrode, 3 ... Output electrode, 4 ... Comb-shaped electrode finger, 5 ... Grounding electrode pattern, 6 ... Floating electrode pattern.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧電性基板上に金属薄膜よりなる多結晶体
の電極を形成して成る弾性表面波素子電極において、前
記電極に対して透過型電子顕微鏡観察を行った際、前記
電極の結晶粒径の標準偏差に対する前記電極の結晶粒径
の平均粒径の比が0.3以下であることを特徴とする弾
性表面波素子電極。
1. A surface acoustic wave device electrode comprising a piezoelectric substrate on which a polycrystal electrode made of a metal thin film is formed, and the crystal of the electrode when observed by a transmission electron microscope. A surface acoustic wave device electrode, wherein the ratio of the average grain size of the crystal grain size of the electrode to the standard deviation of grain size is 0.3 or less.
【請求項2】圧電性基板上に金属薄膜よりなる多結晶体
の電極を形成して成る弾性表面波素子電極において、前
記電極に対して透過型電子顕微鏡観察を行った際、前記
電極の平均結晶粒径に対する前記電極の膜厚の比が0.
2以上であり1.0以下であることを特徴とする弾性表
面波素子電極。
2. A surface acoustic wave device electrode comprising a piezoelectric substrate on which a polycrystal electrode made of a metal thin film is formed, and the average of the electrodes when observed by a transmission electron microscope. The ratio of the film thickness of the electrode to the crystal grain size is 0.
2. A surface acoustic wave device electrode, which is 2 or more and 1.0 or less.
【請求項3】請求項1又は2において、前記電極を構成
する金属薄膜の膜厚方向の平均組成が、AlxMyなる
合金(Alをx重量%、金属Mをy重量%含む合金)で
表せる弾性表面波素子電極。(但し、金属MはTi,P
d,Nb,Sc,Ni,Mg,Ge,Si,Co,Z
n,Li,Ta,Au,Ag,Pt,Cr,Hf,Z
r,Cd,W,V,Cuの中から選ばれた少なくとも一
つの金属を表し、かつ、0<y≦20,x+y=100
なる条件を満たすものとする)
3. The elasticity according to claim 1, wherein an average composition in the film thickness direction of the metal thin film forming the electrode is represented by an alloy of AlxMy (alloy containing x% by weight of Al and y% by weight of metal M). Surface wave element electrode. (However, the metal M is Ti, P
d, Nb, Sc, Ni, Mg, Ge, Si, Co, Z
n, Li, Ta, Au, Ag, Pt, Cr, Hf, Z
represents at least one metal selected from r, Cd, W, V and Cu, and 0 <y ≦ 20, x + y = 100
The following conditions must be met)
JP28472994A 1994-11-18 1994-11-18 Surface acoustic wave element electrode Pending JPH08148966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28472994A JPH08148966A (en) 1994-11-18 1994-11-18 Surface acoustic wave element electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28472994A JPH08148966A (en) 1994-11-18 1994-11-18 Surface acoustic wave element electrode

Publications (1)

Publication Number Publication Date
JPH08148966A true JPH08148966A (en) 1996-06-07

Family

ID=17682234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28472994A Pending JPH08148966A (en) 1994-11-18 1994-11-18 Surface acoustic wave element electrode

Country Status (1)

Country Link
JP (1) JPH08148966A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005788A1 (en) * 1997-07-28 1999-02-04 Kabushiki Kaisha Toshiba Surface acoustic wave device and method of producing the same
WO2000024123A1 (en) * 1998-10-16 2000-04-27 Seiko Epson Corporation Surface acoustic wave device
US6965190B2 (en) 2001-09-12 2005-11-15 Sanyo Electric Co., Ltd. Surface acoustic wave device
JP2008148338A (en) * 2001-03-04 2008-06-26 Kazuhiko Yamanouchi Surface acoustic wave functional element
US7423365B2 (en) 2004-05-31 2008-09-09 Fujitsu Media Devices Limited Surface acoustic wave device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005788A1 (en) * 1997-07-28 1999-02-04 Kabushiki Kaisha Toshiba Surface acoustic wave device and method of producing the same
US6377138B1 (en) 1997-07-28 2002-04-23 Kabushiki Kaisha Toshiba Surface acoustic wave device with a layered conductive film and method of producing the same
WO2000024123A1 (en) * 1998-10-16 2000-04-27 Seiko Epson Corporation Surface acoustic wave device
US6339277B1 (en) 1998-10-16 2002-01-15 Seiko Epson Corporation Surface acoustic wave device
US6566788B2 (en) 1998-10-16 2003-05-20 Seiko Epson Corporation Surface acoustic wave device
CN1130824C (en) * 1998-10-16 2003-12-10 精工爱普生株式会社 Surface acoustic wave device
JP2008148338A (en) * 2001-03-04 2008-06-26 Kazuhiko Yamanouchi Surface acoustic wave functional element
US6965190B2 (en) 2001-09-12 2005-11-15 Sanyo Electric Co., Ltd. Surface acoustic wave device
US7423365B2 (en) 2004-05-31 2008-09-09 Fujitsu Media Devices Limited Surface acoustic wave device

Similar Documents

Publication Publication Date Title
JP3885824B2 (en) Surface acoustic wave device
US7602099B2 (en) Surface acoustic wave device and method of manufacturing the same
JPH09223944A (en) Surface acoustic wave element and its manufacture
JP3735550B2 (en) Surface acoustic wave device and manufacturing method thereof
US9368712B2 (en) Surface acoustic wave device
EP0392879B1 (en) Surface acoustic wave device
JP2006295976A (en) Surface acoustic wave device
JP4359535B2 (en) Surface acoustic wave device
US6898831B2 (en) Method of producing a surface acoustic wave device
JP4064208B2 (en) Surface acoustic wave device and manufacturing method thereof
JPH0314305A (en) Manufacture of surface acoustic wave device
JPH066173A (en) Electrode for surface elastic wave element
JPH08148966A (en) Surface acoustic wave element electrode
JP2545983B2 (en) Surface acoustic wave device
JP2001217672A (en) Surface acoustic wave element and its manufacturing method
JP3659455B2 (en) Surface acoustic wave device
JPH06350377A (en) Surface acoustic wave element
JP2936228B2 (en) Surface acoustic wave filter
US20020053856A1 (en) Surface acoustic wave device and piezoelectric substrate used therefor
US6965190B2 (en) Surface acoustic wave device
Nishihara et al. Improvement in power durability of SAW filters
JP2001094382A (en) Surface acoustic wave device and its manufacturing method
JPH10126207A (en) Surface acoustic wave device
JP3296097B2 (en) Surface acoustic wave device
JPH1022766A (en) Surface acoustic wave device