JPH0752567Y2 - Distance measuring device - Google Patents
Distance measuring deviceInfo
- Publication number
- JPH0752567Y2 JPH0752567Y2 JP1987138436U JP13843687U JPH0752567Y2 JP H0752567 Y2 JPH0752567 Y2 JP H0752567Y2 JP 1987138436 U JP1987138436 U JP 1987138436U JP 13843687 U JP13843687 U JP 13843687U JP H0752567 Y2 JPH0752567 Y2 JP H0752567Y2
- Authority
- JP
- Japan
- Prior art keywords
- distance
- microscope
- lens barrel
- microscope lens
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
Description
【考案の詳細な説明】 〔産業上の利用分野〕 本考案は2点間の距離を測定する距離測定装置に関し、
特に2台の顕微鏡鏡筒を1個の筐体に設置した2系統顕
微鏡に距離測定機構を付加した距離測定装置に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a distance measuring device for measuring a distance between two points,
In particular, the present invention relates to a distance measuring device in which a distance measuring mechanism is added to a two-system microscope in which two microscope lens barrels are installed in one housing.
従来、この種の距離測定装置は、試料ステージにステー
ジ移動距離測定機構が備えてあり、顕微鏡鏡筒は1個と
なっていた。Conventionally, in this type of distance measuring device, a stage moving distance measuring mechanism is provided on the sample stage, and the microscope barrel is one.
〔考案が解決しようとする問題点〕 上述した従来の距離測定装置は、顕微鏡鏡筒が1個とな
っているので、顕微鏡視野より長い2点間の距離を測定
する場合において、2点間の測定場所が顕微鏡視野内で
同時に見られない欠点があった。[Problems to be Solved by the Invention] Since the conventional distance measuring device described above has only one microscope lens barrel, when measuring the distance between two points longer than the microscope field of view, There was a drawback that the measurement locations could not be seen in the microscope field at the same time.
本考案の目的は前記問題点を解消した距離測定装置を提
供することにある。An object of the present invention is to provide a distance measuring device that solves the above problems.
本考案による距離測定装置は、筐体と、2台の顕微鏡鏡
筒と、第1の測定機構と、第2の測定機構とを有し、筐
体は、測定されるべき試料が搬入されるものであり、2
台の顕微鏡鏡筒は、筐体に備え付けられ、一方の顕微鏡
鏡筒は定位置に固定され、他方の顕微鏡鏡筒は、固定さ
れた一方の顕微鏡鏡筒に対して移動可能に支持され、顕
微鏡鏡筒の対物レンズを通して試料の測定点を観測する
ものであり、第1の測定機構は、固定された一方の顕微
鏡鏡筒の接眼鏡筒部の視野内に設けられた基準線に対す
る他方の顕微鏡鏡筒の接眼鏡筒部の視野内に設けられた
基準線までの距離を2台の顕微鏡鏡筒の対物レンズ間距
離として測定するものであり、第2の測定機構は、各顕
微鏡鏡筒の接眼鏡筒部の視野内に設けられた前記基準線
に対する試料の測定点までの距離を測定するものである
ことを特徴とする。The distance measuring device according to the present invention has a housing, two microscope lens barrels, a first measuring mechanism, and a second measuring mechanism, and the housing carries a sample to be measured. One, two
The microscope barrel of the stand is attached to the housing, one microscope barrel is fixed at a fixed position, and the other microscope barrel is movably supported with respect to the fixed one microscope barrel. The first measurement mechanism is for observing a measurement point of a sample through an objective lens of a lens barrel, and the first measurement mechanism is the other microscope with respect to a reference line provided in the field of view of the eyepiece tube portion of one fixed microscope barrel. The distance to the reference line provided in the field of view of the eyepiece tube portion of the lens barrel is measured as the distance between the objective lenses of the two microscope lens barrels, and the second measurement mechanism is for each microscope lens barrel. It is characterized in that the distance to the measurement point of the sample with respect to the reference line provided in the field of view of the eyepiece tube portion is measured.
次に、本考案について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.
(実施例1) 第1図は本考案の第1の実施例を説明するための2台の
顕微鏡鏡筒を1個の筐体に設置した2系統顕微鏡に距離
測定機能を付加した距離測定装置の構成図である。(Embodiment 1) FIG. 1 is a distance measuring device in which a distance measuring function is added to a two-system microscope in which two microscope lens barrels are installed in one casing for explaining a first embodiment of the present invention. It is a block diagram of.
第1図に示すように、2台の顕微鏡鏡筒5と、ステージ
3と、ステージ移動機構2とを筐体1に設置して2系統
顕微鏡を構成し、ステージ3上に距離測定用試料4を設
置する。この場合用いた顕微鏡の照明方法として落射照
明方法をとり、対物レンズ6と接眼レンズ8の間の鏡筒
5部分に光源7を設置する。As shown in FIG. 1, two microscope barrels 5, a stage 3, and a stage moving mechanism 2 are installed in a housing 1 to form a two-system microscope, and a distance measuring sample 4 is mounted on the stage 3. Set up. The epi-illumination method is adopted as the illumination method of the microscope used in this case, and the light source 7 is installed in the lens barrel 5 portion between the objective lens 6 and the eyepiece lens 8.
鏡筒5と筐体1との間に鏡筒移動機構9を設置し、鏡筒
5の移動距離を計測するため筐体1にリニアスケール10
を取付ける。この場合、リニアスケールは副尺付きで0.
1mmまで読み取り可能なものを用いた。A lens barrel moving mechanism 9 is installed between the lens barrel 5 and the housing 1, and a linear scale 10 is mounted on the housing 1 to measure the moving distance of the lens barrel 5.
Install. In this case, the linear scale is 0 with a vernier scale.
The one that can be read up to 1 mm was used.
一方接眼レンズ8の部分に測微計11を2台の鏡筒5にそ
れぞれ設置し、視野内の所定場所からの距離を測定す
る。On the other hand, a micrometer 11 is installed in each of the two lens barrels 5 at the eyepiece 8 and the distance from a predetermined place in the visual field is measured.
測微計11の視野内には、第3図に示すように、視野中央
に固定した基準線11と、この基準線111と直角に交わる
スケール112と、視野内の所定位置に合わせるために基
準線111と平行に移動する移動線113とが設けられてい
る。In the field of view of the micrometer 11, as shown in FIG. 3, a reference line 11 fixed at the center of the field of view, a scale 112 intersecting the reference line 111 at a right angle, and a reference for adjusting to a predetermined position in the field of view A moving line 113 that moves in parallel with the line 111 is provided.
次に、本装置を用いた距離測定の動作につき説明する。Next, the operation of distance measurement using this device will be described.
まず、試料4を試料台3上に置き、固定されている測微
計11の接眼レンズ8の視野像を見ながらその中に試料4
上の2点の測定ポイントの一方が位置するように試料台
移動機構2を操作する。次に、他方の測定ポイントがも
う一方の測微計11の接眼レンズ8の視野内に入るように
鏡筒移動機構9のツマミを回す。かくして、第1の測定
機構として、2台の測微計11の基準線111間の距離が対
物レンズ6間の距離(いわゆるリニアスケール10の距
離)となる。この距離をLcとする。First, the sample 4 is placed on the sample table 3, and the sample 4 is placed in the sample while watching the visual field image of the eyepiece 8 of the fixed micrometer 11.
The sample stage moving mechanism 2 is operated so that one of the upper two measurement points is located. Next, the knob of the lens barrel moving mechanism 9 is turned so that the other measurement point falls within the field of view of the eyepiece 8 of the other micrometer 11. Thus, as the first measuring mechanism, the distance between the reference lines 111 of the two micrometers 11 becomes the distance between the objective lenses 6 (the so-called linear scale 10 distance). Let this distance be Lc.
次に、右側の測微計11において、そのツマミを回し測定
ポイントに移動線113を合わせる。そして、基準線111か
らの距離をスケール112により読み取る。この距離をLa
とする。Then, in the micrometer 11 on the right side, turn the knob to align the moving line 113 with the measurement point. Then, the distance from the reference line 111 is read by the scale 112. This distance is La
And
同様に、左側の測微計11に対しそのツマミを回して対象
となる測定ポイントに移動線113を合わせ、スケール112
により基準線111からの距離を読み取る。この距離をLb
とする。このようにして、第2の測定機構として、基準
線に対する測定点までの距離が測定される。Similarly, turn the knob on the left micrometer 11 to align the moving line 113 with the target measurement point, and move the scale 112.
The distance from the reference line 111 is read by. This distance is Lb
And In this way, the distance to the measurement point with respect to the reference line is measured as the second measurement mechanism.
かくして、試料4上の2点の測定ポイント間の距離Xは X=Lc+La+Lb となる。ただし、LaおよびLbはそれぞれ基準線111に対
し移動線113が他方の測微計側にあるか、その反対側に
あるかに応じて正又は負の符号をとる。例えば、 Lc=31.2mm,La=0.2mm,Lb=0.3mmであり、両方の測微計
11の移動線113が基準線111に対し両方とも左側にあった
とすると、 X=31.2mm−0.2mm+0.3mm=31.3mm という測定結果が得られる。Thus, the distance X between the two measurement points on the sample 4 is X = Lc + La + Lb. However, La and Lb have a positive or negative sign depending on whether the moving line 113 is on the other side of the micrometer or on the opposite side with respect to the reference line 111. For example, Lc = 31.2 mm, La = 0.2 mm, Lb = 0.3 mm, and both micrometers
If the 11 moving lines 113 are both on the left side of the reference line 111, the measurement result of X = 31.2 mm−0.2 mm + 0.3 mm = 31.3 mm is obtained.
(実施例2) 第2図は本考案の実施例2の構成を説明するための構成
図である。(Embodiment 2) FIG. 2 is a configuration diagram for explaining the configuration of Embodiment 2 of the present invention.
この2系統顕微鏡は、前記実施例1の2系統顕微鏡の接
眼レンズ8の部分にTVカメラ12を設置することと、この
TVカメラ12からの画像信号をビデオスケールを内蔵した
表示装置13に接続して視野内の距離計測を行なうこと
と、リニアスケール10を鏡筒5の移動距離に対応したパ
ルス発生センサーに替え、鏡筒5の移動距離をディジタ
ルカウンター14に表示する構成にし、試料の所定場所間
距離を実施例1と同様な方法で測定する。In this two-system microscope, a TV camera 12 is installed at the eyepiece 8 of the two-system microscope of the first embodiment, and
The image signal from the TV camera 12 is connected to the display device 13 having a built-in video scale to measure the distance within the field of view, and the linear scale 10 is replaced with a pulse generation sensor corresponding to the moving distance of the lens barrel 5, The moving distance of the tube 5 is displayed on the digital counter 14, and the distance between the predetermined places of the sample is measured by the same method as in the first embodiment.
この実施例では、TV画面上で両視野を同時に見ることが
でき、総合精度が実施例1では0.1mmであるのに対し、
この実施例ではリニアスケール10の精度向上により総合
精度を0.0001mmまで向上できるという利点がある。In this embodiment, both fields of view can be viewed on the TV screen at the same time, and the total accuracy is 0.1 mm in the first embodiment.
In this embodiment, there is an advantage that the overall accuracy can be improved to 0.0001 mm by improving the accuracy of the linear scale 10.
以上説明したように本考案は2台の顕微鏡を1個の筐体
に設置した2系統顕微鏡において、鏡筒を移動させる機
構と、2台の顕微鏡の対物レンズ間距離を測定する機構
と、接眼鏡筒部に配置された視野内の距離を測定する機
構とを有することにより、顕微鏡視野より長い2点間の
距離を測定する場合において2点間の測定場所を視野内
で同時に見ながら距離測定できる効果がある。As described above, according to the present invention, in a two-system microscope in which two microscopes are installed in one housing, a mechanism for moving the lens barrel and a mechanism for measuring the distance between the objective lenses of the two microscopes are connected. When a distance between two points longer than the microscope visual field is measured by having a mechanism for measuring the distance within the visual field, which is arranged in the spectacle cylinder, the distance measurement is performed while simultaneously viewing the measurement location between the two points within the visual field. There is an effect that can be done.
第1図は本考案の第1の実施例を示す構成図、第2図は
本考案の第2の実施例を示す構成図、第3図は測微計11
の視野内の概略図である。 1…筐体、2…試料台移動機構 3…試料台、4…試料 5…鏡筒、6…対物レンズ 7…光源、8…接眼レンズ 9…鏡筒移動機構、10…リニアスケール 11…測微計、12…TVカメラ 13…画像表示装置、14…ディジタルカウンターFIG. 1 is a block diagram showing a first embodiment of the present invention, FIG. 2 is a block diagram showing a second embodiment of the present invention, and FIG. 3 is a micrometer 11.
FIG. 3 is a schematic view in the visual field of FIG. DESCRIPTION OF SYMBOLS 1 ... Housing, 2 ... Sample stand moving mechanism 3 ... Sample stand, 4 ... Sample 5 ... Lens barrel, 6 ... Objective lens 7 ... Light source, 8 ... Eyepiece 9 ... Lens barrel moving mechanism, 10 ... Linear scale 11 ... Measurement Subtotal, 12 ... TV camera 13 ... Image display device, 14 ... Digital counter
Claims (1)
機構と、第2の測定機構とを有する距離測定装置であっ
て、 筐体は、測定されるべき試料が搬入されるものであり、 2台の顕微鏡鏡筒は、筐体に備え付けられ、一方の顕微
鏡鏡筒は定位置に固定され、他方の顕微鏡鏡筒は、固定
された一方の顕微鏡鏡筒に対して移動可能に支持され、
顕微鏡鏡筒の対物レンズを通して試料の測定点を観測す
るものであり、 第1の測定機構は、固定された一方の顕微鏡鏡筒の接眼
鏡筒部の視野内に設けられた基準線に対する他方の顕微
鏡鏡筒の接眼鏡筒部の視野内に設けられた基準線までの
距離を2台の顕微鏡鏡筒の対物レンズ間距離として測定
するものであり、 第2の測定機構は、各顕微鏡鏡筒の接眼鏡筒部の視野内
に設けられた前記基準線に対する試料の測定点までの距
離を測定するものであることを特徴とする距離測定装
置。1. A distance measuring device having a housing, two microscope lens barrels, a first measuring mechanism, and a second measuring mechanism, wherein the housing carries a sample to be measured. The two microscope lens barrels are attached to the housing, one microscope lens barrel is fixed at a fixed position, and the other microscope lens barrel is fixed to one fixed microscope lens barrel. Movably supported,
The first measurement mechanism is for observing a measurement point of a sample through an objective lens of a microscope lens barrel, and the first measurement mechanism is for a reference line provided in the field of view of the eyepiece tube portion of one fixed microscope lens barrel. The distance to the reference line provided in the field of view of the eyepiece tube portion of the microscope lens barrel is measured as the distance between the objective lenses of the two microscope lens barrels. A distance measuring device for measuring the distance to the measurement point of the sample with respect to the reference line provided in the field of view of the eyepiece tube section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987138436U JPH0752567Y2 (en) | 1987-09-10 | 1987-09-10 | Distance measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987138436U JPH0752567Y2 (en) | 1987-09-10 | 1987-09-10 | Distance measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6442405U JPS6442405U (en) | 1989-03-14 |
JPH0752567Y2 true JPH0752567Y2 (en) | 1995-11-29 |
Family
ID=31400771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1987138436U Expired - Lifetime JPH0752567Y2 (en) | 1987-09-10 | 1987-09-10 | Distance measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0752567Y2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5494345U (en) * | 1977-12-16 | 1979-07-04 | ||
JPS53151936U (en) * | 1978-03-28 | 1978-11-30 |
-
1987
- 1987-09-10 JP JP1987138436U patent/JPH0752567Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6442405U (en) | 1989-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4074131A (en) | Apparatus for measuring or setting two-dimensional position coordinates | |
CN102313525B (en) | Laser beam parallelism regulating system and regulating method thereof | |
US4359282A (en) | Optical measuring method and apparatus | |
KR950703728A (en) | PROCESS AND ASSEMBLY FOR MEASURING AN ARTICLE'S DIMENSIONS | |
JPH0752567Y2 (en) | Distance measuring device | |
CN204924203U (en) | Novel transmission -type lens center is measured partially device | |
JP3489275B2 (en) | Hardness tester | |
JP3408365B2 (en) | Lens meter | |
US6919954B2 (en) | Method and apparatus for measuring internal index of refraction of preform of optical fiber | |
CN1275065C (en) | Spectrum face coordinate calibrating device for digital scanning optical transfer function detector | |
JP4993587B2 (en) | Automatic lens magnification recognition device for optical equipment | |
JP3011742B2 (en) | Automatic lens meter | |
JP2521736B2 (en) | Microscope adjustment inspection device | |
US3109048A (en) | Reading device for scales | |
JPH0829129A (en) | Length measuring apparatus | |
JP3069311B2 (en) | Automatic lens meter | |
JP3066148B2 (en) | Automatic lens meter | |
JP3123748B2 (en) | Automatic lens meter | |
JP2829453B2 (en) | Lens meter | |
JPH0738807Y2 (en) | Projection inspection machine | |
JPH0345163Y2 (en) | ||
EP0539609A1 (en) | Projection inspecting machine | |
JP3107296B2 (en) | Automatic lens meter | |
JP2920391B2 (en) | Surveying equipment | |
JPH0510724A (en) | Micrometer eyepiece apparatus |