Nothing Special   »   [go: up one dir, main page]

JPH07166203A - Anisotropy acicular magnetic powder and production thereof - Google Patents

Anisotropy acicular magnetic powder and production thereof

Info

Publication number
JPH07166203A
JPH07166203A JP5310534A JP31053493A JPH07166203A JP H07166203 A JPH07166203 A JP H07166203A JP 5310534 A JP5310534 A JP 5310534A JP 31053493 A JP31053493 A JP 31053493A JP H07166203 A JPH07166203 A JP H07166203A
Authority
JP
Japan
Prior art keywords
rare earth
powder
acicular
iron
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5310534A
Other languages
Japanese (ja)
Other versions
JP3109637B2 (en
Inventor
Michiya Kume
道也 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP05310534A priority Critical patent/JP3109637B2/en
Publication of JPH07166203A publication Critical patent/JPH07166203A/en
Application granted granted Critical
Publication of JP3109637B2 publication Critical patent/JP3109637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To inexpensively obtain anisotropy acicular magnetic powder showing ferromagnetism by specifying the compsn. consisting of rare earth elements, Fe and N and specifying the shape dimension of powdery grains. CONSTITUTION:A circular iron powder having the shape that the length of an acicular grain is regulated to 0.05 to 10mum and the width to <=2.0mum, rare earth oxide powder and a reducing agent such as Ca are mixed in a specific ratio. Next, this mixture is heated to about 600 to 1200 deg.C in a inert gas atmosphere to alloy rare earths and iron. The obtd. alloy is continuously heated to about 250 to 800 deg.C in an gaseous atmosphere of N2 gas or compounds contg. nitrogen such as NH3 and is nitrided. After that, the compound as a reducing agent is dissolved away by water or weak acid from the obtd. rare earth-iron nitride. Thus, the longitudinal anisotropy acicular magnetic powder expressed by the formula REXFe100-X-YNY (RE denotes rare earth elements and, by atom, 3<=X<=30% and 0.01<=Y<=25% are satisfied) and whose grain length is regulated to 0.05 to 10mum and the width to <=2.0mum can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、永久磁石の原料となる
粉末とその製造方法に係り、特に強磁性を示す異方性の
針状磁性粉末とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder as a raw material for a permanent magnet and a method for producing the same, and more particularly to an anisotropic needle-like magnetic powder exhibiting ferromagnetism and a method for producing the same.

【0002】[0002]

【従来の技術】一般に、希土類磁石と呼ばれる一連の永
久磁石では、原料となる金属間化合物の持つ高い結晶磁
気異方性に基づいて保磁力を発現させている。一方、ア
ルニコ磁石や塗布型の磁気記録媒体のように、針状の結
晶を特定の方向に配列させることにより保磁力を発現さ
せる形状磁気異方性の永久磁石もある。
2. Description of the Related Art Generally, a series of permanent magnets called rare earth magnets exhibit a coercive force based on the high crystal magnetic anisotropy of an intermetallic compound as a raw material. On the other hand, there is also a permanent magnet having a shape magnetic anisotropy that develops a coercive force by arranging needle crystals in a specific direction, such as an alnico magnet or a coating type magnetic recording medium.

【0003】このように永久磁石の保磁力の発現要因に
は、希土類系の材料のように結晶性磁気異方性に基づく
ものと、その他の形状磁気異方性に基づくものとがあ
り、高い結晶磁気異方性を持つ希土類系の材料で、形状
磁気異方性を有する針状の粉末を得ることができれば、
その結果として、より高い磁気特性を持った永久磁石が
できると考えられる。しかしながら、一般に希土類系化
合物粉末の製法は、インゴットを粉砕することを基本と
しており、特定の形状の粉末とりわけ針状の粉末を得る
ことは不可能であった。
As described above, coercive force manifestation factors of permanent magnets include those based on crystalline magnetic anisotropy such as rare earth materials and those based on other shape magnetic anisotropy. If a needle-like powder having shape magnetic anisotropy can be obtained from a rare earth material having crystal magnetic anisotropy,
As a result, it is considered that a permanent magnet having higher magnetic properties can be produced. However, in general, the method for producing a rare earth compound powder is based on crushing an ingot, and it has been impossible to obtain a powder having a specific shape, especially an acicular powder.

【0004】[0004]

【発明が解決しようとする課題】従って本発明はこのよ
うな事情を鑑み、その目的とするところは、結晶性磁気
異方性に、さらに形状磁気異方性を付与した希土類系化
合物原料と、その製造方法を提供することにより、高い
磁気特性を有する永久磁石を実現することにある。
SUMMARY OF THE INVENTION Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a rare earth compound raw material having crystalline magnetic anisotropy and shape magnetic anisotropy. It is intended to realize a permanent magnet having high magnetic characteristics by providing the manufacturing method.

【0005】[0005]

【発明を解決するための手段】本発明の針状磁性粉末
は、異方性を有する希土類系化合物の針状磁性粉末であ
って、一般式REX・Fe100ーX-YY(但し、REは、
希土類元素の中から選ばれた少なくとも一種の元素であ
り、Xは3原子%<X<30原子%、Yは0.01原子%
<Y<25原子%の範囲にある。)で表され、その針状
磁性粉末の粒子一個の長さが0.05〜10μmの範囲
にあり、幅が2.0μm以下である(但し、長さ>幅)
ことを特徴とする。ただし前記針状粒子の形状は電子顕
微鏡あるいは顕微鏡観察の測定によるものとする。
The needle-like magnetic powder of the present invention is a needle-like magnetic powder of an anisotropic rare earth compound and has a general formula of RE X · Fe 100 —XY N Y (provided that RE Is
At least one element selected from rare earth elements, X is 3 atomic% <X <30 atomic%, Y is 0.01 atomic%
<Y <25 atomic%. ), The length of each particle of the acicular magnetic powder is in the range of 0.05 to 10 μm, and the width is 2.0 μm or less (however, length> width).
It is characterized by However, the shape of the acicular particles is determined by measurement with an electron microscope or a microscope.

【0006】また上記針状磁性粉末を得る本発明の製造
方法は、針状粒子一個の長さが0.05〜10μmの範
囲にあり、幅が2.0μm以下の形状を有する針状鉄粉
末と、希土類酸化物粉末と、還元剤とを所定の割合で混
合した混合物を、不活性ガス雰囲気中において加熱する
ことにより希土類と鉄とを合金化する第一の工程と、得
られた希土類鉄合金を、連続して窒素ガス雰囲気或いは
窒素を含む化合物のガス雰囲気中において加熱すること
により窒化する第二の工程と、得られた希土類鉄窒化物
から、還元剤の化合物を水あるいは弱酸で溶解して除去
する第三の工程よりなることを特徴とする。
Further, in the production method of the present invention for obtaining the above-mentioned acicular magnetic powder, the acicular iron powder has a shape in which the length of each acicular particle is in the range of 0.05 to 10 μm and the width is 2.0 μm or less. A first step of alloying rare earth and iron by heating a mixture of a rare earth oxide powder and a reducing agent in a predetermined ratio in an inert gas atmosphere, and the obtained rare earth iron A second step of nitriding the alloy by continuously heating it in a nitrogen gas atmosphere or a gas atmosphere of a compound containing nitrogen, and dissolving the reducing agent compound with water or a weak acid from the obtained rare earth iron nitride. It is characterized by comprising a third step of removing by.

【0007】[0007]

【作用】まず第一の工程において、目的とする組成に応
じた割合で、原料として希土類酸化物粉末と、針状Fe
粉末、還元剤としてCa粉末とを混合する。針状Fe粉
末はFe(OH)2の懸濁液を酸化することでできる針状
のα−FeOOH(ゲーサイト)を脱水、還元すること
により得られる。針状Fe粉は鉄を低真空で蒸発させる
方法でも得られるが、任意のサイズの粉末が得られる点
で前者の方法が優れている。還元剤としては例えばC
a、Mg、Sr等、容易に酸化される金属であって、そ
れが酸化物または窒化物となった際に第三の工程で容易
に除去できる還元剤を用いることができ、その中でも好
ましくCaを用いる。CaO、CaNは水と速やかに反
応し、水酸化カルシウムとなり、第三の工程において簡
単に除去することができる。希土類酸化物粉末は、特に
粒径、形状を限定するものではなく、0.1μm〜十数
μmまでの通常の希土類酸化物粉末を用いることができ
る。
In the first step, the rare earth oxide powder and the needle-shaped Fe are used as raw materials in a ratio according to the intended composition.
Powder and Ca powder as a reducing agent are mixed. The acicular Fe powder is obtained by dehydrating and reducing acicular α-FeOOH (goethite) formed by oxidizing a suspension of Fe (OH) 2 . The acicular Fe powder can be obtained also by a method of evaporating iron in a low vacuum, but the former method is superior in that a powder of any size can be obtained. Examples of the reducing agent include C
It is possible to use a reducing agent that is a metal that is easily oxidized, such as a, Mg, and Sr, and that can be easily removed in the third step when it becomes an oxide or a nitride. Among them, Ca is preferable. To use. CaO and CaN rapidly react with water to form calcium hydroxide, which can be easily removed in the third step. The rare earth oxide powder is not particularly limited in particle size and shape, and a usual rare earth oxide powder having a particle size of 0.1 μm to several tens of μm can be used.

【0008】また第一の工程において、針状鉄粉末に対
し30原子%までの範囲にてFe23又はFe34等の
鉄酸化物で置換してよい。これらの酸化鉄が還元剤によ
り還元されるときの反応熱により、全体として均一な反
応を行わしめることができ、外部エネルギーの節約や収
率の向上につながる。還元剤の混合量については、希土
類酸化物を還元するに足る(自己発熱させるための鉄酸
化物を添加した場合、その鉄酸化物も還元するに足る)
ことが必要である。好適には、還元剤の混合量は、希土
類酸化物と、追加的に混合するFe23又はFe34
の鉄酸化物との合計の酸素原子の当量に対し1.5倍程
度が望ましい。
In the first step, iron oxide such as Fe 2 O 3 or Fe 3 O 4 may be substituted in the range of up to 30 atomic% with respect to the acicular iron powder. Due to the heat of reaction when these iron oxides are reduced by the reducing agent, a uniform reaction can be carried out as a whole, leading to the saving of external energy and the improvement of the yield. Regarding the amount of the reducing agent mixed, it is sufficient to reduce the rare earth oxides (when iron oxides for self-heating are added, the iron oxides are also reduced).
It is necessary. Preferably, the mixing amount of the reducing agent is about 1.5 times the equivalent amount of oxygen atoms of the total of the rare earth oxide and the iron oxide such as Fe 2 O 3 or Fe 3 O 4 to be additionally mixed. Is desirable.

【0009】原料を混合した混合粉を真空排気が可能な
加熱容器中に配置する。加熱容器内を真空排気した後、
不活性ガスを通じながら、混合粉の針状鉄粉末と希土類
酸化物とを還元反応させて合金化する。不活性ガスには
Ar、Ne等、使用する原料と反応しないガスであれば
どのようなものを用いてもよく、好ましくはArを用い
る。また加熱条件は希土類酸化物と針状鉄粉末とが合金
化する温度であれば特に問わないが、600℃から12
00℃の範囲内、望ましくは800℃から1200℃の
範囲内で数時間、好適には2〜5時間程度加熱する。6
00℃より低い温度では酸化物の還元反応が進行しにく
く、1200℃以上では希土類元素および還元剤の蒸発
が起きる傾向にあるため好ましくない。さらに混合粉、
即ち出発系にFe23又はFe34が適量入っている場
合、昇温途中で自己発熱し、効率的に均一な反応を行わ
しめることができるが、Feに対して30原子%以上相
当のFe23又はFe34が混合されていると、極めて
大きな発熱により、爆発あるいは飛散が起きて好ましく
ない。
The mixed powder obtained by mixing the raw materials is placed in a heating container that can be evacuated. After evacuating the inside of the heating container,
While passing an inert gas, the acicular iron powder as a mixed powder and the rare earth oxide are subjected to a reduction reaction to form an alloy. As the inert gas, any gas such as Ar and Ne may be used as long as it does not react with the used raw material, and Ar is preferably used. The heating condition is not particularly limited as long as it is a temperature at which the rare earth oxide and the acicular iron powder are alloyed, but 600 ° C to 12 ° C.
Heating is performed within a range of 00 ° C., preferably within a range of 800 ° C. to 1200 ° C. for several hours, preferably about 2 to 5 hours. 6
If the temperature is lower than 00 ° C, the reduction reaction of the oxide is difficult to proceed, and if it is 1200 ° C or higher, the rare earth element and the reducing agent tend to be evaporated, which is not preferable. Further mixed powder,
That is, when an appropriate amount of Fe 2 O 3 or Fe 3 O 4 is contained in the starting system, self-heating occurs during the temperature rise, and a uniform reaction can be efficiently performed, but at least 30 atomic% with respect to Fe. If a considerable amount of Fe 2 O 3 or Fe 3 O 4 is mixed, an extremely large amount of heat will cause an explosion or scattering, which is not preferable.

【0010】次に第二の工程では、第一の工程で得られ
た希土類鉄合金を連続して窒素、または窒素を含む化合
物のガス雰囲気で加熱することにより、それを窒化物と
する。加熱温度は前記合金が窒化する温度であれば特に
限定するものではない。好適には第一の工程の加熱を止
め、引き続いて不活性ガス雰囲気中で250℃〜800
℃の範囲内で、好ましくは300℃〜600℃の範囲内
の一定の温度まで冷却した後、この温度を一定に保持し
て、加熱容器を再び真空排気した後、窒素ガスを導入す
る手段を用いることができる。導入するガスは窒素に限
らず窒素原子を含むガス、例えば、アンモニア、ヒドラ
ジンでもよい。窒化の条件としては、大気圧以上の圧力
で窒素ガス等を通じながら数時間、好適には3から10
時間程度加熱した後、加熱を停止し放冷することにより
前記合金を窒化することができる。
Next, in the second step, the rare earth iron alloy obtained in the first step is continuously heated in a gas atmosphere of nitrogen or a compound containing nitrogen to form a nitride. The heating temperature is not particularly limited as long as it is a temperature at which the alloy is nitrided. Preferably, the heating in the first step is stopped, and subsequently, in an inert gas atmosphere, 250 ° C to 800 ° C.
After cooling to a constant temperature within the range of 300 ° C., preferably within the range of 300 ° C. to 600 ° C., this temperature is kept constant, the heating container is evacuated again, and then a means for introducing nitrogen gas is provided. Can be used. The gas to be introduced is not limited to nitrogen and may be a gas containing nitrogen atoms, for example, ammonia or hydrazine. The nitriding condition is several hours, preferably 3 to 10 while passing nitrogen gas or the like at a pressure higher than atmospheric pressure.
The alloy can be nitrided by heating for about an hour and then stopping the heating and allowing it to cool.

【0011】次に第三の工程において、最初に添加した
還元剤が酸化物、または窒化物となっているため、この
酸化物、窒化物等の還元剤化合物を水あるいは酢酸等の
弱酸で水洗溶解することにより簡単に除去できる。得ら
れた反応生成物を水に投入することにより、反応生成物
が直ちに崩壊し、合金粉末と還元剤成分との分離が始ま
る。水中での撹拌、静置、上澄み液の除去を数回繰り返
し、最後に好ましく酢酸等の弱酸で処理することによ
り、還元剤成分の分離が完了する。このようにして得ら
れた合金粉末は粒径がシャープに揃うと共に流動性があ
る。
Next, in the third step, since the reducing agent added first is an oxide or a nitride, the reducing agent compound such as an oxide or a nitride is washed with water or a weak acid such as acetic acid. It can be easily removed by dissolving. By pouring the obtained reaction product into water, the reaction product immediately disintegrates, and the separation of the alloy powder and the reducing agent component begins. The reducing agent component is completely separated by repeating stirring in water, standing, and removal of the supernatant several times, and finally treating with a weak acid such as acetic acid. The alloy powder thus obtained has a sharp particle size and is fluid.

【0012】本発明の方法において、第二の工程の窒化
処理が、第三の工程の水洗工程に先立ち行われているこ
とにより、第三の工程において酸素成分を含まない合金
粉末が得られることに役立つ。即ち、還元剤としてCa
を使用した場合、従来、反応生成物であるCaOは速や
かに水と反応してCa(OH)2 になるが、未反応のC
aは比較的緩慢に反応するので除去に手間取り、ひいて
は純度の低下をもたらす原因にもなっていたのに対し、
本発明によれば、窒化処理を行っているので、未反応の
Caの大部分がCaN等のカルシウムの窒化物になり、
このCaN等のカルシウムの窒化物はCaOと同様に速
やかに水と反応するのでこの除去には極めて好都合であ
る。
In the method of the present invention, the nitriding treatment in the second step is carried out prior to the water washing step in the third step, so that an alloy powder containing no oxygen component can be obtained in the third step. To help. That is, Ca as a reducing agent
Conventionally, when CaO is used, the reaction product CaO rapidly reacts with water to form Ca (OH) 2 , but unreacted C
Since a reacts relatively slowly, it took a lot of time to remove it and, in turn, caused a decrease in purity.
According to the present invention, since nitriding is performed, most of unreacted Ca becomes a nitride of calcium such as CaN,
This calcium nitride such as CaN reacts rapidly with water similarly to CaO, and is extremely convenient for this removal.

【0013】これにより、得られた異方性針状磁性粉末
REX・Fe100ーX-YYは、窒素が0.01原子%より
多く25原子%より少ない範囲で含まれている。窒化処
理の時間を少なくすることにより、窒素の含有量を0.
01原子%より減少させることができるが、0.01原
子%より少ないと、大気中での化学的安定性が得られ
ず、また、25原子%より多いと、強磁性ではない希土
類の窒化物が生成し、これにより磁石特性を下げるので
好ましくない。
As a result, the anisotropic needle-like magnetic powder RE X .Fe100- XY N Y thus obtained contains nitrogen in a range of more than 0.01 atom% and less than 25 atom%. By reducing the nitriding time, the nitrogen content was reduced to 0.
Although it can be reduced to less than 01 atom%, if it is less than 0.01 atom%, chemical stability in the atmosphere cannot be obtained, and if it is more than 25 atom%, a non-ferromagnetic rare earth nitride. Are generated, which deteriorates the magnet characteristics, which is not preferable.

【0014】また、希土類−遷移金属系粉末について言
えることであるが、希土類金属(RE)が3原子%より
少ないと、ほとんどがFe分となり、実用上使用でき
ず、また、希土類金属が30原子%より多いと、希土類
金属が析出し、大気中で不安定となり、不都合である。
The same can be said about the rare earth-transition metal powders. When the rare earth metal (RE) is less than 3 atom%, most of the Fe content is Fe, which cannot be practically used, and the rare earth metal is 30 atom. If it is more than%, the rare earth metal precipitates and becomes unstable in the atmosphere, which is inconvenient.

【0015】また針状粒子一個の長さが0.05μmを
下回ると酸化被膜等の影響により保磁力が発生せず、1
0μmを越えると単磁区粒子径を上回りこれも保磁力が
発生しない。また針状粒子の幅が2.0μmを越える
と、本発明の特徴である形状異方性による保磁力が有効
に発生せず、ランダムな粒子形状を持つものと同等の磁
気特性しか得られない。本発明においては、原料となる
Fe粒子の形状およびサイズがそのまま製品に受け継が
れる。このため原料となる針状のFe粉は限定されたサ
イズ、すなわち長さ0.05〜10μm、幅2μm以下
を持つことが要求される。
If the length of each acicular particle is less than 0.05 μm, coercive force will not be generated due to the influence of the oxide film and the like.
If it exceeds 0 μm, the particle size exceeds the single domain particle size and no coercive force is generated. If the width of the acicular particles exceeds 2.0 μm, the coercive force due to the shape anisotropy, which is a feature of the present invention, is not effectively generated, and only magnetic characteristics equivalent to those having a random particle shape can be obtained. . In the present invention, the shape and size of the Fe particles used as the raw material are directly inherited by the product. Therefore, the needle-like Fe powder as a raw material is required to have a limited size, that is, a length of 0.05 to 10 μm and a width of 2 μm or less.

【0016】[0016]

【実施例】以下、本発明の具体例について、従来と比較
しながら説明する。 [実施例1]平均粒径1μmのSm23粉26.85g
と、平均長さ約1.5μm、平均幅約0.1μmの針状
Fe粉73.10gとを混合し、さらに粒状のCa1
3.88gを加えて充分に混合する。Caの当量はSm
23中の酸素原子の当量に対し1.5倍である。混合物
を軟鋼製の坩堝に入れ、加熱容器中にセットする。加熱
容器内を1×10-2トル(Torr )以下まで真空排気した
後、アルゴンガスを導入し、大気圧で流通させる。
EXAMPLES Hereinafter, specific examples of the present invention will be described in comparison with conventional ones. [Example 1] 26.85 g of Sm 2 O 3 powder having an average particle size of 1 μm
And needle-like Fe powder 73.10 g having an average length of about 1.5 μm and an average width of about 0.1 μm are mixed, and further granular Ca1
Add 3.88 g and mix well. Ca equivalent is Sm
It is 1.5 times the equivalent of oxygen atoms in 2 O 3 . The mixture is placed in a mild steel crucible and set in a heating vessel. The inside of the heating container is evacuated to 1 × 10 -2 Torr or less, and then argon gas is introduced and allowed to flow at atmospheric pressure.

【0017】加熱容器を加熱し1150℃になったらこ
の状態で5時間保持し続け、以後アルゴンガスを流通さ
せたままま冷却していく。500℃になったらこの温度
に保持を開始し、アルゴンガスの流通を止めて直ちに加
熱容器内を真空排気する。加熱容器内が1×10-2トル
(Torr )以下まで真空排気された後、排気を止め、窒素
ガスを導入し、大気圧で窒素ガスが流通するようにし、
その後、5時間の熱処理を行ってから加熱を止めて放冷
する。
When the heating container is heated to 1150 ° C., it is kept in this state for 5 hours, and thereafter cooled while keeping the argon gas flowing. When the temperature reaches 500 ° C., holding at this temperature is started, the circulation of argon gas is stopped, and the inside of the heating container is immediately evacuated. After the inside of the heating container has been evacuated to 1 × 10 -2 Torr or less, the evacuation is stopped, nitrogen gas is introduced, and nitrogen gas is allowed to flow at atmospheric pressure.
After that, heat treatment is performed for 5 hours, heating is stopped, and the mixture is allowed to cool.

【0018】得られた反応生成物は多孔質のブロック状
であって容易に坩堝から取り出すことができ、反応生成
物を3000ccのイオン交換水中に投入すると、直ち
に崩壊する。この時、反応生成物中のCaOと、ほとん
どをCaN等のカルシウムの窒化物である未反応のCa
とが微細なCa(OH)2 に変わる。このスラリーを1
0分間撹拌した後、10分間静置し、微細なCa(O
H)2 が浮遊している上澄み液を捨てる。ここで再度3
000ccのイオン交換水を加えて先と同様な操作を行
う。数回、この操作を繰り返した後、当初pH4.5に
調整された酢酸水溶液中で15分間撹拌、静置して上澄
み液を捨てる。この後再度水洗いを数回行ってCa分の
除去が完了する。最後に、Ca分を除去した合金粉末を
ヌッチェにてアルコール置換しながら水と分離し、分離
したケーキを80℃で真空乾燥し、これにより、Sm−
Fe−N合金粉末を得る。
The reaction product obtained is in the form of a porous block and can be easily taken out from the crucible. When the reaction product is put into 3000 cc of ion-exchanged water, it is immediately disintegrated. At this time, most of CaO in the reaction product and unreacted Ca which is a nitride of calcium such as CaN.
And become fine Ca (OH) 2 . 1 of this slurry
After stirring for 0 minutes, let stand for 10 minutes to obtain fine Ca (O
H) Discard the supernatant liquid in which 2 is floating. Here again 3
The same operation as above is carried out by adding 000 cc of ion-exchanged water. After repeating this operation several times, the mixture is stirred for 15 minutes in an aqueous acetic acid solution initially adjusted to pH 4.5, and left to stand to discard the supernatant. After that, washing with water is repeated several times to complete the removal of Ca. Finally, the alloy powder from which the Ca content has been removed is separated from water while the alcohol is being replaced with a Nutsche, and the separated cake is vacuum dried at 80 ° C., whereby Sm-
An Fe-N alloy powder is obtained.

【0019】こうして得られた合金粉末は98.7gで
あり、平均長さ約1.5μm、平均幅約0.2μmの針
状粒子であった。化学分析によれば、Sm22.4%、
Fe74.1%、N3.05%、Ca0.07%及びO
(酸素原子)0.22%であった。即ち、得られた合金
は一般式をSm22.5Fe74.4N3.1 とするものであっ
た。また、出発原料のSmとFeからに基づく収率は9
9.0%であった。
The alloy powder thus obtained weighed 98.7 g and was an acicular particle having an average length of about 1.5 μm and an average width of about 0.2 μm. According to chemical analysis, Sm22.4%,
Fe 74.1%, N 3.05%, Ca 0.07% and O
(Oxygen atom) was 0.22%. That is, the obtained alloy had a general formula of Sm22.5Fe74.4N3.1. The yield based on Sm and Fe as starting materials is 9
It was 9.0%.

【0020】次に、得られた合金粉末を用いて以下の手
順にてボンド磁石を作製した。まず合金粉末に3wt%
のエポキシ樹脂を混合し、これを20kOeの磁場を引
加しながら5ton/cm2の圧力で圧縮成形した。こ
の成形体を50kOeのパルス磁場で着磁した後、VS
Mにて磁気特性を測定した。その結果、以下の優れた磁
気特性を有するボンド磁石ができた。 Br 11.0kG、 bHc 8.8kOe、 (BH)max 27 MGOe
Next, a bond magnet was produced using the obtained alloy powder by the following procedure. First, 3 wt% of alloy powder
The epoxy resin of No. 1 was mixed, and this was compression-molded at a pressure of 5 ton / cm 2 while applying a magnetic field of 20 kOe. After magnetizing this compact with a pulsed magnetic field of 50 kOe, VS
Magnetic properties were measured with M. As a result, a bonded magnet having the following excellent magnetic properties was obtained. Br 11.0 kG, bHc 8.8 kOe, (BH) max 27 MGOe

【0021】[実施例2]平均粒径1μmのSm23
26.85gと、平均長さ約2.0μm、平均幅約0.
05μmの針状Fe粉69.45g、及び平均粒径0.
1μmのFe23粉3.42gを混合する。これら原料
中のFe原子のうち、Fe23に由来するものは5.0
原子%である。さらに粒状のCa19.77gを加えて
充分に混合する。Caの当量はSm23中及びFe23
中の酸素原子の当量に対し1.5倍である。混合物を軟
鋼製の坩堝に入れ、加熱容器中にセットする。加熱容器
内を1×10-2トル(Torr )以下まで真空排気した後、
アルゴンガスを導入し、大気圧で流通させる。以後、実
施例1と全く同様の操作でアルゴンガスでの加熱処理、
窒素処理及び後処理を行ったが、初期の昇温中620℃
から急激な自己発熱が見られ、反応系の温度は瞬間的に
870℃に達する。
Example 2 26.85 g of Sm 2 O 3 powder having an average particle size of 1 μm, an average length of about 2.0 μm and an average width of about 0.8 μm.
69.45 g of needle-like Fe powder having a particle diameter of 05 μm, and an average particle diameter of 0.
3.42 g of 1 μm Fe 2 O 3 powder is mixed. Of the Fe atoms in these raw materials, those derived from Fe 2 O 3 are 5.0
It is atomic%. Further, 19.77 g of granular Ca is added and mixed well. The equivalent of Ca is Sm 2 O 3 and Fe 2 O 3
It is 1.5 times the equivalent of oxygen atoms in the inside. The mixture is placed in a mild steel crucible and set in a heating vessel. After evacuating the inside of the heating container to 1 × 10 -2 Torr or less,
Argon gas is introduced and flowed at atmospheric pressure. Thereafter, the heat treatment with argon gas was performed in the same manner as in Example 1,
Nitrogen treatment and post-treatment were performed, but 620 ° C during initial temperature rise
From this, a rapid self-heating is observed, and the temperature of the reaction system instantaneously reaches 870 ° C.

【0022】得られたSm−Fe−N合金粉末は99.
6gであって、平均長さ約2.0μm、平均幅約0.1
μmの針状粒子であった。化学分析によれば、Sm2
3.1%、Fe73.3%、N2.99%、Ca0.0
9%及びO(酸素原子)0.12%であった。即ち、得
られた合金は一般式をSm23.2Fe73.7N3.1 とするも
のであった。また、出発原料のSmとFeからに基づく
収率は99.8%であった。
The resulting Sm-Fe-N alloy powder was 99.
6 g, average length about 2.0 μm, average width about 0.1
The particles were needle-shaped particles of μm. According to chemical analysis, Sm2
3.1%, Fe73.3%, N2.99%, Ca0.0
It was 9% and O (oxygen atom) 0.12%. That is, the obtained alloy had a general formula of Sm23.2Fe73.7N3.1. In addition, the yield based on Sm and Fe as starting materials was 99.8%.

【0023】次に得られた合金粉末を用いて、実施例1
と同様にしてボンド磁石を作製した。磁気特性は以下の
通りであった。 Br 11.0kG、 bHc 9.2kOe、 (BH)max 29 MGOe
Next, using the obtained alloy powder, Example 1
A bonded magnet was produced in the same manner as in. The magnetic properties were as follows. Br 11.0 kG, bHc 9.2 kOe, (BH) max 29 MGOe

【0024】[比較例1]実施例1で得られた合金と同
じ組成を持つ粉末を、SmとFeを高周波溶解、熱処
理、粉砕、窒化などの工程を経て作製した。ただし、粉
末の形状は粉砕しているためランダムであり、平均粒径
は2.5μmであった。この粉末から、実施例1と同様
にしてボンド磁石を作製した。磁気特性は以下の通りで
あった。 Br 9.2kG、 bHc 6.7kOe、 (BH)max 18 MGOe
[Comparative Example 1] A powder having the same composition as the alloy obtained in Example 1 was produced through steps such as high frequency melting of Sm and Fe, heat treatment, pulverization and nitriding. However, the shape of the powder was random because it was crushed, and the average particle size was 2.5 μm. A bonded magnet was produced from this powder in the same manner as in Example 1. The magnetic properties were as follows. Br 9.2 kG, bHc 6.7 kOe, (BH) max 18 MGOe.

【0025】[0025]

【発明の効果】本発明の方法で得られた磁性粉末は、異
方性を有する針状の希土類系合金粉末である。一定の形
状の針状粉末を使うことで、磁石中への粉末の充填率
が、磁場配向時の粉砕粉末に比べて上がるので残留磁化
が高くなる。また、形状異方性に基づいて保磁力も高く
なる。従って(BH)max値では、ボンド磁石として
は非常に高い25MGOe以上の高性能磁石が得られ
る。
The magnetic powder obtained by the method of the present invention is a needle-like rare earth alloy powder having anisotropy. By using the acicular powder having a certain shape, the packing rate of the powder in the magnet is higher than that of the pulverized powder in the magnetic field orientation, so that the residual magnetization is high. In addition, the coercive force also increases due to the shape anisotropy. Therefore, at the (BH) max value, a high performance magnet of 25 MGOe or more, which is extremely high as a bonded magnet, can be obtained.

【0026】また本発明による製造方法では、希土類金
属を原料とすることなく、一般に希土類金属より安価で
ある希土類酸化物を原料とすることができ、工業的に有
利な事も特筆すべき点である。さらに本発明の製造方法
によると、反応生成物を移動させることなく、1つの反
応容器内で反応雰囲気及び反応温度を変えることによ
り、還元拡散反応及び窒化処理を行うことができる。
In the production method according to the present invention, rare earth oxides, which are generally cheaper than rare earth metals, can be used as a raw material without using a rare earth metal as a raw material, which is industrially advantageous. is there. Further, according to the production method of the present invention, the reduction diffusion reaction and the nitriding treatment can be performed by changing the reaction atmosphere and the reaction temperature in one reaction container without moving the reaction product.

【0027】以上説明したように、本発明によれば、従
来無いタイプの形状異方性を有する強磁性粉末を提供す
る事ができる。この粉末を用いて作製したボンド磁石は
(BH)max25MGOe以上の高特性を有する。し
かもその原料は、希土類金属に比べて安価な希土類酸化
物や、工業的に製造される鉄粉を用いている事などか
ら、この発明は産業上極めて有用である。
As described above, according to the present invention, it is possible to provide a ferromagnetic powder having a shape anisotropy of a type that has never been obtained. A bonded magnet produced using this powder has a high characteristic of (BH) max25MGOe or more. Moreover, since the raw material thereof is a rare earth oxide, which is cheaper than a rare earth metal, or an industrially produced iron powder, the present invention is industrially very useful.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 303 D H01F 1/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C22C 38/00 303 DH 01F 1/06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 異方性を有する針状磁性粉末であって、
一般式 REX・Fe100-X-YY(但し、REは、希土類元素の
中から選ばれた少なくとも一種の元素であり、Xは3原
子%<X<30原子%、Yは0.01原子%<y<25原
子%の範囲にある。)で表され、その針状磁性粉末の粒
子一個の長さが0.05〜10μmの範囲にあり、幅が
2.0μm以下である(但し、長さ>幅)ことを特徴と
する異方性針状磁性粉末。
1. An acicular magnetic powder having anisotropy, comprising:
General formula: RE X · Fe 100-XY N Y (where RE is at least one element selected from rare earth elements, X is 3 atom% <X <30 atom%, Y is 0.01 atom) % <Y <25 atomic%.), The length of each particle of the acicular magnetic powder is in the range of 0.05 to 10 μm, and the width is 2.0 μm or less (however, An anisotropic acicular magnetic powder characterized in that length> width).
【請求項2】 針状粒子一個の長さが0.05〜10μ
mの範囲にあり、幅が2.0μm以下の形状を有する針
状鉄粉末と、希土類酸化物粉末と、還元剤とを所定の割
合で混合した混合物を、不活性ガス雰囲気中において加
熱することにより希土類と鉄とを合金化する第一の工程
と、 得られた希土類鉄合金を、連続して窒素ガス雰囲気或い
は窒素を含む化合物のガス雰囲気中において加熱するこ
とにより窒化する第二の工程と、 得られた希土類鉄窒化物から、還元剤の化合物を水ある
いは弱酸で溶解して除去する第三の工程とを具備するこ
とを特徴とする異方性針状磁性粉末の製造方法。
2. The length of each acicular particle is 0.05 to 10 μm.
heating a mixture of acicular iron powder having a shape of 2.0 μm or less in width in the range of m, a rare earth oxide powder, and a reducing agent in a predetermined ratio in an inert gas atmosphere. A first step of alloying rare earth and iron with, and a second step of nitriding the obtained rare earth iron alloy by continuously heating in a nitrogen gas atmosphere or a gas atmosphere of a compound containing nitrogen, And a third step of removing the compound of the reducing agent by dissolving it with water or a weak acid from the obtained rare earth iron nitride, and manufacturing the anisotropic acicular magnetic powder.
【請求項3】 前記第一の工程において、鉄酸化物粉末
を針状鉄粉末の30原子%までの範囲で混合することを
特徴とする請求項2に記載の異方性針状磁性粉末の製造
方法。
3. The anisotropic acicular magnetic powder according to claim 2, wherein in the first step, the iron oxide powder is mixed in a range of up to 30 atom% of the acicular iron powder. Production method.
JP05310534A 1993-12-10 1993-12-10 Anisotropic needle-like magnetic powder and bonded magnet using the same Expired - Fee Related JP3109637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05310534A JP3109637B2 (en) 1993-12-10 1993-12-10 Anisotropic needle-like magnetic powder and bonded magnet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05310534A JP3109637B2 (en) 1993-12-10 1993-12-10 Anisotropic needle-like magnetic powder and bonded magnet using the same

Publications (2)

Publication Number Publication Date
JPH07166203A true JPH07166203A (en) 1995-06-27
JP3109637B2 JP3109637B2 (en) 2000-11-20

Family

ID=18006397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05310534A Expired - Fee Related JP3109637B2 (en) 1993-12-10 1993-12-10 Anisotropic needle-like magnetic powder and bonded magnet using the same

Country Status (1)

Country Link
JP (1) JP3109637B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0776014A1 (en) * 1995-01-30 1997-05-28 Takahashi, Yoshiaki Raw material for permanent magnets and production method of the same
DE19649407A1 (en) * 1995-11-28 1997-06-05 Sumitomo Metal Mining Co Magnetic alloy containing rare earth, iron and nitrogen
EP0784328A1 (en) * 1996-01-10 1997-07-16 Kawasaki Teitoku Co., Ltd. Method of preparing raw material powder for permanent magnets superior in moldability
EP0938105A1 (en) * 1996-11-06 1999-08-25 Santoku Metal Industry Co., Ltd. Powder for permanent magnet, method for its production and anisotropic permanent magnet made using said powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0776014A1 (en) * 1995-01-30 1997-05-28 Takahashi, Yoshiaki Raw material for permanent magnets and production method of the same
DE19649407A1 (en) * 1995-11-28 1997-06-05 Sumitomo Metal Mining Co Magnetic alloy containing rare earth, iron and nitrogen
DE19649407C2 (en) * 1995-11-28 2002-06-27 Sumitomo Metal Mining Co Rare earth iron nitrogen magnetic alloy
EP0784328A1 (en) * 1996-01-10 1997-07-16 Kawasaki Teitoku Co., Ltd. Method of preparing raw material powder for permanent magnets superior in moldability
EP0938105A1 (en) * 1996-11-06 1999-08-25 Santoku Metal Industry Co., Ltd. Powder for permanent magnet, method for its production and anisotropic permanent magnet made using said powder
EP0938105A4 (en) * 1996-11-06 1999-09-15
US6328817B1 (en) 1996-11-06 2001-12-11 Santoku Metal Industry Co., Ltd. Powder for permanent magnet, method for its production and anisotropic permanent magnet made using said powder

Also Published As

Publication number Publication date
JP3109637B2 (en) 2000-11-20

Similar Documents

Publication Publication Date Title
US5769969A (en) Rare earth-iron-nitrogen magnet alloy
JP2007119909A (en) Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same
JP3109637B2 (en) Anisotropic needle-like magnetic powder and bonded magnet using the same
JP3304729B2 (en) Rare earth-iron magnet alloys
JPH11323508A (en) Rare earth metal-iron-nitrogen magnetic material and its production
JP2869966B2 (en) Manufacturing method of alloy powder
JP2006291257A (en) Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
JP3770734B2 (en) Method for producing Sm-Fe-N alloy powder
JP3567742B2 (en) Method for producing rare earth Fe-based alloy powder
JP3336028B2 (en) Method for producing rare earth-transition metal-nitrogen alloy powder
JP2985545B2 (en) Manufacturing method of alloy powder
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JPH0845718A (en) Magnetic material and its manufacture
JP3120546B2 (en) Manufacturing method of permanent magnet material
JP2002038206A (en) Method for producing rare earth-transition metal- nitrogen-based alloy powder
JPS6230846A (en) Production of permanent magnet material
JPH06112019A (en) Nitride magnetic material
JP3209291B2 (en) Magnetic material and its manufacturing method
JP2007084918A (en) Rare earth-iron-nitrogen based magnet powder, and its production method
JP2001220628A (en) Method for producing rare earth-iron-nitrogen series alloy powder
JP2677498B2 (en) Method for manufacturing iron-rare earth-nitrogen permanent magnet material
JP3520778B2 (en) Method for producing Sm-Fe-N ferromagnetic material
JPH0579724B2 (en)
JP3797153B2 (en) Nitriding method of rare earth-iron alloy powder and raw material of alloy powder used in the method
JP2004043979A (en) Method for producing alloy powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees