JPH0790484A - High strength induction-hardened shaft parts - Google Patents
High strength induction-hardened shaft partsInfo
- Publication number
- JPH0790484A JPH0790484A JP5253691A JP25369193A JPH0790484A JP H0790484 A JPH0790484 A JP H0790484A JP 5253691 A JP5253691 A JP 5253691A JP 25369193 A JP25369193 A JP 25369193A JP H0790484 A JPH0790484 A JP H0790484A
- Authority
- JP
- Japan
- Prior art keywords
- section
- strength
- hardness
- induction
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/60—Ferrous alloys, e.g. steel alloys
- F16C2204/64—Medium carbon steel, i.e. carbon content from 0.4 to 0,8 wt%
Landscapes
- Heat Treatment Of Articles (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は高強度高周波焼入れ軸部
品にかかわり、さらに詳しくは、図1の(a)〜(c)
に示したスプライン部を有するシャフト、フランジ付シ
ャフト、外筒付シャフト等の自動車の動力伝達系を構成
する軸部品として優れた捩り強度を有する高周波焼入れ
軸部品に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength induction hardened shaft component, and more specifically, it is shown in FIGS.
The present invention relates to an induction-hardened shaft component having excellent torsional strength as a shaft component constituting a power transmission system of an automobile, such as a shaft having a spline portion, a shaft with a flange, and a shaft with an outer cylinder.
【0002】[0002]
【従来の技術】自動車の動力伝達系を構成する軸部品
は、通常中炭素鋼を所定の部品に成形加工し、高周波焼
入れ−焼戻しを施して製造されているが、近年の自動車
エンジンの高出力化及び環境規制対応にともない、高強
度化(捩り強度の向上)の指向が強い。これに対して、
特公昭63−62571公報にはC:0.30〜0.3
8%、Mn:0.6〜1.5%、B:0.0005〜
0.0030%、Ti:0.01〜0.04%、Al:
0.01〜0.04%からなる鋼をドライブシャフトに
成形し、高周波焼入れによる高周波焼入れ深さと鋼部材
半径の比を0.4以上とするドライブシャフトの製造方
法が示されている。該発明材で得られる最大の捩り強度
は該公報第1図にみられるように、約160kgf/m
m2 である。また、特開平4−218641号公報には
Si:0.05%以下、Mn:0.65超1.7以下で
ある低Siと高Mnを特徴とする特定成分系の高強度軸
部品用鋼材を用いることにより、スプライン部付き材で
140〜160kgf/mm2 の捩り強度が得られるこ
とが示されている。以上のように現状で実現できる捩り
強度の最大は約160kgf/mm2 である。2. Description of the Related Art A shaft component constituting a power transmission system of an automobile is usually manufactured by forming a medium carbon steel into a predetermined component and subjecting it to induction hardening-tempering. The trend toward higher strength (improvement in torsional strength) is strong in line with the progress in compliance with environmental regulations and environmental regulations. On the contrary,
Japanese Patent Publication No. 63-62571 discloses C: 0.30 to 0.3.
8%, Mn: 0.6 to 1.5%, B: 0.0005 to 5%
0.0030%, Ti: 0.01 to 0.04%, Al:
There is disclosed a method for manufacturing a drive shaft in which a steel containing 0.01 to 0.04% is formed into a drive shaft and the ratio of the induction hardening depth by induction hardening and the steel member radius is 0.4 or more. The maximum torsional strength obtained with the invention material is about 160 kgf / m as shown in FIG. 1 of the publication.
m 2 . Further, in JP-A-4-218641, a steel material for a high strength shaft component of a specific component system characterized by low Si and high Mn in which Si: 0.05% or less and Mn: more than 0.65 and 1.7 or less. It has been shown that the material with a spline portion can obtain a torsional strength of 140 to 160 kgf / mm 2 by using. As described above, the maximum torsional strength that can be realized at present is about 160 kgf / mm 2 .
【0003】[0003]
【発明が解決しようとする課題】しかし、前記した捩り
強度160kgf/mm2 の強度レベルは、自動車の動
力伝達系軸部品の強度レベルとして十分であるとは言え
ないのが現状である。また、高強度化を図る上で部品製
造工程上、加工性の向上と焼き割れの抑制が重要な課題
となっている。本発明の目的は、部品製造工程上、加工
性が優れ焼き割れを起こさず、かつ部品として160k
gf/mm2 以上の優れた捩り強度を有する軸部品を提
供しようとするものである。However, under the present circumstances, the above-mentioned strength level of the torsional strength of 160 kgf / mm 2 cannot be said to be sufficient as the strength level of the power transmission system shaft parts of the automobile. Further, in order to achieve high strength, it is important to improve workability and suppress quenching cracks in the component manufacturing process. The object of the present invention is that the workability is excellent in the manufacturing process of parts, it does not cause quenching cracks, and it is 160 k as a part.
It is intended to provide a shaft component having an excellent torsional strength of gf / mm 2 or more.
【0004】[0004]
【課題を解決するための手段】本発明者らは、高周波焼
入れにより優れた捩り強度を有する軸部品を実現するた
めに、鋭意検討を行い次の知見を得た。 (1)高周波焼入れ材の捩り強度は、延性破壊する場
合、下記で定義される断面内平均硬さに比例して向上す
る。捩り強度と断面内平均硬さの関係から外挿すると、
160kgf/mm2 以上の優れた捩り強度を得るため
には、HVaが560以上とすることが必要である。断
面内平均硬さの定義;図2に示したように、半径aの断
面を半径方向に同心円状にN個のリングに分割し、n番
目のリング状部分の硬さをHVn 、半径をrn 、間隔を
Δrn とした時、Means for Solving the Problems The inventors of the present invention have made earnest studies in order to realize a shaft component having excellent torsional strength by induction hardening, and have obtained the following findings. (1) In the case of ductile fracture, the torsional strength of the induction hardened material improves in proportion to the average hardness in the cross section defined below. Extrapolating from the relationship between the torsional strength and the average hardness in the cross section,
In order to obtain an excellent torsional strength of 160 kgf / mm 2 or more, it is necessary to set HVa to 560 or more. Definition of average hardness in cross section: As shown in FIG. 2, a cross section of radius a is divided into N rings concentrically in the radial direction, and the hardness of the n-th ring-shaped portion is HV n and the radius is r n and the interval Δr n ,
【0005】[0005]
【数3】 [Equation 3]
【0006】以上は、次の知見から得られた。図3は軸
部品の捩り変形過程で塑性変形が表層から内部へ進行す
る時の剪断歪と剪断応力を模式的に示した図である。図
中で実線は剪断歪分布、太実線は剪断応力分布、破線は
剪断降伏応力分布を示す。トルクが1)の時、表面で剪
断応力τが鋼材の剪断降伏応力τyに達して塑性変形が
開始する。トルクが2)の段階まで捩り変形が進行する
と、加工硬化を伴いながら(図中で表層部の破線と実線
の差が加工硬化量)塑性変形が内部へ進行する。なお、
図中の1点鎖線は塑性変形が起こらないと仮定した時の
仮想的な剪断応力分布である。さらにトルクが捩り破壊
を起こす直前の3)の段階では、ほぼ中心部まで塑性変
形が進行していると考えられる。The above is obtained from the following findings. FIG. 3 is a diagram schematically showing the shear strain and the shear stress when the plastic deformation progresses from the surface layer to the inside in the torsional deformation process of the shaft part. In the figure, the solid line shows the shear strain distribution, the thick solid line shows the shear stress distribution, and the broken line shows the shear yield stress distribution. When the torque is 1), the shear stress τ reaches the shear yield stress τy of the steel material on the surface, and plastic deformation starts. When the torsional deformation progresses to the stage where the torque is 2), plastic deformation progresses inward with work hardening (the difference between the broken line and the solid line in the surface layer in the figure is the work hardening amount). In addition,
The one-dot chain line in the figure is a virtual shear stress distribution when it is assumed that plastic deformation does not occur. Further, at the stage of 3) immediately before the torque causes torsional fracture, it is considered that plastic deformation has progressed to almost the center.
【0007】ここで、任意の剪断応力分布τ(r)に対
するトルクMt は次式(1)で与えられる。The torque M t for an arbitrary shear stress distribution τ (r) is given by the following equation (1).
【0008】[0008]
【数4】 [Equation 4]
【0009】一方、一般に捩り強度の指標として用いら
れる弾性破壊を仮定した見かけ上の剪断破壊応力τmax
は次式(2)で求められる。On the other hand, apparent shear fracture stress τ max assuming elastic fracture, which is generally used as an index of torsional strength.
Is calculated by the following equation (2).
【0010】[0010]
【数5】 [Equation 5]
【0011】鋼材が中・高炭素マルテンサイト鋼なので
加工硬化量が小さいと仮定すると、図3から明らかなよ
うに破壊時の剪断応力分布は剪断降伏応力分布にほぼ一
致するため、破壊時の剪断応力分布は硬さ分布の関数と
してτf (r)=K1 ・HV(r)と近似できる。Assuming that the amount of work hardening is small because the steel material is a medium / high carbon martensitic steel, the shear stress distribution at the time of fracture almost coincides with the shear yield stress distribution as shown in FIG. The stress distribution can be approximated as τ f (r) = K 1 · HV (r) as a function of hardness distribution.
【0012】[0012]
【数6】 [Equation 6]
【0013】ここで、均一硬さ材に相当する硬さの指標
として、相当硬さHVeqを次式(4)で定義する。Here, the equivalent hardness HV eq is defined by the following equation (4) as an index of hardness corresponding to a uniform hardness material.
【0014】[0014]
【数7】 [Equation 7]
【0015】均一硬さ材では、HVeq=HV=一定よ
り、K2 =3/a3 In the case of a uniform hardness material, since HV eq = HV = constant, K 2 = 3 / a 3
【0016】[0016]
【数8】 [Equation 8]
【0017】(3)、(5)式より、From equations (3) and (5),
【0018】[0018]
【数9】 [Equation 9]
【0019】相当硬さHVeqは、断面を半径方向に同心
円状にN個のリングに分割し、n番目のリング状部分の
硬さをHVn 、半径をrn 、間隔をΔrn とした時、次
のように近似できる。The equivalent hardness HV eq is obtained by dividing the cross section into N rings concentrically in the radial direction, the hardness of the n-th ring-shaped portion is HV n , the radius is r n , and the interval is Δr n . At times, it can be approximated as follows.
【0020】[0020]
【数10】 [Equation 10]
【0021】これをあらためて、断面内平均硬さHVa
と定義した。図4は、各種の硬さ分布を有する材料につ
いて、平均硬さHVaを求め、捩り強度をHVaで整理
した結果であるが、捩り強度はHVaと良い相関があ
り、160kgf/mm2 以上の優れた強度を得るため
には、HVaが560以上とすることが必要であること
が明らかである。[0021] Again, the average hardness HVa in the cross section is
Was defined. FIG. 4 shows the results of determining the average hardness HVa of materials having various hardness distributions and arranging the torsional strength by HVa. The torsional strength has a good correlation with HVa, and is excellent at 160 kgf / mm 2 or more. It is clear that it is necessary to set HVa to 560 or more in order to obtain high strength.
【0022】(2)しかしながら、従来材を用いて断面
内平均硬さを増加させていくと、「延性破壊」から「粒
界割れ起点の脆性破壊」に破壊モードが変化し、強度の
増加が飽和するかもしくはかえって低下する。しかしな
がら、下記の手法を組み合わせて用いれば粒界破壊によ
る脆性破壊が抑制され、断面内平均硬さの増加に伴い捩
り強度は増加する。 1)Ti−B添加 2)P、Cu、O量の低減 3)炭窒化物による旧オーステナイト粒の細粒化(A
l、N適量添加)(2) However, when the average hardness in the cross section is increased by using the conventional material, the fracture mode changes from "ductile fracture" to "brittle fracture at the origin of intergranular cracking", and the strength increases. Saturate or rather decrease. However, if the following methods are used in combination, brittle fracture due to intergranular fracture is suppressed, and the torsional strength increases as the average hardness in the cross section increases. 1) Addition of Ti-B 2) Reduction of P, Cu and O contents 3) Refinement of former austenite grains by carbonitride (A
l, N appropriate amount added)
【0023】(3)上記の脆性破壊抑制による捩り強度
増加の効果は、上記に加えてさらに次の手法を付加する
ことによりさらに大きくなる。 1)Si増量 2)Cr、Mo、Ni添加 3)ハードショットピーニング処理による圧縮残留応力
の付与(3) The effect of increasing the torsional strength by suppressing the brittle fracture is further increased by adding the following method in addition to the above. 1) Increase in Si 2) Addition of Cr, Mo, Ni 3) Addition of compressive residual stress by hard shot peening treatment
【0024】(4)上記(1)の断面内平均硬さを増加
させていくと、従来材では焼き割れを起こしやすくなる
が、上記の(2)、(3)の対策を講じることにより焼
き割れは抑制される。(4) When the average hardness in the cross section of (1) above is increased, the conventional material is more likely to cause quench cracking, but by taking the measures of (2) and (3) above Cracking is suppressed.
【0025】(5)なお、軸部品の製造工程において優
れた加工性が必要な場合には、Si量を制限することに
より加工性が改善される。本発明は以上の新規なる知見
に基づいてなされたものであり、本発明の要旨は以下の
通りである。(5) When excellent workability is required in the manufacturing process of the shaft part, the workability is improved by limiting the amount of Si. The present invention has been made based on the above new findings, and the gist of the present invention is as follows.
【0026】本発明の請求項1の発明は重量比として、 C :0.35〜0.70% Si:0.01〜0.15% Mn:0.2〜2.0% S :0.005〜0.15% Al:0.0005〜0.05% Ti:0.005〜0.05% B :0.0005〜0.005% N :0.002〜0.02% を含有し、 P :0.020%以下 Cu:0.05%以下 O :0.0020%以下に制限し、 残部が鉄および不可避的不純物からなり、下記で定義さ
れる断面内平均硬さHVaが560以上であることを特
徴とする高強度高周波焼入れ軸部品である。断面内平均
硬さの定義;半径aの断面を半径方向に同心円状にN個
のリングに分割し、n番目のリング状部分の硬さをHV
n 、半径をrn 、間隔をΔrn とした時、According to the first aspect of the present invention, the weight ratio of C: 0.35 to 0.70% Si: 0.01 to 0.15% Mn: 0.2 to 2.0% S: 0.0. 005 to 0.15% Al: 0.0005 to 0.05% Ti: 0.005 to 0.05% B: 0.0005 to 0.005% N: 0.002 to 0.02%, P: 0.020% or less Cu: 0.05% or less O: 0.0020% or less, the balance consisting of iron and unavoidable impurities, and the average hardness HVa in the cross section defined below is 560 or more. It is a high-strength induction-hardened shaft part characterized by the fact that it is present. Definition of average hardness in cross section: A cross section of radius a is divided into N rings concentrically in the radial direction, and the hardness of the nth ring-shaped portion is HV.
where n is the radius, r n is the interval, and Δr n is the interval,
【0027】[0027]
【数11】 [Equation 11]
【0028】本発明の請求項2の発明は重量比として、 C :0.35〜0.70% Si:0.15超〜2.5% Mn:0.6〜2.0% S :0.005〜0.15% Al:0.0005〜0.05% Ti:0.005〜0.05% B :0.0005〜0.005% N :0.002〜0.02% を含有し、 P :0.020%以下 Cu:0.05%以下 O :0.0020%以下に制限し、 残部が鉄および不可避的不純物からなり、下記で定義さ
れる断面内平均硬さHVaが560以上であることを特
徴とする高強度高周波焼入れ軸部品である。断面内平均
硬さの定義;半径aの断面を半径方向に同心円状にN個
のリングに分割し、n番目のリング状部分の硬さをHV
n 、半径をrn 、間隔をΔrn とした時、According to the second aspect of the present invention, as a weight ratio, C: 0.35 to 0.70% Si: more than 0.15 to 2.5% Mn: 0.6 to 2.0% S: 0 0.005 to 0.15% Al: 0.0005 to 0.05% Ti: 0.005 to 0.05% B: 0.0005 to 0.005% N: 0.002 to 0.02% , P: 0.020% or less Cu: 0.05% or less O: 0.0020% or less, the balance consisting of iron and unavoidable impurities, and the average hardness HVa in the cross section defined below is 560 or more. It is a high-strength induction-hardened shaft part. Definition of average hardness in cross section: A cross section of radius a is divided into N rings concentrically in the radial direction, and the hardness of the nth ring-shaped portion is HV.
where n is the radius, r n is the interval, and Δr n is the interval,
【0029】[0029]
【数12】 [Equation 12]
【0030】本発明の請求項3ないし5の発明は、鋼が
さらに、 Cr:0.03〜1.5% Mo:0.05〜1.0% Ni:0.1〜3.5% の1種または2種以上を含有し、 さらにまたは、 Nb:0.01〜0.3%、 V :0.03〜0.6%、 の1種または2種を含有し、さらにまたは、 Ca:0.0005〜0.010% Pb:0.05〜0.5% の1種または2種を含有する請求項1または2記載の高
強度高周波焼入れ軸部品である。本発明の請求項6また
は請求項7の発明は、高周波焼入れ層の旧オーステナイ
ト結晶粒度が9番以上であり、さらにまたは表面の残留
応力が−80kgf/mm2 以下である請求項1ないし
5記載の高強度高周波焼入れ軸部品である。According to the third to fifth aspects of the present invention, the steel further comprises Cr: 0.03 to 1.5% Mo: 0.05 to 1.0% Ni: 0.1 to 3.5%. 1 type or 2 types or more, or further contains 1 type or 2 types of Nb: 0.01-0.3%, V: 0.03-0.6%, and further, or: The high-strength induction-hardened shaft part according to claim 1 or 2, which contains 0.0005 to 0.010% Pb: 0.05 to 0.5% of one or two kinds. The invention according to claim 6 or 7 of the present invention is characterized in that the induction-hardened layer has a prior austenite grain size of 9 or more, and further, or has a surface residual stress of -80 kgf / mm 2 or less. It is a high-strength induction hardened shaft component.
【0031】[0031]
【作用】以下に、本発明を詳細に説明する。請求項1
は、最終製品が優れた捩り強度を有し、かつ軸部品の製
造工程において加工性に優れ、焼き割れを起こさない高
強度高周波焼入れ軸部品に関する発明である。まず、請
求項1発明の成分含有範囲を上記の如く限定した理由に
ついて説明する。The present invention will be described in detail below. Claim 1
Is an invention relating to a high-strength induction-hardened shaft part in which the final product has excellent torsional strength, excellent workability in the manufacturing process of the shaft part, and does not cause quench cracking. First, the reason why the content range of the components of claim 1 of the invention is limited as described above will be explained.
【0032】Cは高周波焼入れ硬化層の硬さを増加させ
るのに有効な元素であるが、0.35%未満では硬さが
不十分であり、また0.70%を超えるとオーステナイ
ト粒界への炭化物析出が顕著になって粒界強度を劣化さ
せ、脆性破壊強度の低下を招くとともに、焼き割れが発
生しやすくなるため、含有量を0.35〜0.70%に
定めた。C is an element effective in increasing the hardness of the induction hardening layer, but if it is less than 0.35%, the hardness is insufficient, and if it exceeds 0.70%, it becomes austenite grain boundary. Since the precipitation of carbides becomes remarkable, the grain boundary strength is deteriorated, brittle fracture strength is reduced, and quench cracking is likely to occur, the content is set to 0.35 to 0.70%.
【0033】次に、Siは脱酸元素として添加する。し
かしながら、0.01%未満ではその効果は不十分であ
る。一方、Siは固溶体硬化により素材硬さを高くする
ため、0.15%を超える添加は、軸部品の製造工程で
加工性を劣化させる。以上の理由で、その含有量を0.
01〜0.15%とした。Next, Si is added as a deoxidizing element. However, if less than 0.01%, the effect is insufficient. On the other hand, since Si increases the hardness of the material by solid solution hardening, addition of more than 0.15% deteriorates workability in the manufacturing process of the shaft part. For the above reasons, the content is set to 0.
It was set to 01 to 0.15%.
【0034】Mnは焼入れ性の向上を目的として添加す
る。しかしながら、0.20%未満ではこの効果は不十
分である。一方、2.0%を超えるとこの効果は飽和し
むしろ最終製品の靱性の劣化を招くので、その含有量を
0.20〜2.0%とした。Mn is added for the purpose of improving hardenability. However, if it is less than 0.20%, this effect is insufficient. On the other hand, if it exceeds 2.0%, this effect is saturated and rather the toughness of the final product is deteriorated, so the content was made 0.20 to 2.0%.
【0035】また、Sは鋼中でMnSを形成、これによ
る高周波焼入れ加熱時のオーステナイト粒の微細化およ
び被削性の向上を目的として添加するが、0.005%
未満ではその効果は不十分である。一方、0.15%を
超えるとその効果は飽和し、むしろ粒界偏析を起こし粒
界脆化を招く。以上の理由から、Sの含有量を0.00
5〜0.15%とした。Further, S forms MnS in the steel and is added for the purpose of refining austenite grains and improving machinability during induction hardening and heating.
If it is less than, the effect is insufficient. On the other hand, if it exceeds 0.15%, the effect is saturated and rather grain boundary segregation occurs to cause grain boundary embrittlement. For the above reasons, the S content is 0.00
It was set to 5 to 0.15%.
【0036】Alは、1)Nと結合してAlNを形成す
ることによる高周波焼入れ加熱時のオーステナイト粒の
微細化を目的として、および2)脱酸元素として添加す
るが、0.0005%未満ではその効果は不十分であ
り、一方、0.05%を超えるとその効果は飽和し、む
しろ靱性を劣化させるので、その含有量を0.0005
〜0.05%とした。Al is added 1) for the purpose of refining austenite grains during induction hardening heating by combining with N to form AlN, and 2) added as a deoxidizing element, but if less than 0.0005%, The effect is insufficient, while on the other hand, if it exceeds 0.05%, the effect is saturated and rather the toughness is deteriorated, so the content is 0.0005.
.About.0.05%.
【0037】Tiもやはり鋼中でNと結合してTiNと
なるが、これによる1)高周波焼入れ加熱時のオーステ
ナイト粒の微細化、および2)固溶Nの完全固定による
BN析出防止、つまり固溶Bの確保を目的として添加す
る。しかしながら、0.005%未満ではその効果は不
十分であり、一方、0.05%を超えるとその効果は飽
和し、むしろ靱性を劣化させるので、その含有量を0.
005〜0.05%とした。Ti is also combined with N in steel to form TiN. Due to this, 1) refinement of austenite grains during induction hardening heating, and 2) prevention of BN precipitation by completely fixing solid solution N, that is, solidification. It is added for the purpose of ensuring the melt B. However, if the content is less than 0.005%, the effect is insufficient, while if it exceeds 0.05%, the effect is saturated and rather the toughness is deteriorated.
It was set to 005 to 0.05%.
【0038】Bは固溶状態でオーステナイト粒界に粒界
偏析し、P、Cu等の粒界不純物を粒界から追い出すこ
とにより粒界強度を増加させることを狙いとして添加す
る。しかしながら、0.0005%未満ではその効果は
不十分であり、一方、0.005%を超える過剰添加
は、むしろ粒界脆化を招くので、その含有量を0.00
05〜0.005%とした。B is segregated at the austenite grain boundaries in a solid solution state, and is added for the purpose of increasing the grain boundary strength by expelling grain boundary impurities such as P and Cu from the grain boundaries. However, if less than 0.0005%, the effect is insufficient, while excessive addition exceeding 0.005% causes rather grain boundary embrittlement, so the content is 0.005%.
It was set to 05 to 0.005%.
【0039】さらに、NはAlN等の炭窒化物析出によ
る高周波加熱時のオーステナイト粒の微細化を目的とし
て添加するが、0.002%未満ではその効果は不十分
であり、一方、0.02%超では、その効果は飽和しむ
しろBNを形成して固溶Bの減少を招くので、その含有
量を0.002〜0.02%とした。Further, N is added for the purpose of refining austenite grains during high frequency heating due to precipitation of carbonitrides such as AlN, but if it is less than 0.002%, its effect is insufficient, while 0.02 If the content exceeds%, the effect is saturated and rather BN is formed to reduce the amount of solid solution B, so the content was made 0.002 to 0.02%.
【0040】一方、Pはオーステナイト粒界に粒界偏析
を起こし、粒界強度を低下させて捩り応力下での脆性破
壊を起こし易くし、そのため強度を低下させる。特にP
が0.02%を超えると強度低下が顕著となるため、
0.02%を上限とした。なお、より一層高強度化を指
向する場合は、Pの含有量を0.009%以下とするの
が望ましい。On the other hand, P causes grain boundary segregation at the austenite grain boundaries, lowers the grain boundary strength, and easily causes brittle fracture under torsional stress, which lowers the strength. Especially P
When 0.02% exceeds 0.02%, the strength decrease becomes remarkable, so
The upper limit was 0.02%. In addition, when aiming at further strengthening, it is desirable that the content of P is 0.009% or less.
【0041】また、CuもPと同様オーステナイト粒界
に粒界偏析を起こし、強度低下の原因となる。特にCu
が0.05%を超えると強度低下が顕著となるため、
0.05%を上限とした。Cu, like P, also causes grain boundary segregation at the austenite grain boundaries, which causes a decrease in strength. Especially Cu
Is more than 0.05%, the strength will be significantly reduced.
The upper limit was 0.05%.
【0042】さらに、Oは粒界偏析を起こし粒界脆化を
起こすとともに、鋼中で硬い酸化物系介在物を形成し、
捩り応力下での脆性破壊を起こし易くし、強度低下の原
因となる。特にOが0.0020%を超えると強度低下
が顕著となるため、0.0020%を上限とした。Further, O causes grain boundary segregation to cause grain boundary embrittlement, and forms hard oxide inclusions in steel.
It easily causes brittle fracture under torsional stress and causes strength reduction. In particular, when O exceeds 0.0020%, the strength is markedly reduced, so 0.0020% was made the upper limit.
【0043】次に、高周波焼入れ軸部品が上記の成分か
らなり、上記で定義される断面内平均硬さHVaが56
0以上とした理由を以下に述べる。高周波焼入れ材の捩
り強度は、断面内平均硬さに比例して向上する。160
kgf/mm2 以上の優れた捩り強度を得るためには断
面内平均硬さHVaを560以上とすることが必要であ
り、それ未満では捩り強度が不足する。以上の理由か
ら、断面内平均硬さHVaが560以上とした。なお、
本発明では硬化層深さは特に限定しないが、JISG0
559で規定する高周波焼入れ硬化層深さ測定方法に基
づく有効硬化層深さtと部品半径rの比t/rを0.3
〜0.8とするのが望ましい。これは高周波焼入れ材の
ねじり強さは、高周波焼入れ深さを深くするほど向上す
るが、有効硬化層深さがt/rで0.3未満では、ねじ
り強さ向上効果が小さく、また0.8を超えると表層の
圧縮残留応力が低下するため、軸部品製造工程で焼き割
れ発生の危険性が増すためである。Next, the induction-hardened shaft component is made of the above-mentioned components, and the average hardness HVa in the cross-section defined above is 56.
The reason why it is set to 0 or more will be described below. The torsional strength of the induction hardened material improves in proportion to the average hardness in the cross section. 160
In order to obtain an excellent torsional strength of kgf / mm 2 or more, it is necessary to set the average hardness HVa in the cross section to 560 or more, and if it is less than that, the torsional strength is insufficient. For the above reasons, the average hardness HVa in the cross section is set to 560 or more. In addition,
In the present invention, the depth of the hardened layer is not particularly limited.
The ratio t / r of the effective hardened layer depth t and the component radius r based on the induction hardening hardened layer depth measuring method defined by 559 is 0.3.
It is desirable to set it to 0.8. This is because the torsional strength of the induction hardened material is improved as the induction hardening depth is increased, but when the effective hardened layer depth is less than 0.3 t / r, the effect of improving the torsional strength is small, and If it exceeds 8, the compressive residual stress of the surface layer will decrease, and the risk of occurrence of quench cracks in the shaft part manufacturing process will increase.
【0044】次に請求項2は、最終製品がより一層の高
い捩り強度を有し、かつ製造工程で焼き割れを起こさな
い高強度高周波焼入れ軸部品に関する発明である。請求
項2発明でSi:0.15超〜2.5%、Mn:0.6
〜2.0%を含有する鋼を用いるのは次の理由による。Next, claim 2 is an invention relating to a high-strength induction-hardened shaft component in which the final product has a higher torsional strength and does not cause quench cracks in the manufacturing process. In the invention of claim 2, Si: more than 0.15 to 2.5%, Mn: 0.6
The reason why steel containing ~ 2.0% is used is as follows.
【0045】Siは1)オーステナイト粒界への炭化物
析出抑制による粒界強化を目的として、および2)脱酸
元素として添加する。しかしながら、0.15%以下の
添加では粒界強化の効果は不十分であり、一方、2.5
%を超える過剰添加は、むしろ粒界脆化を招くので、そ
の含有量を0.15超〜2.5%とした。なお、一層の
高強度化を図るためには、0.4%以上のSi添加が望
ましい。Si is added 1) for the purpose of strengthening the grain boundary by suppressing the precipitation of carbide in the austenite grain boundary, and 2) as a deoxidizing element. However, the effect of grain boundary strengthening is insufficient with addition of 0.15% or less.
%, Excessive addition causes rather grain boundary embrittlement, so the content was set to more than 0.15 to 2.5%. In order to further increase the strength, it is desirable to add 0.4% or more of Si.
【0046】Mnは1)焼入れ性の向上、および鋼中で
MnSを形成することによる2)高周波焼入れ加熱時の
オーステナイト粒の微細化と3)被削性の向上を目的と
して添加する。しかしながら、より高い捩り強度を指向
した場合には0.60%未満の添加では不十分である。
一方、Mnはオーステナイト粒界に粒界偏析を起こし、
粒界強度を低下させて捩り応力下での脆性破壊を起こし
易くし、そのため強度を低下させる。特にこの傾向は
2.0%以上で顕著になる。以上の理由から、Mnの含
有量を0.6〜2.0%とした。Mn is added for the purpose of 1) improving hardenability, 2) fineness of austenite grains during induction hardening heating by forming MnS in steel, and 3) improvement of machinability. However, when aiming for higher torsional strength, addition of less than 0.60% is insufficient.
On the other hand, Mn causes segregation at the austenite grain boundaries,
It lowers the grain boundary strength and facilitates brittle fracture under torsional stress, thus lowering the strength. This tendency is particularly remarkable at 2.0% or more. For the above reasons, the Mn content is set to 0.6 to 2.0%.
【0047】請求項3は、Cr、Mo、Ni添加によ
り、1)焼入れ性の向上による高周波焼入れ硬さの増
加、硬化層深さの増加および2)オーステナイト粒界に
粒界偏析を起こすことによる粒界強度増加または粒界近
傍の靱性改善による脆性破壊防止により一層の高強度化
を図った軸部品用鋼材である。しかしながら、Cr:
0.03%未満、Mo:0.05%未満、Ni:0.1
%未満ではこの効果は不十分である。一方、Cr:1.
5%超、Mo:1.0%超、Ni:3.5%超ではこの
効果は飽和し、このような過剰添加は経済性の観点から
好ましくない。以上の理由から、これらの含有量をC
r:0.03〜1.5%、Mo:0.05〜1.0%、
Ni:0.1〜3.5%とした。According to claim 3, the addition of Cr, Mo, and Ni causes 1) increase in induction hardening hardness due to improvement of hardenability, increase in hardened layer depth, and 2) segregation of grain boundary in austenite grain boundaries. It is a steel material for shaft parts that is further strengthened by preventing brittle fracture by increasing grain boundary strength or improving toughness in the vicinity of grain boundaries. However, Cr:
Less than 0.03%, Mo: less than 0.05%, Ni: 0.1
If it is less than%, this effect is insufficient. On the other hand, Cr: 1.
If it exceeds 5%, Mo exceeds 1.0%, and Ni exceeds 3.5%, this effect is saturated, and such excessive addition is not preferable from the economical viewpoint. For the above reasons, the content of these is C
r: 0.03 to 1.5%, Mo: 0.05 to 1.0%,
Ni: 0.1 to 3.5%.
【0048】請求項4は、1)高周波加熱時のオーステ
ナイト粒を一層微細化し、粒界破壊を防止するととも
に、2)析出強化により芯部の硬さを増加することによ
り高強度化を図った軸部品用鋼材である。Nb、Vは鋼
中で炭窒化物を形成し、高周波加熱時のオーステナイト
粒を微細化させる効果、および析出強化により芯部の硬
さを増加させる効果を有する。しかしながら、Nb含有
量が0.01%未満、V含有量が0.03%未満ではそ
の効果は不十分である。一方、Nb:0.30%超、
V:0.60%超では、その効果は飽和し、このような
過剰添加は経済性の観点から好ましくない。以上の理由
から、これらの含有量をNb:0.01〜0.3%、
V:0.03〜0.6%とした。According to claim 4, 1) the austenite grains during high frequency heating are further refined to prevent grain boundary destruction, and 2) the hardness is increased by increasing the hardness of the core by precipitation strengthening. It is a steel material for shaft parts. Nb and V form a carbonitride in steel, and have the effect of refining the austenite grains during high-frequency heating, and the effect of increasing the hardness of the core by precipitation strengthening. However, if the Nb content is less than 0.01% and the V content is less than 0.03%, the effect is insufficient. On the other hand, Nb: more than 0.30%,
If V exceeds 0.60%, the effect is saturated, and such excessive addition is not preferable from the economical point of view. For the above reasons, the content of Nb: 0.01 to 0.3%,
V: 0.03 to 0.6%.
【0049】請求項5は、最終製品が優れた捩り強度を
有し、かつ軸部品の製造工程において加工性に優れ、焼
き割れを起こさない高強度高周波焼入れ軸部品に関する
発明である。本発明鋼では、被削性向上を目的としてC
a、Pbの1種また2種を含有させることが出来る。な
お、Caは被削性向上だけでなく、鋼中でPと結合して
燐化物を生成し、Pの粒界偏析量を低減し粒界強度を増
加させる効果も有している。しかしながら、Ca含有量
が0.0005%未満、Pb含有量が0.05%未満で
はこれら効果は不十分であり、一方、Ca:0.01%
超、Pb:0.50%超では、これらの効果は飽和し、
むしろ靱性を劣化させるので、これらの含有量をCa:
0.0005〜0.010%、Pb:0.05〜0.5
%とした。A fifth aspect of the present invention is an invention relating to a high-strength induction-hardened shaft component which has excellent torsional strength in the final product, excellent workability in the manufacturing process of the shaft component, and does not cause quench cracking. In the steel of the present invention, C is used for the purpose of improving machinability.
One or two of a and Pb can be contained. Note that Ca not only improves the machinability, but also has the effect of combining with P in the steel to form a phosphide, reducing the grain boundary segregation amount of P, and increasing the grain boundary strength. However, if the Ca content is less than 0.0005% and the Pb content is less than 0.05%, these effects are insufficient, while Ca: 0.01%
Above, Pb: above 0.50%, these effects saturate,
Rather, the toughness is deteriorated, so these contents should be Ca:
0.0005 to 0.010%, Pb: 0.05 to 0.5
%.
【0050】次に、請求項6は高周波加熱時のオーステ
ナイト粒を一層微細化し、粒界破壊防止による高強度化
を図った軸部品である。本発明において高周波焼入れ軸
部品の高周波焼入れ層の旧オーステナイト結晶粒度が9
番以上としたのは、高周波焼入れ層の旧オーステナイト
粒界の微細化により粒界破壊による脆性破壊が抑制され
るが、結晶粒度が9番未満ではこの効果は小さいためで
ある。Next, a sixth aspect of the present invention is a shaft component in which austenite grains during high-frequency heating are further refined to prevent grain boundary breakage and to achieve high strength. In the present invention, the induction-hardened layer of the induction-hardened shaft component has a former austenite grain size of 9
The reason is that the brittle fracture due to grain boundary fracture is suppressed by refining the former austenite grain boundaries of the induction-hardened layer, but this effect is small when the grain size is less than 9.
【0051】請求項7は高周波焼入れ軸部品の表面に大
きな圧縮残留応力を付与し、これにより脆性破壊を抑制
して一層の高強度化を図った軸部品である。本発明にお
いて高周波焼入れ軸部品の表面の残留応力が−80kg
f/mm2 以下としたのは、圧縮残留応力の付与により
脆性破壊が抑制されて捩り強度が増加し、その効果は表
面の残留応力が−80kgf/mm2 以下で特に顕著に
なるためである。A seventh aspect of the present invention is a shaft part in which a large compressive residual stress is applied to the surface of an induction-hardened shaft part, thereby suppressing brittle fracture and further strengthening. In the present invention, the residual stress on the surface of the induction hardened shaft component is −80 kg.
The reason for setting f / mm 2 or less is that the brittle fracture is suppressed by the application of compressive residual stress to increase the torsional strength, and the effect is particularly remarkable when the residual stress on the surface is −80 kgf / mm 2 or less. .
【0052】ここで、本発明の高周波焼入れ軸部品で
は、製造のための高周波焼入れ条件および焼戻し条件は
特に限定せず、本発明の要件を満足すればいずれの条件
でも良い。例えば、本発明の要件を満足すれば焼戻し処
理を行わなくても良い。また、本発明では、本発明の要
件を満足すれば、高周波焼入れの前に焼準、焼鈍、球状
化焼鈍、焼入れ一焼戻し等の熱処理を必要に応じて行う
ことができる。なお、高周波焼入れの前に焼準、焼鈍、
球状化焼鈍を行わない場合には、鋼材素材の熱間圧延に
よる製造を仕上げ温度;700〜850℃、仕上げ圧延
後700〜500℃の温度範囲の平均冷却速度;0.0
5〜0.7℃/秒の条件で行うのが望ましい。In the induction-hardened shaft component of the present invention, the induction-quenching conditions and the tempering conditions for manufacturing are not particularly limited, and any conditions may be used as long as they satisfy the requirements of the present invention. For example, if the requirements of the present invention are satisfied, tempering may not be performed. Further, in the present invention, if the requirements of the present invention are satisfied, heat treatment such as normalizing, annealing, spheroidizing annealing, and quenching / tempering can be performed as necessary before induction hardening. Before induction hardening, normalization, annealing,
When the spheroidizing annealing is not performed, the steel material is manufactured by hot rolling at a finishing temperature of 700 to 850 ° C., and after finishing rolling, the average cooling rate in the temperature range of 700 to 500 ° C .; 0.0.
It is desirable to carry out under the condition of 5 to 0.7 ° C./second.
【0053】また、本発明の高周波焼入れ軸部品におけ
る圧縮残留応力の付与は、高周波焼入れ−焼戻し後、ア
ークハイト1.0mmA以上の強さでのハードショット
ピーニング処理が有効である。ここで、アークハイトと
は例えば「自動車技術、Vol.41、No.7、19
87、726〜727頁」に掲載されているようにショ
ットピーニングの強さの指標である。但し、本発明で
は、圧縮残留応力の付与の条件は特に限定せず、本発明
の要件を満足すればいずれの条件でも良い。以下に、本
発明の効果を実施例により、さらに具体的に示す。Further, in order to apply the compressive residual stress to the induction-hardened shaft part of the present invention, a hard shot peening treatment with an arc height of 1.0 mmA or more after induction hardening-tempering is effective. Here, the arc height is, for example, “Automobile technology, Vol. 41, No. 7, 19
87, pp. 726-727 ", which is an index of the strength of shot peening. However, in the present invention, the condition for applying the compressive residual stress is not particularly limited, and any condition may be used as long as the requirements of the present invention are satisfied. Hereinafter, the effects of the present invention will be described more specifically by way of examples.
【0054】[0054]
【実施例】表1〜3の組成を有する鋼材を40mmφの
棒鋼に圧延した。この棒鋼から被削性評価用ドリル穴開
け試験片、捩り試験片および焼き割れ感受性評価試験片
を採取した。被削性の評価は、送り速度0.33mm/
sで、ドリル(材質:SKH51−φ10mm)の周速
を種々変化させ、各速度においてドリル切削不能になる
総穴深さを求め、周速−ドリル寿命曲線を作成し、ドリ
ル寿命が1000mmとなる最大速度をVL1000 と規定
し、被削性の評価基準とした。表1〜3にVL1000 の評
価結果を併せて示す。被削性は、第1発明鋼等のSi:
0.01〜0.15%である鋼材が第2発明鋼等のS
i:0.15超〜2.5%である鋼材に比べて相対的に
優れており、また被削性向上元素を含有する第5発明鋼
が特に被削性が優れていることがわかる。Example A steel material having the composition shown in Tables 1 to 3 was rolled into a steel bar having a diameter of 40 mm. From this steel bar, a drilling test piece for machinability evaluation, a torsion test piece, and a quench cracking susceptibility evaluation test piece were collected. Machinability is evaluated by a feed rate of 0.33 mm /
At s, the peripheral speed of the drill (material: SKH51-φ10 mm) is variously changed, the total hole depth at which the drill cannot be cut is obtained at each speed, and the peripheral speed-drill life curve is created, and the drill life becomes 1000 mm. The maximum speed was defined as V L1000 and used as the evaluation standard for machinability. Tables 1 to 3 also show the evaluation results of V L1000 . The machinability is the same as that of the first invention steel such as Si:
The steel material of 0.01 to 0.15% is S of the second invention steel or the like.
It is understood that i: the steel having a content of more than 0.15 to 2.5% is relatively excellent, and that the fifth invention steel containing the machinability improving element is particularly excellent in machinability.
【0055】[0055]
【表1】 [Table 1]
【0056】[0056]
【表2】 [Table 2]
【0057】[0057]
【表3】 [Table 3]
【0058】次に、対象としている軸部品はスプライン
部のような応用集中部(=切り欠き部)を有しており、
この切り欠き部で破壊する。そのため、強度評価は切り
欠き付き材での評価が必要である。そこで、捩り強度評
価用の試験片として平行部が16mmφで中央部に先端
R0.25mm、深さ2mmの切り欠きを有する切り欠
き付き捩り試験片を用いた。Next, the target shaft component has an application concentration portion (= notch portion) such as a spline portion,
Destroy at this notch. Therefore, strength evaluation requires evaluation with a notched material. Therefore, as a test piece for evaluating the torsional strength, a twisted test piece with a notch having a parallel part of 16 mmφ and a notch having a tip R of 0.25 mm and a depth of 2 mm in the central part was used.
【0059】[0059]
【表4】 [Table 4]
【0060】表4に示すA〜Cの条件で高周波焼入れを
行い、その後170℃×1時間の条件で焼戻しを行っ
た。これらの試料について捩り試験を行った。なお、一
部の試料については、高周波焼入れ−焼戻し後、アーク
ハイト1.0〜1.5mmAの条件でショットピーニン
グ処理を行った。また、焼き割れ感受性を評価するため
に、直径24mmφ、長さ200mmLで長手方向に先
端R0.25mm、深さ3mmの切り欠きを有する試験
片を用い、表4に示すDの条件で高周波焼入れを行い、
切り欠き底の焼き割れの有無を観察した。Induction hardening was carried out under the conditions A to C shown in Table 4, and then tempering was carried out at 170 ° C. for 1 hour. A torsion test was performed on these samples. In addition, about some samples, after induction hardening-tempering, the shot peening process was performed on condition of arc height 1.0-1.5 mmA. Further, in order to evaluate the susceptibility to quench cracking, a test piece having a diameter of 24 mmφ, a length of 200 mmL, and a notch having a tip R0.25 mm and a depth 3 mm in the longitudinal direction was used, and induction hardening was performed under the condition D shown in Table 4. Done,
The presence or absence of fire cracks on the notch bottom was observed.
【0061】表1〜3の鋼No.1〜44は本発明鋼、
鋼No.45〜63は比較鋼である。表5〜7に各鋼材
の捩り強度評価結果を、有効硬化層深さと半径の比t/
r、断面内平均硬さHVa、高周波焼入れ層の旧オース
テナイト結晶粒度Nγ、表面の残留応力、焼き割れ感受
性の評価結果とあわせて示す。なお、有効硬化層深さ
は、JISG0559で規定する高周波焼入れ硬化層深
さ測定方法に基づく有効硬化層深さである。Steel Nos. In Tables 1 to 3 1-44 is the steel of the present invention,
Steel No. 45-63 are comparative steels. Tables 5 to 7 show the results of the torsional strength evaluation of each steel material, in which the ratio of effective hardened layer depth to radius is t /
r, average hardness in cross section HVa, former austenite grain size Nγ of the induction-hardened layer, residual stress on the surface, and evaluation results of quench cracking sensitivity are also shown. The effective hardened layer depth is the effective hardened layer depth based on the induction hardening hardened layer depth measuring method defined in JIS G0559.
【0062】[0062]
【表5】 [Table 5]
【0063】[0063]
【表6】 [Table 6]
【0064】[0064]
【表7】 [Table 7]
【0065】表5〜7から明らかなように、本発明法に
よる鋼はいずれも160kgf/mm2 以上の優れた捩
り強度を有し、また焼き割れ感受性も小さいことがわか
る。また、本発明法の中で、第2発明鋼等のSi:0.
15超〜2.5%、Mn:0.6〜2.0%である鋼材
を用いた発明例が、第1発明鋼等のSi:0.01〜
0.15%、Mn:0.2〜2.0%である鋼材を用い
た発明例に比べて相対的により高いレベルの捩り強度を
達成している。さらに高周波焼入れ層の旧オーステナイ
ト結晶粒度が9番以上であるか、さらにまたは表面の残
留応力が−80kgf/mm2 以下である場合は、より
高いレベルの捩り強度を達成していることがわかる。As is clear from Tables 5 to 7, it is understood that all the steels according to the method of the present invention have an excellent torsional strength of 160 kgf / mm 2 or more and have a low susceptibility to quench cracking. Further, in the method of the present invention, Si: 0.
Inventive examples using steel materials having a content of more than 15 to 2.5% and Mn of 0.6 to 2.0% include Si of the first invention steel and the like: 0.01 to
A relatively higher level of torsional strength is achieved as compared with the invention examples using the steel materials having 0.15% and Mn: 0.2 to 2.0%. Furthermore, when the prior austenite grain size of the induction-hardened layer is No. 9 or more, or when the surface residual stress is -80 kgf / mm 2 or less, it is understood that a higher level of torsional strength is achieved.
【0066】一方、比較例3C、7C、13C、18
C、25C、31C、41Cは、断面内平均硬さHVa
が560を下回った場合であり、いずれも160kgf
/mm2 以上の捩り強度を達成していない。比較例50
はSの含有量が本発明の範囲を下回った場合であり、1
60kgf/mm2 以上の捩り強度を有しているもの
の、表3に示したように鋼No.50は被削性が劣って
いる。On the other hand, Comparative Examples 3C, 7C, 13C and 18
C, 25C, 31C, 41C are the average hardness HVa in the cross section.
Is less than 560, both 160kgf
The torsional strength of / mm 2 or more is not achieved. Comparative Example 50
Indicates that the content of S is below the range of the present invention, and 1
Although it has a torsional strength of 60 kgf / mm 2 or more, as shown in Table 3, steel No. 50 is inferior in machinability.
【0067】比較例45、48、53、55、57は
C、Mn、Ti、B、Nの含有量が本発明の範囲を下回
った場合であり、また、比較例46、47、49、5
1、52、54、56、58、59、60、61、6
2、63はC、Si、Mn、S、Al、Ti、B、N、
P、Cu、O、Ca、Pbの含有量が本発明の範囲を上
回った場合であり、いずれも160kgf/mm2 以上
の捩り強度を達成しておらず、また、この中の一部の粒
界強化対策の不十分な鋼材等の比較例では、焼き割れが
発生している。Comparative Examples 45, 48, 53, 55 and 57 are cases where the contents of C, Mn, Ti, B and N were below the range of the present invention, and Comparative Examples 46, 47, 49 and 5 were used.
1, 52, 54, 56, 58, 59, 60, 61, 6
2, 63 are C, Si, Mn, S, Al, Ti, B, N,
This is the case where the contents of P, Cu, O, Ca, and Pb exceed the range of the present invention, none of which has achieved a torsional strength of 160 kgf / mm 2 or more, and some of the grains In the comparative examples of steel materials for which the field strengthening measures are insufficient, quench cracks have occurred.
【0068】[0068]
【発明の効果】以上述べたごとく、本発明法を用いれ
ば、160kgf/mm2 以上の優れた捩り強度を有
し、かつ焼き割れを起こさない高周波焼入れ軸部品の製
造が可能となり、産業上の効果は極めて顕著なるものが
ある。As described above, by using the method of the present invention, it becomes possible to manufacture an induction-hardened shaft part having an excellent torsional strength of 160 kgf / mm 2 or more and free from quenching cracks. The effect is extremely remarkable.
【図1】(a)はセレーション部を有するシャフト、
(b)はフランジ付シャフト、(c)は外筒付シャフト
を示した図FIG. 1A is a shaft having a serration portion,
(B) shows a shaft with a flange, (c) shows a shaft with an outer cylinder
【図2】断面内平均硬さの定義を説明するための図であ
り、断面を半径方向に同心円状にn個のリングに分割し
た状態を示す図FIG. 2 is a diagram for explaining the definition of average hardness in a cross section, showing a state in which the cross section is divided into n rings concentrically in the radial direction.
【図3】軸部品の捩り変形過程で塑性変形が裏面から内
部へ進行する時の剪断歪と剪断力を模式的に示した図FIG. 3 is a diagram schematically showing a shear strain and a shear force when plastic deformation progresses from the back surface to the inside in a torsional deformation process of a shaft component.
【図4】各種材料の平均硬さ(HVa)と捩り強度との
関係を示す図FIG. 4 is a diagram showing the relationship between the average hardness (HVa) of various materials and the torsional strength.
10 シャフト 11、12 セレーション 20、21 シャフト 22 フランジ 30、31、32 シャフト 33 外筒部 10 Shaft 11, 12 Serration 20, 21 Shaft 22 Flange 30, 31, 32 Shaft 33 Outer cylinder part
Claims (7)
れる断面内平均硬さHVaが560以上であることを特
徴とする高強度高周波焼入れ軸部品。断面内平均硬さの
定義;半径aの断面を半径方向に同心円状にN個のリン
グに分割し、n番目のリング状部分の硬さをHVn 、半
径をrn 、間隔をΔrn とした時、 【数1】 1. As a weight ratio, C: 0.35 to 0.70% Si: 0.01 to 0.15% Mn: 0.2 to 2.0% S: 0.005 to 0.15% Al : 0.0005-0.05% Ti: 0.005-0.05% B: 0.0005-0.005% N: 0.002-0.02% is contained, P: 0.020% or less Cu: 0.05% or less O: limited to 0.0020% or less, the balance consisting of iron and unavoidable impurities, and the average hardness HVa in the cross section defined below is 560 or more. Strength induction hardening shaft parts. Definition of average hardness in cross section: A cross section of radius a is divided into N rings concentrically in the radial direction, and the hardness of the nth ring-shaped portion is HV n , radius is r n , and interval is Δr n When you do,
れる断面内平均硬さHVaが560以上であることを特
徴とする高強度高周波焼入れ軸部品。断面内平均硬さの
定義;半径aの断面を半径方向に同心円状にN個のリン
グに分割し、n番目のリング状部分の硬さをHVn 、半
径をrn 、間隔をΔrn とした時、 【数2】 2. As a weight ratio, C: 0.35 to 0.70% Si: more than 0.15 to 2.5% Mn: 0.6 to 2.0% S: 0.005 to 0.15% Al: 0.0005-0.05% Ti: 0.005-0.05% B: 0.0005-0.005% N: 0.002-0.02% is contained, P: 0.020% Cu: 0.05% or less O: 0.0020% or less, the balance consisting of iron and unavoidable impurities, and an average cross-section hardness HVa defined below is 560 or more. High strength induction hardened shaft parts. Definition of average hardness in cross section: A cross section of radius a is divided into N rings concentrically in the radial direction, and the hardness of the nth ring-shaped portion is HV n , radius is r n , and interval is Δr n When you do,
2記載の高強度高周波焼入れ軸部品。3. The steel further contains one or more of Cr: 0.03 to 1.5% Mo: 0.05 to 1.0% Ni: 0.1 to 3.5%. The high-strength induction-hardened shaft component according to claim 1 or 2.
強度高周波焼入れ軸部品。4. The high-strength induction hardened shaft according to claim 1, wherein the steel further contains one or two of Nb: 0.01 to 0.3% V: 0.03 to 0.6%. parts.
強度高周波焼入れ軸部品。5. The high strength induction hardened shaft according to claim 1, wherein the steel further contains one or two of Ca: 0.0005 to 0.010% Pb: 0.05 to 0.5%. parts.
粒度が9番以上である請求項1ないし5記載の高強度高
周波焼入れ軸部品。6. The high-strength induction-hardened shaft component according to claim 1, wherein the prior-austenite grain size of the induction-hardened layer is 9 or more.
以下である請求項1ないし6記載の高強度高周波焼入れ
軸部品。7. The surface residual stress is −80 kgf / mm 2.
The high-strength induction-hardened shaft component according to claim 1, which is as follows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5253691A JP2916069B2 (en) | 1993-09-17 | 1993-09-17 | High-strength induction hardened shaft parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5253691A JP2916069B2 (en) | 1993-09-17 | 1993-09-17 | High-strength induction hardened shaft parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0790484A true JPH0790484A (en) | 1995-04-04 |
JP2916069B2 JP2916069B2 (en) | 1999-07-05 |
Family
ID=17254812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5253691A Expired - Fee Related JP2916069B2 (en) | 1993-09-17 | 1993-09-17 | High-strength induction hardened shaft parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2916069B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001002615A1 (en) * | 1999-06-30 | 2001-01-11 | Nippon Steel Corporation | Cold workable steel bar or wire and process |
WO2004106574A1 (en) | 2003-05-27 | 2004-12-09 | Koyo Seiko Co., Ltd. | Steel bar for steering rack, method for producing the same, and steering rack using the same |
EP1584700A1 (en) * | 2003-01-17 | 2005-10-12 | JFE Steel Corporation | High-strength steel product excelling in fatigue strength and process for producing the same |
EP1647608A1 (en) * | 2004-10-13 | 2006-04-19 | Nippon Steel Corporation | Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft |
EP1666621A1 (en) * | 2003-08-27 | 2006-06-07 | Sumitomo Metal Industries, Ltd. | Hot forged non-heat treated steel for induction hardening |
EP1669469A1 (en) * | 2003-09-29 | 2006-06-14 | JFE Steel Corporation | Steel parts for machine structure, material therefor, and method for manufacture thereof |
WO2006104023A1 (en) * | 2005-03-25 | 2006-10-05 | Sumitomo Metal Industries, Ltd. | Hollow driving shaft obtained through induction hardening |
EP1584701A4 (en) * | 2003-01-17 | 2006-10-25 | Jfe Steel Corp | Steel product for induction hardening, induction-hardened member using the same, and methods for producing them |
JP2007321190A (en) * | 2006-05-31 | 2007-12-13 | Jfe Steel Kk | Steel having excellent fatigue property and its production method |
JP2008537982A (en) * | 2005-04-12 | 2008-10-02 | スカニア シーブイ アクチボラグ(パブル) | Boron steel and shaft for induction hardening |
CN100436628C (en) * | 2003-01-17 | 2008-11-26 | 杰富意钢铁株式会社 | Steel product for induction hardening, induction-hardened member using the same, and methods for producing them |
JP2009014203A (en) * | 2008-09-17 | 2009-01-22 | Jtekt Corp | Intermediate shaft with constant velocity joints connected to both ends |
US8070890B2 (en) | 2005-03-25 | 2011-12-06 | Sumitomo Metal Industries, Ltd. | Induction hardened hollow driving shaft |
-
1993
- 1993-09-17 JP JP5253691A patent/JP2916069B2/en not_active Expired - Fee Related
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6488787B1 (en) | 1999-06-30 | 2002-12-03 | Nippon Steel Corporation | Cold workable steel bar or wire and process |
WO2001002615A1 (en) * | 1999-06-30 | 2001-01-11 | Nippon Steel Corporation | Cold workable steel bar or wire and process |
CN100436628C (en) * | 2003-01-17 | 2008-11-26 | 杰富意钢铁株式会社 | Steel product for induction hardening, induction-hardened member using the same, and methods for producing them |
EP1961831A1 (en) * | 2003-01-17 | 2008-08-27 | JFE Steel Corporation | High-strength steel product excelling in fatigue strength and process for producing the same |
EP1584700A1 (en) * | 2003-01-17 | 2005-10-12 | JFE Steel Corporation | High-strength steel product excelling in fatigue strength and process for producing the same |
EP1584700A4 (en) * | 2003-01-17 | 2007-03-28 | Jfe Steel Corp | High-strength steel product excelling in fatigue strength and process for producing the same |
US7678207B2 (en) | 2003-01-17 | 2010-03-16 | Jfe Steel Corporation | Steel product for induction hardening, induction-hardened member using the same, and methods producing them |
EP1584701A4 (en) * | 2003-01-17 | 2006-10-25 | Jfe Steel Corp | Steel product for induction hardening, induction-hardened member using the same, and methods for producing them |
EP1640467A4 (en) * | 2003-05-27 | 2006-10-25 | Jtekt Corp | Steel bar for steering rack, method for producing the same, and steering rack using the same |
US7662245B2 (en) | 2003-05-27 | 2010-02-16 | Koyo Seiko Co., Ltd. | Steering rack comprising steel bar with rack teeth |
EP1640467A1 (en) * | 2003-05-27 | 2006-03-29 | Koyo Seiko Co., Ltd. | Steel bar for steering rack, method for producing the same, and steering rack using the same |
WO2004106574A1 (en) | 2003-05-27 | 2004-12-09 | Koyo Seiko Co., Ltd. | Steel bar for steering rack, method for producing the same, and steering rack using the same |
US7387691B2 (en) | 2003-08-27 | 2008-06-17 | Sumitomo Metal Industries, Ltd. | Hot forged non-heat treated steel for induction hardening |
EP1666621A4 (en) * | 2003-08-27 | 2006-11-15 | Sumitomo Metal Ind | Hot forged non-heat treated steel for induction hardening |
EP1666621A1 (en) * | 2003-08-27 | 2006-06-07 | Sumitomo Metal Industries, Ltd. | Hot forged non-heat treated steel for induction hardening |
EP1669469A4 (en) * | 2003-09-29 | 2007-03-07 | Jfe Steel Corp | Steel parts for machine structure, material therefor, and method for manufacture thereof |
EP1669469A1 (en) * | 2003-09-29 | 2006-06-14 | JFE Steel Corporation | Steel parts for machine structure, material therefor, and method for manufacture thereof |
US7438771B2 (en) | 2004-10-13 | 2008-10-21 | Nippon Steel Corporation | Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft |
EP1647608A1 (en) * | 2004-10-13 | 2006-04-19 | Nippon Steel Corporation | Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft |
WO2006104023A1 (en) * | 2005-03-25 | 2006-10-05 | Sumitomo Metal Industries, Ltd. | Hollow driving shaft obtained through induction hardening |
US8070890B2 (en) | 2005-03-25 | 2011-12-06 | Sumitomo Metal Industries, Ltd. | Induction hardened hollow driving shaft |
JP2008537982A (en) * | 2005-04-12 | 2008-10-02 | スカニア シーブイ アクチボラグ(パブル) | Boron steel and shaft for induction hardening |
JP2007321190A (en) * | 2006-05-31 | 2007-12-13 | Jfe Steel Kk | Steel having excellent fatigue property and its production method |
JP2009014203A (en) * | 2008-09-17 | 2009-01-22 | Jtekt Corp | Intermediate shaft with constant velocity joints connected to both ends |
Also Published As
Publication number | Publication date |
---|---|
JP2916069B2 (en) | 1999-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0643148B1 (en) | Steel material for induction-hardened shaft part and shaft part made therefrom | |
JP4266340B2 (en) | High strength wire for induction hardening with excellent cold workability and impact resistance, and steel parts using this wire | |
JP6794012B2 (en) | Mechanical structural steel with excellent grain coarsening resistance, bending fatigue resistance, and impact resistance | |
JPH0892690A (en) | Carburized parts excellent in fatigue resistance and its production | |
JP2916069B2 (en) | High-strength induction hardened shaft parts | |
US6383311B1 (en) | High strength drive shaft and process for producing the same | |
JP4347999B2 (en) | Induction hardening steel and induction hardening parts with excellent torsional fatigue properties | |
JPH10195589A (en) | Induction hardened steel material with high torsional fatigue strength | |
JP3432950B2 (en) | Steel material for induction hardened shaft parts that has both cold workability and torsional fatigue strength characteristics | |
JPH06116635A (en) | Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance | |
JP2004027334A (en) | Steel for induction tempering and method of producing the same | |
JPH09170017A (en) | Production of steel plate with high strength and high toughness | |
US5223049A (en) | Steel for induction hardening | |
JP3842888B2 (en) | Method of manufacturing steel for induction hardening that combines cold workability and high strength properties | |
JPH11131176A (en) | Induction hardened parts and production thereof | |
JPH10324954A (en) | Steel for machine structural use | |
JP6992535B2 (en) | High-strength bolts and their manufacturing methods | |
JP3304550B2 (en) | Manufacturing method of induction hardened parts with notches | |
JPH11269541A (en) | Manufacture of high strength steel excellent in fatigue characteristic | |
JPH11181542A (en) | Steel product for induction hardening, excellent in cold workability and induction hardenability, and its production | |
JP5141313B2 (en) | Steel material with excellent black skin peripheral turning and torsional strength | |
JPH0734189A (en) | High strength bar steel excellent in machinability | |
JPH08193242A (en) | Nitriding steel excellent in toughness | |
JP2004124190A (en) | Induction-tempered steel having excellent twisting property | |
JP3398233B2 (en) | Manufacturing method of machine structural steel and machine structural member excellent in machinability and fatigue strength after induction hardening / tempering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990323 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080416 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090416 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090416 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100416 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110416 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120416 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |