JPH0757254A - Production of magnetic recording medium - Google Patents
Production of magnetic recording mediumInfo
- Publication number
- JPH0757254A JPH0757254A JP20500093A JP20500093A JPH0757254A JP H0757254 A JPH0757254 A JP H0757254A JP 20500093 A JP20500093 A JP 20500093A JP 20500093 A JP20500093 A JP 20500093A JP H0757254 A JPH0757254 A JP H0757254A
- Authority
- JP
- Japan
- Prior art keywords
- lubricant
- magnetic recording
- film
- recording medium
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は高密度磁気記録に適する
強磁性金属薄膜を磁性層とする耐久性と記録特性に優れ
た磁気記録媒体の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic recording medium having a magnetic layer of a ferromagnetic metal thin film suitable for high density magnetic recording and having excellent durability and recording characteristics.
【0002】[0002]
【従来の技術】情報化社会の進展に伴い、記録すべき情
報量の増大は著しく、磁気記録についても可能な限り記
録密度を高める対応が要請され、短波長化、狭トラック
化に耐える高性能磁気記録媒体の開発が盛んになってき
ている。多くの提案がなされているが、現在実用に供さ
れているものは特開昭53−58206号公報に開示さ
れているような強磁性金属自身の酸化物で柱状微粒子の
表面が被覆された構造をもち記録特性と耐久性をバラン
ス良く改善したもので、構成元素はCo,Ni,Oから
なり(特開昭56−15014号公報)、これらの磁気
記録層を形成するのは、酸素ガスを介在させながらC
o,Co−Niを電子ビーム蒸着する方法が代表的で酸
素の導入については幾つかの提案があるが基材近傍で、
入射角規制を行う部分に近い位置が良く用いられている
(特開昭54−19199号公報、特開昭58−322
34号公報)。更に実用性能の改善を図る為に保護膜の
検討が進められている中でも、硬度を高めた炭素膜(特
開昭53−143026号公報)や他の薄層介在による
一層の改善が行われてきている(例えば特開昭61−2
42323号公報、特開昭62−167616号公
報)。これらの膜はプラズマを応用した、スパッタリン
グ法、イオンビームデポジション法、プラズマCVD法
等で蒸着によって強磁性金属薄膜形成後に所定の膜厚分
付与される。更に潤滑剤を溶液塗布法ないしは真空蒸着
法で配し、必要な処理の後、テープ状、ディスク状に加
工されて使用されている。2. Description of the Related Art With the progress of information society, the amount of information to be recorded is remarkably increasing, and it is required to increase the recording density of magnetic recording as much as possible. Development of magnetic recording media has been brisk. Although many proposals have been made, the one currently put to practical use is a structure in which the surface of columnar fine particles is coated with an oxide of a ferromagnetic metal itself as disclosed in JP-A-53-58206. It has a well-balanced improvement in recording characteristics and durability, and its constituent elements consist of Co, Ni, and O (JP-A-56-15014), and these magnetic recording layers are formed by oxygen gas. C while intervening
A typical method is electron beam evaporation of o, Co-Ni, and there are some proposals for introducing oxygen, but in the vicinity of the substrate,
A position close to the part for controlling the incident angle is often used (Japanese Patent Laid-Open No. 54-19199, Japanese Patent Laid-Open No. 58-322).
34 publication). Further, while a protective film is being studied in order to improve practical performance, a carbon film with increased hardness (Japanese Patent Application Laid-Open No. 53-143026) and other thin layer inclusions have been used for further improvement. (For example, JP-A-61-2
42323, JP-A-62-167616). These films are applied by a predetermined film thickness after the ferromagnetic metal thin film is formed by vapor deposition by a plasma-applied sputtering method, an ion beam deposition method, a plasma CVD method or the like. Further, a lubricant is arranged by a solution coating method or a vacuum deposition method, and after necessary treatment, it is processed into a tape shape or a disk shape and used.
【0003】[0003]
【発明が解決しようとする課題】しかしながら上記の従
来の構成では酸素導入量を増加させて表面酸化膜の厚み
を厚くして、且つ炭素膜の硬さを高めた上でその厚みも
厚くする必要があり、スペーシング損失が大きくなり、
高密度記録を改善するに足るS/N特性を得にくいとい
った問題点があった。However, in the above-mentioned conventional structure, it is necessary to increase the amount of oxygen introduced to increase the thickness of the surface oxide film, and to increase the hardness of the carbon film and also increase the thickness thereof. There is a large spacing loss,
There is a problem that it is difficult to obtain S / N characteristics sufficient to improve high density recording.
【0004】本発明は上記従来の問題点を解決するもの
で、狭トラック高密度記録を可能にする、耐久性と高出
力特性を兼ね備えた薄型の磁気記録媒体の製造方法を提
供することを目的とする。The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a method of manufacturing a thin magnetic recording medium having both durability and high output characteristics, which enables narrow track high density recording. And
【0005】[0005]
【課題を解決するための手段】この目的を達成するため
に本発明の磁気記録媒体の製造方法は部分酸化強磁性金
属薄膜上にダイヤモンド状硬質炭素膜を形成し、表面を
潤滑剤蒸気のプラズマ処理した後、潤滑剤を真空蒸着す
るようにしたものである。In order to achieve this object, a method of manufacturing a magnetic recording medium according to the present invention comprises forming a diamond-like hard carbon film on a partially oxidized ferromagnetic metal thin film, and forming a plasma of a lubricant vapor on the surface. After the treatment, the lubricant is vacuum-deposited.
【0006】[0006]
【作用】この構成によって部分酸化強磁性金属薄膜表面
の上のダイヤモンド状硬質炭素膜表面にプラズマにより
生成された、極めて活性な潤滑剤構成要素が結合力を高
められ、被着し、その上にもとの潤滑剤が強く結合させ
ることが出来、スペース損失となる非磁性部分を少なく
しても、耐久性を持たすことが出来るので耐久性と高S
/N比を兼ね備えた薄型の磁気記録媒体を再現よく製造
できるようになる。With this structure, the extremely active lubricant component generated by the plasma on the surface of the diamond-like hard carbon film on the surface of the partially oxidized ferromagnetic metal thin film is enhanced in the binding force and adheres to it. The original lubricant can be strongly bonded, and even if the non-magnetic part that causes space loss is reduced, the durability can be maintained, so durability and high S
It becomes possible to reproducibly manufacture a thin magnetic recording medium having an A / N ratio.
【0007】[0007]
(実施例1)以下本発明の一実施例について、図面を参
照しながら説明する。(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.
【0008】図1において、1は処理用原反で高分子フ
ィルム上に部分強磁性金属薄膜を配し、その上にダイヤ
モンド状硬質炭素を形成したもので、2は回転支持体で
温度制御条件、絶縁保持等は適宜選ぶことが可能であ
る。3は送り出し軸、4は巻き取り軸である。5は潤滑
剤蒸気のプラズマ処理を行う為の、放電電極で、高周波
電界を利用するのがよい。6は蒸発源容器で、7はカル
ボン酸、エステル、アミド、アミン等の天然に存在する
潤滑剤や、分子合成した潤滑剤である。8、9は防着板
で、9はプラズマ処理に供する蒸気を通過させる為の開
孔部10を配してある。11は潤滑剤蒸気の内プラズマ
処理に供される蒸気流で、12は潤滑層形成に供される
蒸気流である。蒸発の為の加熱エネルギーは、加速電子
線、ジュール熱、等特に限定はない。プラズマ処理の条
件は開孔部の大きさ、位置、放電電極構成条件、高周波
電界条件等適宜最適化して実施すればよい。In FIG. 1, reference numeral 1 is a raw material for processing, in which a partially ferromagnetic metal thin film is arranged on a polymer film, and diamond-like hard carbon is formed on it, and 2 is a rotary support and temperature control conditions. Insulation retention and the like can be appropriately selected. Reference numeral 3 is a delivery shaft, and 4 is a winding shaft. Reference numeral 5 is a discharge electrode for performing the plasma treatment of the lubricant vapor, and it is preferable to use a high frequency electric field. Reference numeral 6 is an evaporation source container, and 7 is a naturally occurring lubricant such as carboxylic acid, ester, amide, amine, etc., or a molecularly synthesized lubricant. Reference numerals 8 and 9 denote anti-adhesion plates, and 9 is provided with an opening 10 for passing vapor used for plasma treatment. Reference numeral 11 is a vapor flow used for plasma treatment of the lubricant vapor, and 12 is a vapor flow used for forming a lubricating layer. The heating energy for evaporation is not particularly limited, such as accelerated electron beam and Joule heat. The conditions of the plasma treatment may be optimized by appropriately optimizing the size and position of the opening, the condition of the discharge electrode and the condition of the high frequency electric field.
【0009】以下更に本実施例の効果について明確にす
るために具体的に上記した構成の装置を用い磁気記録媒
体を試作し、従来法で得られたものと特性比較を行った
結果について詳しく述べる。In order to further clarify the effect of this embodiment, a magnetic recording medium will be made by using the apparatus having the above-mentioned constitution, and the result of the characteristic comparison with that obtained by the conventional method will be described in detail. .
【0010】厚み6μmで、長手方向、幅方向夫々54
0、590[Kg/mm2]のヤング率で、平均粗さ3
0Åのポリエチレンナフタレートフィルム(直径150
ÅのSiO2の超微粒子を平均密度20個/μm2を樹脂
固定した塗布層をあらかじめ配したものを用いた)を直
径1mの20℃に冷却した回転キャンに沿わせて巻き取
りながら酸素を導入してCoを電子ビーム蒸着して磁性
層を0.18μ形成した。酸素ガス導入ノズルは最小入
射角40度とし、その入射角を決定するマスクの先端部
に直径8mmのステンレスパイプに0.2mmの直径の
孔を15mmピッチで配した酸素ガス導入ノズルから
0.81/minに制御して導入した。表面の酸化層は
110〜115Åであった。その上にプラズマCVD法
でメタンガスを放電分解し、ダイヤモンド状の硬質炭素
膜を70Å形成した。この状態のフィルムを原反Aと
し、原反Aを長手方向に分割して、パーフルオロステア
リン酸を潤滑剤として選び、実施例と従来例の比較がで
きるようにテープ化を進めた。従来例は防着板の開孔部
10を閉じて潤滑剤を蒸着した。実施例は図1に示した
蒸気流の放射角αが時計方向に正、反時計方向に負で表
して、プラズマ処理用に60〜75度、蒸着用に30〜
−30度(1a),プラズマ処理用に60〜66度、蒸
着用に20〜−10度(1b)の2条件と、プラズマ処
理条件を組み合わせて試作した。潤滑剤は均一厚み換算
で40Åになるように調整した。A thickness of 6 μm, 54 in the longitudinal direction and 54 in the width direction, respectively.
Young's modulus of 0,590 [Kg / mm 2 ] and average roughness of 3
0Å polyethylene naphthalate film (diameter 150
Å SiO 2 ultrafine particles with an average density of 20 particles / μm 2 resin-fixed coating layer was used in advance) was wound up along a rotary can cooled to 20 ° C. with a diameter of 1 m to collect oxygen. Then, Co was electron beam evaporated to form a magnetic layer of 0.18 μm. The oxygen gas introduction nozzle has a minimum incident angle of 40 degrees, and the mask for determining the incident angle has a 0.8 mm diameter stainless pipe at the tip of which a 0.2 mm diameter hole is arranged at a pitch of 15 mm. / Min It controlled and introduced. The oxide layer on the surface was 110 to 115Å. Then, methane gas was discharged and decomposed by plasma CVD to form a diamond-like hard carbon film of 70Å. The film in this state was used as the raw fabric A, the raw fabric A was divided in the longitudinal direction, and perfluorostearic acid was selected as the lubricant, and the tape formation was advanced so that the example and the conventional example could be compared. In the conventional example, the opening portion 10 of the deposition preventive plate was closed and the lubricant was deposited. In the example, the radiation angle α of the vapor flow shown in FIG. 1 is expressed as positive in the clockwise direction and negative in the counterclockwise direction, and is 60 to 75 degrees for plasma treatment and 30 to 30 for vapor deposition.
A trial was made by combining two conditions of -30 degrees (1a), 60 to 66 degrees for plasma processing, and 20 to -10 degrees (1b) for vapor deposition, and plasma processing conditions. The lubricant was adjusted to have a uniform thickness of 40Å.
【0011】更にバックコート層を0.45μm形成し
8mm幅の磁気テープを試作して特性比較した。夫々の
磁気テープの特性比較は、ハイバンド8ミリビデオデッ
キを改造して記録波長0.47μm,トラックピッチ9
μmでS/N比を初期と40℃、80%RHで130回
記録再生を繰り返した後について、相対比較で行った。
磁気テープの長さは100mとし、ランダムに5巻選び
出して5巻の平均値で表示した。スチル特性はテンショ
ンを25gに増加させて40℃、5%RHで比較した。
本実施例による磁気記録媒体の特性と比較例の磁気記録
媒体の特性を(表1)に比較して示している。Further, a backcoat layer having a thickness of 0.45 μm was formed, and a magnetic tape having a width of 8 mm was manufactured as a prototype and its characteristics were compared. The characteristics of the magnetic tapes are compared with each other by modifying the high-band 8 mm video deck to have a recording wavelength of 0.47 μm and a track pitch of 9
Relative comparison was performed after the recording / reproducing was repeated 130 times at the initial S / N ratio of 40 ° C. and 80% RH in μm.
The length of the magnetic tape was 100 m, 5 rolls were randomly selected, and the average value of 5 rolls was displayed. The still characteristics were compared at 40 ° C. and 5% RH by increasing the tension to 25 g.
The characteristics of the magnetic recording medium according to this example and the characteristics of the magnetic recording medium of the comparative example are shown in comparison with each other (Table 1).
【0012】[0012]
【表1】 [Table 1]
【0013】この(表1)から明らかなように、本実施
例によって製造された磁気記録媒体は、狭トラック記録
での高密度記録で耐久性と高いS/N比を実現できると
いった優れた効果が得られることがわかり優れた製造方
法であることが理解される。As is clear from Table 1 above, the magnetic recording medium manufactured according to the present example has an excellent effect of achieving durability and high S / N ratio in high density recording in narrow track recording. It is understood that is an excellent manufacturing method.
【0014】以上のように本実施例の製造方法によれ
ば、部分酸化強磁性金属薄膜上にダイヤモンド状硬質炭
素膜を形成し、表面を潤滑剤蒸気のプラズマ処理した
後、潤滑剤を真空蒸着することにより狭トラック化した
高密度記録で優れたS/N比を繰り返し使用においても
安定に保持しうる磁気記録媒体を再現良く大量に得るこ
とができる。As described above, according to the manufacturing method of this embodiment, the diamond-like hard carbon film is formed on the partially oxidized ferromagnetic metal thin film, the surface is plasma-treated with the lubricant vapor, and then the lubricant is vacuum-deposited. By doing so, a large number of magnetic recording media can be obtained with good reproducibility, which can stably maintain an excellent S / N ratio in high density recording with a narrowed track even after repeated use.
【0015】(実施例2)以下本発明の第2の実施例に
ついて説明する。(Second Embodiment) A second embodiment of the present invention will be described below.
【0016】図2は本発明の第2の実施例の磁気記録媒
体の製造方法を実施するために用いた磁気記録媒体の製
造装置の要部構成図である。図2で、図1と同じ構成要
素でよいものについては同一の番号を付してある。13
は炭酸ガス、エキシマレーザーなどのレーザー光源で、
14はレーザービームである。15は防着板である。こ
の装置により潤滑剤を蒸着すると同時にレーザービーム
を照射することで後述する効果が得られるのであるが、
蒸着域とレーザービーム照射域が厳密に重なる必要はな
いが、蒸着開始側にはビームが照射されている必要があ
る。それは潤滑剤分子がダイヤモンド状硬質炭素膜に最
初に触れた時にレーザーで活性化されることが強固に潤
滑剤の被着を助けると推定されるからである。FIG. 2 is a block diagram of the essential parts of a magnetic recording medium manufacturing apparatus used for carrying out the method of manufacturing a magnetic recording medium according to the second embodiment of the present invention. In FIG. 2, the same components as those in FIG. 1 are given the same numbers. Thirteen
Is a laser light source such as carbon dioxide gas or excimer laser,
14 is a laser beam. Reference numeral 15 is a deposition preventive plate. By applying a laser beam at the same time as depositing a lubricant with this device, the effects described below can be obtained.
The vapor deposition area and the laser beam irradiation area do not have to overlap exactly, but the beam needs to be irradiated on the vapor deposition start side. This is because it is presumed that laser activation when the lubricant molecules first contact the diamond-like hard carbon film strongly aids the lubricant deposition.
【0017】以下更に本実施例の効果について明確にす
るために具体的に上記した構成の装置を用い磁気記録媒
体を試作し、従来法で得られたものと特性比較を行った
結果について詳しく述べる。Further, in order to clarify the effect of this embodiment, a magnetic recording medium is prototyped using the apparatus having the above-mentioned constitution, and the result of the characteristic comparison with that obtained by the conventional method will be described in detail. .
【0018】厚み5.3μmで、長手方向、幅方向夫々
940、1050[Kg/mm2]のヤング率で、平均
粗さ25Åのポリイミドフィルム(直径150ÅのSi
O2の超微粒子を平均密度20個/μm2を樹脂固定した
塗布層をあらかじめ配したものを用いた)を直径1mの
200℃に加熱した回転キャンに沿わせて巻き取りなが
ら酸素を導入してCoを電子ビーム蒸着して磁性層を
0.18μ形成した。酸素ガス導入ノズルは最小入射角
20度とし、その入射角を決定するマスクの先端部に直
径8mmのステンレスパイプに0.2mmの直径の孔を
15mmピッチで配した酸素ガス導入ノズルから0.8
1/minに制御して導入した。最大入射角は42度
で、垂直方向に磁化容易軸を持つCo−O膜で表面の酸
化層は120〜125Åであった。この上にメタンガス
を用いたプラズマCVD法により80Åダイヤモンド状
硬質炭素膜を形成し、バックコート層を0.5μ配した
状態のものを原反Bとして準備した。原反Bを用い炭素
ガスレーザーを1KW/cm 2・sec照射しながら、
パーフルオロアラキン酸を蒸着した。従来例はレーザー
照射を行わずに潤滑剤を蒸着した。夫々8mm幅の磁気
テープに加工した。これらのテープを改造した8ミリビ
デオによって5μトラック、ビット長0.2μのディジ
タル記録を行いエラーレートを相対比較した。耐久性に
ついても5℃、85%RHで100パス履歴を加えた後
のエラーレートで評価した。本実施例による磁気記録媒
体の特性と従来磁気記録媒体の特性を(表2)に比較し
て示している。It has a thickness of 5.3 μm, and is in the longitudinal and width directions, respectively.
940, 1050 [Kg / mm2] Young's modulus, average
Polyimide film with a roughness of 25Å (Si with a diameter of 150Å
O2Average particle density of 20 / μm2Fixed with resin
The coating layer used in advance was used) with a diameter of 1 m.
Wind along the rotary can heated to 200 ℃.
Oxygen is introduced and Co is electron beam evaporated to form a magnetic layer.
0.18μ was formed. The minimum incident angle for the oxygen gas introduction nozzle
Set to 20 degrees and place it directly on the tip of the mask that determines the angle of incidence.
A hole with a diameter of 0.2 mm is made in a stainless pipe with a diameter of 8 mm.
0.8 from the oxygen gas introduction nozzle arranged at 15 mm pitch
It was introduced by controlling to 1 / min. Maximum incident angle is 42 degrees
The surface of the Co-O film with the easy axis of magnetization in the vertical direction
The chemical conversion layer was 120 to 125Å. Methane gas on this
80Å diamond shape by plasma CVD method using
A hard carbon film was formed and a back coat layer was arranged at 0.5 μm.
The raw material B was prepared. Carbon using raw fabric B
Gas laser 1kW / cm 2・ While irradiating for sec
Perfluoroarachidic acid was deposited. Conventional example is laser
The lubricant was deposited without irradiation. 8 mm wide magnets each
Processed into tape. 8 millis modified from these tapes
Digi with 5μ track and bit length of 0.2μ
Tal recording was performed and relative error rates were compared. Durable
After adding 100 pass history at 5 ℃ and 85% RH
The error rate was evaluated. Magnetic recording medium according to this embodiment
The characteristics of the body and the characteristics of the conventional magnetic recording medium are compared in (Table 2).
Is shown.
【0019】[0019]
【表2】 [Table 2]
【0020】この(表2)から明らかなように、本実施
例により製造された磁気記録媒体は、狭トラック条件で
の高密度ディジタル記録を良好なエラー率で行うことが
できるといった優れた効果がある。As is clear from (Table 2), the magnetic recording medium manufactured according to this example has an excellent effect that high-density digital recording under a narrow track condition can be performed with a good error rate. is there.
【0021】以上のように本実施例によれば部分酸化強
磁性金属薄膜上にダイヤモンド状硬質炭素膜を形成した
後、潤滑剤蒸着をレーザービーム処理しながら行うこと
により、ダイヤモンド状硬質炭素膜の表面が極めて活性
となり、潤滑剤と強固に被着することになり、潤滑性能
の持続性が飛躍的に改良されるのと、硬質炭素膜の硬さ
も表面近くの欠陥が除去されることから大きくなるた
め、薄くでき、耐久性と高S/N比を兼ね備えた薄型の
磁気記録媒体を再現よく製造できるようになる。As described above, according to this embodiment, after the diamond-like hard carbon film is formed on the partially oxidized ferromagnetic metal thin film, the vapor deposition of the lubricant is carried out while the laser beam treatment is performed. The surface becomes extremely active, it adheres strongly to the lubricant, the durability of the lubricating performance is dramatically improved, and the hardness of the hard carbon film is also large because defects near the surface are removed. Therefore, it becomes possible to manufacture a thin magnetic recording medium which can be made thin and has both durability and a high S / N ratio with good reproducibility.
【0022】[0022]
【発明の効果】以上のように本発明によれば、部分酸化
強磁性金属薄膜上にダイヤモンド状硬質炭素膜を形成
し、表面を潤滑剤蒸気のプラズマ処理した後、潤滑剤を
真空蒸着することで、狭トラック化した高密度記録で優
れたS/N比を繰り返し使用においても安定に保持しう
る磁気記録媒体を再現よく大量に得ることができる。As described above, according to the present invention, a diamond-like hard carbon film is formed on a partially oxidized ferromagnetic metal thin film, the surface of the film is plasma-treated with a lubricant vapor, and then the lubricant is vacuum-deposited. Thus, a large number of magnetic recording media can be obtained with good reproducibility, which can stably maintain an excellent S / N ratio in high density recording with a narrowed track even after repeated use.
【図1】本発明の第1の実施例における磁気記録媒体の
製造に用いた処理装置の要部拡大断面図FIG. 1 is an enlarged cross-sectional view of a main part of a processing apparatus used for manufacturing a magnetic recording medium according to a first embodiment of the present invention.
【図2】本発明の第2の実施例における磁気記録媒体の
製造に用いた処理装置の要部拡大断面図FIG. 2 is an enlarged cross-sectional view of a main part of a processing apparatus used for manufacturing a magnetic recording medium according to a second embodiment of the present invention.
1 処理用原反 5 放電電極 7 潤滑剤 13 レーザー光源 14 レーザービーム 1 Processing Fabric 5 Discharge Electrode 7 Lubricant 13 Laser Light Source 14 Laser Beam
Claims (2)
ド状硬質炭素膜を形成し、表面を潤滑剤蒸気のプラズマ
処理した後、潤滑剤を真空蒸着することを特徴とする磁
気記録媒体の製造方法。1. A method of manufacturing a magnetic recording medium, comprising forming a diamond-like hard carbon film on a partially oxidized ferromagnetic metal thin film, subjecting the surface to plasma treatment with a lubricant vapor, and then vacuum-depositing the lubricant. .
ド状硬質炭素膜を形成した後、潤滑剤蒸着をレーザビー
ム処理しながら行うことを特徴とする磁気記録媒体の製
造方法。2. A method of manufacturing a magnetic recording medium, comprising forming a diamond-like hard carbon film on a partially oxidized ferromagnetic metal thin film and then performing a vapor deposition of a lubricant while performing a laser beam treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20500093A JPH0757254A (en) | 1993-08-19 | 1993-08-19 | Production of magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20500093A JPH0757254A (en) | 1993-08-19 | 1993-08-19 | Production of magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0757254A true JPH0757254A (en) | 1995-03-03 |
Family
ID=16499797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20500093A Pending JPH0757254A (en) | 1993-08-19 | 1993-08-19 | Production of magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0757254A (en) |
-
1993
- 1993-08-19 JP JP20500093A patent/JPH0757254A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006172686A (en) | Magnetic recording medium and manufacturing method thereof, magnetic storage apparatus, substrate and texture forming apparatus | |
JP2563425B2 (en) | Method of manufacturing magnetic recording medium | |
US6110584A (en) | Magnetic recording medium | |
JPH0757254A (en) | Production of magnetic recording medium | |
JP3323660B2 (en) | Magnetic recording medium and thin film manufacturing method and thin film manufacturing apparatus | |
JPH103638A (en) | Magnetic recording medium | |
JP2951892B2 (en) | Magnetic recording media | |
JPS62185246A (en) | Production of magnetic recording medium | |
JPH06111299A (en) | Manufacture of magnetic recording medium | |
JPH06251363A (en) | Production of magnetic recording medium | |
JP2003301257A (en) | Method for forming carbonaceous film and method for manufacturing magnetic disc | |
JPH06124439A (en) | Manufacture of magnetic recording medium | |
JPH06231457A (en) | Production of magnetic recording medium | |
JPH06116729A (en) | Production of magnetic recording medium | |
JPH01211235A (en) | Manufacture of magnetic recording medium | |
JPS6297133A (en) | Production of magnetic recording medium | |
JP2568643B2 (en) | Manufacturing method of magnetic recording medium | |
JP2946748B2 (en) | Manufacturing method of magnetic recording medium | |
JPH02240831A (en) | Production of magnetic recording medium | |
JPH02240829A (en) | Production of magnetic recording medium | |
JPH07114731A (en) | Production of magnetic recording medium | |
JPH02141927A (en) | Production of magnetic recording medium | |
JPS61284829A (en) | Magnetic recording medium | |
JPH06333225A (en) | Thin film magnetic recording medium | |
JPH1064061A (en) | Production of magnetic recording medium |