Nothing Special   »   [go: up one dir, main page]

JPH07132241A - Pulverizer - Google Patents

Pulverizer

Info

Publication number
JPH07132241A
JPH07132241A JP5303244A JP30324493A JPH07132241A JP H07132241 A JPH07132241 A JP H07132241A JP 5303244 A JP5303244 A JP 5303244A JP 30324493 A JP30324493 A JP 30324493A JP H07132241 A JPH07132241 A JP H07132241A
Authority
JP
Japan
Prior art keywords
pulverized
powder
fine powder
collision
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5303244A
Other languages
Japanese (ja)
Inventor
Satoshi Mitsumura
聡 三ッ村
Hitoshi Kanda
仁志 神田
Kazuhiko Komata
一彦 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5303244A priority Critical patent/JPH07132241A/en
Publication of JPH07132241A publication Critical patent/JPH07132241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To pulverize powder to specified fine particle diameter and to improve the pulverizing efficiency by introducing the powdery by pressure or suction force from an accelerating pipe for feeding a material to be pulverized, dividing and collecting fine powder by the Coanda effect and pulverzing coarse powder by an impact member. CONSTITUTION:A material to be pulverized dispersed and sucked into an accelerating pipe 3 is completely dispersed by a high speed air current from an air nozzle 10, and carried and accelerated by the high speed air current in the accelerating pipe 3 to form a supersonic speed solid-gas mixed flow. By the Coanda effect, the relatively fine powder flows on the wall side, and the relatively coarse powder flows near the center. By using such a phenomenon, the fine powder and the coarse powder are separated from each other by a classifying edge 6 near the outlet of the accelerating pipe 3. The fine powder is discharged from a fine powder discharge port 7. The coarse powder is subjected to the similar action and hits against an impact member 4 to be finely pulverized. Then, the pulverized material is further pulverized by the secondary impact at the wall of a pulverizing chamber 5. Depending on the circumstances, it is subjected to the tertiary impact and further pulverized until it is conveyed to an outlet part 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ジェット気流(高圧気
体)を用いた微粉砕装置に関する。又、本発明は電子写
真法による画像形成方法に用いられるトナー又はトナー
用着色樹脂粉体を効率良く生成する為の微粉砕装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine pulverizer using a jet stream (high pressure gas). The present invention also relates to a finely pulverizing device for efficiently producing a toner or a colored resin powder for a toner used in an image forming method by electrophotography.

【0002】[0002]

【従来の技術】ジェット気流を用いた微粉砕機は、一般
に、ジェット気流に粉砕原料を乗せて粒子混合流とした
後、加速管の出口より噴射させ、この粒子混合気流を加
速管の出口前方に設けた衝突部材の衝突面に衝突させ
て、その衝撃力により粉砕原料を微粉砕するものであ
る。以下その詳細について、図8に示した従来例の微粉
砕機に基づいて説明する。従来の微粉砕機では、高圧気
体供給ノズル81を接続した加速管82の出口83に対
向して衝突部材84を設け、加速管82に供給した高圧
気体の流動により、加速管82の中途に一方向から連通
させた粉砕原料供給口85から加速管82の内部に粉砕
原料を吸引し、これを高圧気体と共に噴出して衝突部材
84の衝突面88に衝突させ、その衝撃によって粉砕す
る様にしたものである。
2. Description of the Related Art In general, a fine pulverizer using a jet stream is prepared by placing a crushing raw material on a jet stream to form a particle mixed stream and then injecting it from the outlet of an accelerating tube, and the particle mixed stream is forward of the outlet of the accelerating tube. The crushing material is made to collide with the collision surface of the collision member provided in the above, and the crushing raw material is finely pulverized by the impact force. The details will be described below based on the conventional fine pulverizer shown in FIG. In the conventional fine pulverizer, a collision member 84 is provided so as to face the outlet 83 of the accelerating pipe 82 to which the high-pressure gas supply nozzle 81 is connected, and the high-pressure gas supplied to the accelerating pipe 82 causes a flow to the middle of the accelerating pipe 82. The pulverized raw material is sucked into the accelerating pipe 82 from the pulverized raw material supply port 85, which is communicated from the direction, and is jetted together with the high-pressure gas to collide with the collision surface 88 of the collision member 84, and crushed by the impact. It is a thing.

【0003】[0003]

【発明が解決しようとしている問題点】しかしながら、
上記従来例では、粉砕原料の供給口85が加速管82の
中途に連通して一箇所だけに設けられている為、加速管
82内に吸引導入された粉砕原料は、粉砕原料の供給口
85を通過直後に、高圧気体供給ノズル81により噴出
する高圧気流によって、加速管出口83の方向に向って
流路を急激に変更しながら高圧気流中に分散し、急加速
される。この状態において、粉砕原料のうち比較的微粒
子のものは、加速管82の高流部を通過する為、高圧気
流中に粉砕原料が十分均一に分散されない。この為、粉
砕原料濃度の高い流れと低い流れとに分離したまま加速
管82を出て、対向する衝突部材84に部分的に集中し
て粉砕原料が衝突することになり、粉砕効率が低下し、
処理能力の低下を引き起こすという問題がある。
[Problems to be solved by the invention] However,
In the above-mentioned conventional example, since the pulverized raw material supply port 85 communicates with the middle of the accelerating pipe 82 and is provided at only one place, the pulverized raw material sucked and introduced into the accelerating pipe 82 is pulverized raw material supply port 85. Immediately after passing through, the high-pressure gas jetted by the high-pressure gas supply nozzle 81 disperses in the high-pressure gas stream while rapidly changing the flow path toward the accelerating pipe outlet 83, and is rapidly accelerated. In this state, relatively fine particles of the pulverized raw material pass through the high flow portion of the acceleration tube 82, so that the pulverized raw material is not sufficiently uniformly dispersed in the high-pressure air stream. Therefore, the pulverized raw material exits the accelerating tube 82 while being separated into a high pulverized raw material concentration flow and a low pulverized raw material flow, and the pulverized raw material collides with the opposing collision member 84 partially concentrating. ,
There is a problem of causing a decrease in processing capacity.

【0004】更に、上記従来例では、衝突部材84の衝
突面88に衝突して粉砕された粉砕物は粉砕室86の内
壁に二次(或は三次)衝突して更に微粉砕されるが、粉
砕室86が箱型である為、効率的な二次衝突が行われ
ず、微粉砕処理能力の向上が図れないという欠点があっ
た。又、従来かかる粉砕機における衝突部材84の衝突
面88は、図8に示す様に、粉砕原料を乗せた粒子混合
気流方向、即ち、加速管82の軸方向に対して垂直のも
のが用いられ、これは、次の様な欠点があった。即ち、
加速管82の軸方向と垂直な衝突面88を有している場
合には、加速管82の出口83から吹き出される粉砕原
料と、衝突面88で反射される粉砕物とが衝突面88の
近傍で共存する割合が高くなり、衝突面88の近傍での
粉体(粉砕原料及び粉砕物)濃度が高くなる為、粉砕効
率が劣るという問題がある。
Further, in the above-mentioned conventional example, the crushed material crushed by the collision against the collision surface 88 of the collision member 84 collides against the inner wall of the crushing chamber 86 secondary (or tertiary) and is further finely pulverized. Since the crushing chamber 86 is box-shaped, there is a drawback that an efficient secondary collision is not performed and the fine crushing processing capability cannot be improved. Further, as shown in FIG. 8, the collision surface 88 of the collision member 84 in the conventional crusher is vertical to the direction of the particle-mixed air stream on which the crushing raw material is placed, that is, the axial direction of the acceleration tube 82. , This had the following drawbacks. That is,
When the collision surface 88 that is perpendicular to the axial direction of the acceleration tube 82 is provided, the pulverized raw material blown out from the outlet 83 of the acceleration tube 82 and the pulverized material reflected by the collision surface 88 form the collision surface 88. Since the ratio of coexistence in the vicinity increases and the concentration of the powder (grinding raw material and pulverized material) in the vicinity of the collision surface 88 increases, there is a problem that the pulverization efficiency deteriorates.

【0005】上記の様な衝突式気流粉砕機に接続される
気流分級機としては、種々の分級機が提案されている
が、代表的なものとしては図9に示す様なディスパージ
ョンセパレーター(日本ニューマチック工業社製)が一
般に用いられている。その概略としては、搬送エア−と
共に粉砕物供給筒91から導入される粉砕物が、その底
部に中央部が高い傾斜状の分級板94が設けられている
分級室93に導入され、該分級室93において、粉砕物
が粉砕物と共に流入される気流により旋回流動され、分
級ルーバー92を介して微粉と粗粉とに遠心分離され、
微粉は分級板94の中央部に設けられた微粉排出シュー
ト95から排出され、粗粉は分級板94の外周部に設け
られた粗粉排出口96から排出されるものである。
Various classifiers have been proposed as airflow classifiers to be connected to the collision type airflow crusher as described above, but a typical one is a dispersion separator (Japan) as shown in FIG. Pneumatic Industrial Co., Ltd.) is generally used. As an outline thereof, the pulverized material introduced from the pulverized material supply cylinder 91 together with the carrier air is introduced into a classification chamber 93 in which a sloping classification plate 94 having a high central portion is provided at the bottom, and the classification chamber 93 is provided. In 93, the pulverized product is swirled by the air flow introduced together with the pulverized product, and is centrifugally separated into fine powder and coarse powder through the classification louver 92,
The fine powder is discharged from a fine powder discharge chute 95 provided in the central portion of the classification plate 94, and the coarse powder is discharged from a coarse powder discharge port 96 provided on the outer peripheral portion of the classification plate 94.

【0006】しかしながら、従来のこの様な気流分級機
には下記の様な問題がある。即ち、図9に示した様に、
この種の気流分級機の分級室93への粉砕物供給部は、
サイクロン状の形状を有しており、上部カバー97の上
面中央部に案内筒98が起立状に設けられ、案内筒98
の上部外周面に供給筒91が接続されており、且つ、該
供給筒91は、この供給筒91を介して供給されてくる
粉砕物が、案内筒98の内円周接線方向に導入されてく
る様に接続されている。従って、供給筒91より案内筒
98内に粉砕物を供給すると、粉砕物は案内筒98の内
周面に沿って旋回しながら下落する。この場合に粉砕物
は、供給筒91から案内筒98内周面に沿って帯状に下
落する為、分級室93に流入してくる粉砕物の分布及び
濃度は不均一となり(分級室93へ案内筒98の内周面
の一部からのみ粉砕物は流入する)、粉砕物の分散が悪
いという問題がある。
However, such a conventional airflow classifier has the following problems. That is, as shown in FIG.
The pulverized material supply section to the classification chamber 93 of this type of airflow classifier is
It has a cyclone shape, and a guide tube 98 is provided upright at the center of the upper surface of the upper cover 97.
A supply cylinder 91 is connected to the outer peripheral surface of the upper part of the supply cylinder 91, and the crushed material supplied through the supply cylinder 91 is introduced in the tangential direction of the inner circumference of the guide cylinder 98. It is connected to come. Therefore, when the crushed material is supplied from the supply cylinder 91 into the guide cylinder 98, the crushed material falls while rotating along the inner peripheral surface of the guide cylinder 98. In this case, the pulverized material drops in a strip shape from the supply cylinder 91 along the inner peripheral surface of the guide cylinder 98, so that the distribution and concentration of the pulverized material flowing into the classification chamber 93 become uneven (guide to the classification chamber 93). The crushed material flows in only from a part of the inner peripheral surface of the cylinder 98), and there is a problem that the crushed material is poorly dispersed.

【0007】又、処理量を大きくとると粉砕物の凝集が
いっそう起こり易く、更に分散が十分に行われなくなる
為、高精度の分級が行えないという問題がある。更に、
粉砕物を搬送するエアー量が多い場合には、分級室93
に流入するエアー量も多くなる為、分級室93において
旋回する粒子の中心向き速度が大きくなり分離粒子径が
大きくなるという問題点がある。そこで、通常、分離粒
子径を小さくする方法として、案内筒98の上部に設け
た筒99でエアーをダンパーによりコントロールして抜
いているが、この際に抜くエアー量が多いと粉砕物の一
部も排出してしまい、粉砕物を損失するという実用上の
問題点が生じる場合もある。従って本発明の目的は、上
記の様な従来技術の問題点を解決し、高精度の気流分級
機部を具備し、且つ、粉砕原料を効率よく粉砕出来る衝
突式気流粉砕機部とを具備する新規な微粉砕装置を提供
することである。
Further, when the treatment amount is large, agglomeration of the pulverized material is more likely to occur, and the dispersion is not sufficiently performed, so that there is a problem that highly accurate classification cannot be performed. Furthermore,
If there is a large amount of air to convey the crushed material, the classification chamber 93
Since the amount of air flowing into the chamber also increases, there is a problem that the velocity of the particles swirling in the classifying chamber 93 toward the center increases and the diameter of the separated particles increases. Therefore, as a method for reducing the size of the separated particles, air is extracted by controlling a damper with a cylinder 99 provided above the guide cylinder 98. In some cases, there is a problem in practical use that the pulverized material is lost as well. Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, to be provided with a high-precision airflow classifier section, and to be provided with a collision type airflow crusher section capable of efficiently crushing crushed raw materials. It is to provide a new fine crushing device.

【0008】[0008]

【問題点を解決する為の手段】上記の目的は、下記の本
発明により達成される。即ち、本発明は、搬送エアーと
共に粉体供給筒から導入された粉砕物が、細粉と粗粉と
に分離される分級機部と、高圧気体により粉砕原料を搬
送加速する為の加速管と、該加速管から噴出する粉体を
衝突力により粉砕する為の衝突部材を具備する粉砕室を
有し、該衝突部材が加速管出口に対向して粉砕室内に設
けられている衝突式気流粉砕機部とを具備した微粉砕装
置において、粉砕原料を供給する加速管から粉体を圧力
導入又は吸引導入してコアンダ効果により細粉を分割捕
集し、粗粉を衝突部材により粉砕せしめることを特徴と
する微粉砕装置である。
The above objects can be achieved by the present invention described below. That is, the present invention, the pulverized material introduced from the powder supply cylinder together with the carrier air, a classifier unit for separating fine powder and coarse powder, and an acceleration tube for accelerating the crushed raw material by high-pressure gas. A collision type air flow crushing having a crushing chamber provided with a collision member for crushing the powder ejected from the accelerating tube by a collision force, the collision member being provided in the crushing chamber facing the accelerating tube outlet. In a fine pulverizer equipped with a machine part, fine powder is divided and collected by the Coanda effect by pressure introduction or suction introduction of the powder from an accelerating pipe supplying the pulverization raw material, and coarse powder is pulverized by a collision member. It is a characteristic pulverizing device.

【0009】[0009]

【作用】本発明の微粉砕装置は、分級機部と衝突式気流
粉砕機部とからなり、分級機部で分離された粗粉の排出
口が、粉砕効率に優れた衝突式気流粉砕機部の粉砕原料
供給口に連通され、更に、衝突式気流粉砕機部の粉砕室
内を、細粉と粗粉とに分離出来る様にし、且つ、その粗
粉の排出口が分級機部の粉砕物供給筒に連通されている
為、従来の微粉砕装置に比し、非常に効率良く、且つ高
精度に粉砕原料を粉砕出来る。
The fine pulverizer of the present invention comprises a classifier section and a collision type air flow pulverizer section, and the discharge port of the coarse powder separated by the classifier section has a collision type air flow pulverizer section excellent in pulverization efficiency. It is connected to the crushing raw material supply port, and the crushing chamber of the collision type airflow crusher unit can be separated into fine powder and coarse powder, and the discharge port of the coarse powder supplies crushed material of the classifier unit. Since it is connected to the cylinder, it is possible to pulverize the pulverization raw material very efficiently and highly accurately as compared with the conventional fine pulverization device.

【0010】[0010]

【実施例】以下に、本発明を添付図面に基づいて更に詳
細に説明する。図1は、本発明の微粉砕装置の一実施例
を示す概略断面図であり、図2は、本発明の衝突式気流
粉砕機部の一実施例を示す概略断面図であり、図3は、
粉砕室の拡大図であり、図4は、図2のA−A′線にお
ける断面図であり、図5は、図2のB−B′線における
拡大断面図であり、図6は、図2のC−C′線における
断面図であり、図7は、図2のD−D′線における断面
図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view showing an embodiment of the fine crushing device of the present invention, FIG. 2 is a schematic cross-sectional view showing an embodiment of the collision type airflow pulverizer part of the present invention, and FIG. ,
4 is an enlarged view of the crushing chamber, FIG. 4 is a sectional view taken along the line AA ′ of FIG. 2, FIG. 5 is an enlarged sectional view taken along the line BB ′ of FIG. 2, and FIG. 2 is a sectional view taken along the line CC ′ of FIG. 2, and FIG. 7 is a sectional view taken along the line DD ′ of FIG. 2.

【0011】本発明の微粉砕装置は、以下に述べる分級
機部と特定の構造を有する衝突式気流粉砕機部とからな
ることを特徴とする。先ず、本発明の微粉砕装置の衝突
式気流粉砕機部について、図1に基づいて説明する。本
発明装置の衝突式気流粉砕機部は図1に示す様に、粉砕
原料供給口1、高圧気体貯槽2、加速管3、衝突部材
4、粉砕室5、分級エッヂ6、微粉排出口7、粉砕物排
出口8とから構成される。衝突式気流粉砕機部における
高圧気体の作用を説明すると、高圧気体は、先ず高圧気
体貯槽2の左右にある高圧気体の入口9から入り、圧力
の変動等、脈動が均一にされた後、粉砕原料供給口1の
中心部に設けられたエアーノズル10から加速管3に流
入される(図2図示)。加速管3もエアーノズル10と
同様の末広がりの形状を有する為、加速管3に流入され
た高圧気体は、膨張しながら超音速領域まで加速され
る。その過程で高圧気体は減圧され、加速管3を出たと
ころで気体の圧力は粉砕室5の圧力と略同一になる。
The fine crushing apparatus of the present invention is characterized by comprising a classifier section described below and a collision type air flow crusher section having a specific structure. First, the collision type airflow crusher section of the fine crushing apparatus of the present invention will be described with reference to FIG. As shown in FIG. 1, the collision type air flow crusher section of the device of the present invention has a crushing raw material supply port 1, a high pressure gas storage tank 2, an acceleration tube 3, a collision member 4, a crushing chamber 5, a classification edge 6, a fine powder discharge port 7, It is composed of a crushed material discharge port 8. Explaining the action of the high pressure gas in the collision type air flow pulverizer section, the high pressure gas first enters through the high pressure gas inlets 9 on the left and right sides of the high pressure gas storage tank 2, and after the pulsation such as pressure fluctuation is made uniform, the high pressure gas is pulverized. An air nozzle 10 provided at the center of the raw material supply port 1 flows into the acceleration pipe 3 (shown in FIG. 2). Since the accelerating tube 3 also has a divergent shape like the air nozzle 10, the high-pressure gas flowing into the accelerating tube 3 is accelerated to the supersonic region while expanding. In the process, the high pressure gas is decompressed, and the pressure of the gas at the exit of the accelerating tube 3 becomes substantially the same as the pressure in the crushing chamber 5.

【0012】又、粉砕室5内の加速管3と衝突部材4の
間に分級エッヂ6を設けて加速管3側壁の比較的弱い気
流と加速管3中心の強い気流を分離出来る様に設置し
た。一方、円形若しくは楕円形状の粉砕室5では、図6
に示した図2のC−C′線における断面図から明らかな
様に、出口部8で粉砕室5内の気体を吸引すると、粉砕
室5の内部に吸引流が発生する。そして、この吸引流の
作用により、衝突部材4の表面は減圧状態になる。そし
て、この様な衝突部材4の表面の減圧作用により、加速
管3より出た噴流は更に加速され、衝突部材4の表面に
衝突する。この時、衝突部材4の衝突面は、図3のθで
示す頂角が110〜175度の範囲の錐体形状を有して
いる為、衝突部材4に衝突した噴流は、この円錐状部材
の頂点を中心として、衝突部材4と粉砕室5壁との間に
放射状に拡散される。この拡散された気流は、前述した
粉砕室5内部の吸引流に乗る形で、粉砕室5の出口部8
に導かれる。
Further, a classification edge 6 is provided between the accelerating pipe 3 and the collision member 4 in the crushing chamber 5 so that a relatively weak air flow on the side wall of the accelerating pipe 3 and a strong air flow at the center of the accelerating pipe 3 can be separated. . On the other hand, in the circular or elliptical crushing chamber 5, as shown in FIG.
As is clear from the sectional view taken along the line CC ′ of FIG. 2, when the gas in the crushing chamber 5 is sucked at the outlet portion 8, a suction flow is generated inside the crushing chamber 5. Then, due to the action of this suction flow, the surface of the collision member 4 is in a reduced pressure state. Then, due to the depressurizing action of the surface of the collision member 4 as described above, the jet flow emitted from the acceleration tube 3 is further accelerated and collides with the surface of the collision member 4. At this time, since the collision surface of the collision member 4 has a cone shape with an apex angle shown by θ in FIG. 3 in the range of 110 to 175 degrees, the jet flow colliding with the collision member 4 has a conical shape. Centered on the apex of the, the particles are radially diffused between the collision member 4 and the crushing chamber 5 wall. The diffused air flow is carried on the suction flow inside the crushing chamber 5 described above, and is formed in the exit portion 8 of the crushing chamber 5.
Be led to.

【0013】次に、供給される粉砕原料が、衝突式気流
粉砕機部で受ける作用について説明する。被粉砕物であ
る粉砕原料は、粉砕原料供給口1の上部から供給され
る。そして、供給された粉砕原料は、粉体原料供給口1
の下部から加速管3へと吸引排出される。この際の原料
の吸引排出の原理は、前述した高圧気体の加速管におけ
る膨脹減圧によるエゼクター効果による。この時、本発
明の衝突式気流粉砕装置の衝突式気流粉砕機部では、粉
砕原料を十分に分散させて加速管3内部に吸引させる様
にする為に、加速管3のスロート部と加速管3の出口と
の間に、図5(a)に示した様な加速管3の全円周方向
に及ぶ粉砕原料供給口1を、又は、図5(b)に示した
様な複数個(n≧2)の孔からなる粉砕原料供給口1を
設けてある為(図5(b)ではn=4)、粉砕原料は高
圧気流により十分に分散され加速される。これに対し、
図8に示した様な従来の衝突式気流粉砕機では、加速管
82への原料供給口85は、加速管82の途中に連通さ
れて一箇所だけに設けられており、加速管82内に吸引
導入された粉砕原料は、原料供給口85を通過直後に、
高圧気体供給ノズル81から噴出してくる高圧気流によ
って、加速管出口83の方向に向かって流路を急激に変
更されながら、高圧気流中に分散し、急加速される為、
粉砕原料濃度の高い流れと低い流れとに分離されてしま
い十分に分散されて加速されなかった。
Next, the action of the crushed raw material supplied in the collision type air flow crusher section will be described. The pulverized raw material that is the object to be pulverized is supplied from above the pulverized raw material supply port 1. Then, the pulverized raw material supplied is the powder raw material supply port 1
It is sucked and discharged from the lower part of the to the acceleration tube 3. The principle of suction and discharge of the raw material at this time is based on the ejector effect by the expansion and decompression of the high-pressure gas in the accelerating tube. At this time, in the collision-type airflow crusher section of the collision-type airflow crusher of the present invention, in order to sufficiently disperse the pulverized raw material and suck it into the acceleration tube 3, the throat portion and the acceleration tube 3 of the acceleration tube 3 are drawn. 3 between the outlets of the crushing material 3 and the crushing raw material supply port 1 extending in the entire circumferential direction of the accelerating tube 3 as shown in FIG. Since the pulverized raw material supply port 1 composed of n ≧ 2) holes is provided (n = 4 in FIG. 5B), the pulverized raw material is sufficiently dispersed and accelerated by the high-pressure air stream. In contrast,
In the conventional collision type air flow crusher as shown in FIG. 8, the raw material supply port 85 to the accelerating pipe 82 is connected to the middle of the accelerating pipe 82 and is provided at only one place. The pulverized raw material introduced by suction is immediately after passing through the raw material supply port 85,
By the high-pressure airflow ejected from the high-pressure gas supply nozzle 81, the flow path is rapidly changed in the direction of the accelerating pipe outlet 83, while being dispersed in the high-pressure airflow and being rapidly accelerated,
The pulverized raw material was separated into a high-concentration flow and a low-concentration flow, and was sufficiently dispersed and not accelerated.

【0014】図1または図2に示す様にして、加速管3
内部に分散されて吸引される粉砕原料は、原料供給口1
の中央部に設けられているエアーノズル10から放射さ
れる高速気流により完全に分散される。次に、以上の様
にして分散された粉砕原料は、加速管3の内部を流れる
高速気流に乗って加速され、超音速固気混合流れとな
る。この固気混合流れは加速管内の噴流が加速管側壁と
の干渉により壁側が減圧となり、壁に付着して流れる作
用であるコアンダ効果により、比較的細かい粉は壁側を
流れ、比較的粗い粉は中心に近い所を流れる。この様な
現象を利用して、加速管出口付近の分級エッヂ6により
固気混合流れの粉砕原料を細粉と粗粉に分離し、細粉は
微粉排出口7により排出する。
As shown in FIG. 1 or 2, the acceleration tube 3
The pulverized raw material that is dispersed and sucked inside is the raw material supply port 1
Is completely dispersed by the high-speed airflow radiated from the air nozzle 10 provided in the central part of the. Next, the pulverized raw material dispersed as described above is accelerated by riding on the high-speed air current flowing inside the accelerating tube 3, and becomes a supersonic solid-gas mixture flow. In this solid-gas mixture flow, the jet in the acceleration tube interferes with the side wall of the acceleration tube to reduce the pressure on the wall side, and the Coanda effect, which is a function of adhering to the wall and flowing, causes relatively fine powder to flow on the wall side and relatively coarse powder. Flows near the center. Utilizing such a phenomenon, the crushing raw material of the solid-gas mixture flow is separated into fine powder and coarse powder by the classification edge 6 near the outlet of the acceleration tube, and the fine powder is discharged through the fine powder discharge port 7.

【0015】又、粗粉の方は、前述の噴流と同様の作用
を受け、衝突部材4に衝突する。この衝突により原料粗
粉は微粉砕される。粉砕物は次いで粉砕室5の壁におけ
る二次衝突による微粉砕が更に行われ、場合によって
は、粉砕物は粉砕室5の出口部8に搬送されるまでに、
粉砕室5の壁及び衝突部材4の側面との三次(及び四
次)の衝突が生じ、更に粉砕される。特に、本発明装置
の衝突式気流粉砕機部においては、粉砕室5の断面形状
が円形若しくは楕円形状を有している為、該衝突面から
実質上全周方向に分散された粉砕物は粉砕室内5の壁と
効率よく二次衝突を生じ、更に粉砕効率が向上される。
Further, the coarse powder is subjected to the same action as the jet flow described above and collides with the collision member 4. The raw material coarse powder is finely pulverized by this collision. The pulverized material is then further pulverized by secondary collision on the wall of the pulverization chamber 5, and in some cases, the pulverized material is conveyed to the outlet section 8 of the pulverization chamber 5,
A tertiary (and quaternary) collision occurs between the wall of the crushing chamber 5 and the side surface of the collision member 4, and further crushing is performed. Particularly, in the collision type airflow crusher section of the device of the present invention, since the crushing chamber 5 has a circular or elliptical cross-sectional shape, the crushed material dispersed from the collision surface in substantially the entire circumferential direction is crushed. A secondary collision efficiently occurs with the wall of the chamber 5, and the crushing efficiency is further improved.

【0016】又、本発明装置の衝突式気流粉砕機部の衝
突部材4の衝突面の先端部分は、図3のθで示す様に頂
角が110〜175度の範囲にある錐体形状である為、
例えば、粉体原料が樹脂や粘着性のあるものを含有する
粉体である場合にも、融着、凝集物及び粗粒子等の問題
も発生しない。更に、本発明装置の衝突式気流粉砕機部
は、粉砕原料を高速気流中に均一に分散出来る為、摩耗
性のある物質を含有した粉砕原料を粉砕する場合におい
ても、加速管3の内壁や衝突部材4の衝突面の局部的な
摩耗の発生を防止出来、より安定した運転が可能とな
る。更に、粉砕室5内において、分級エッヂ6により、
細粉と粗粉を分離することが出来ることから、過粉砕に
よる微粒子の発生を防ぐことが出来、融着、凝集物が発
生することなく、所定の粒度にそろえることが出来る。
Further, the tip end portion of the collision surface of the collision member 4 of the collision type airflow crusher section of the device of the present invention has a cone shape having an apex angle in the range of 110 to 175 degrees as shown by θ in FIG. Because there is
For example, even when the powder raw material is a powder containing a resin or an adhesive material, problems such as fusion, agglomerates and coarse particles do not occur. Further, the collision type airflow pulverizer section of the device of the present invention can uniformly disperse the pulverized raw material in the high-speed airflow, and therefore, even when pulverizing the pulverized raw material containing the abrasive material, the inner wall of the acceleration tube 3 or The occurrence of local wear on the collision surface of the collision member 4 can be prevented, and more stable operation can be performed. Furthermore, in the crushing chamber 5, the classification edge 6
Since fine powder and coarse powder can be separated, it is possible to prevent the generation of fine particles due to over-pulverization, and it is possible to adjust the particle size to a predetermined size without causing fusion or aggregation.

【0017】本発明に用いる分級機は、日本ニューマチ
ック工業製DS型分級機、ホソカワミクロン社製ミクロ
ンセパレーター等が挙げられる。好ましくは、図1に示
す気流分級機を用いることが、細粉及び粗粉の分級精度
を向上させる為に好ましい。次に、もう一つの構成部分
である気流分級機部について、図1に従って説明する。
図1において、11は筒状の本体ケーシング、12は下
部ケーシングを示し、12の下部には粗粉排出用のホッ
パー13が接続されている。又、本体ケーシング11の
内部には分級室14が設けられている。
Examples of the classifier used in the present invention include a DS type classifier manufactured by Nippon Pneumatic Mfg. Co., Ltd. and a micron separator manufactured by Hosokawa Micron. It is preferable to use the airflow classifier shown in FIG. 1 in order to improve the classification accuracy of fine powder and coarse powder. Next, the airflow classifier section which is another component will be described with reference to FIG.
In FIG. 1, 11 is a cylindrical main body casing, 12 is a lower casing, and a hopper 13 for discharging coarse powder is connected to the lower portion of 12. A classification chamber 14 is provided inside the main body casing 11.

【0018】この分級室14の上部は、本体ケーシング
11の上部に取付けられた環状の案内室15と、中央部
が高くなっている円錐状(傘状)の上部カバー16とに
よって閉鎖されている。分級室14と案内室15の間の
仕切壁に、円周方向に配列する複数のルーバー18を設
けておき、案内室15に、供給筒17から送り込まれて
くる粉砕物とエア−とが、該ルーバー18の間から分級
室14に旋回されて流入される様にする。尚、案内室1
5の中を流動するエアーと粉砕物とを、各ルーバー18
間に均一に分配させることが、精度良く分級させる為に
は必要である。又、ルーバー18へ到達するまでの流路
としては、遠心力による濃縮が起こりにくい形状にする
必要がある。図1の例では分級室14の水平面に対して
垂直な上方向に供給筒17を接続させているが、これに
限定されるものではない。
The upper portion of the classifying chamber 14 is closed by an annular guide chamber 15 attached to the upper portion of the main body casing 11 and a conical (umbrella) upper cover 16 having a raised central portion. . A plurality of louvers 18 arranged in the circumferential direction is provided on a partition wall between the classification chamber 14 and the guide chamber 15, and the crushed material and the air sent from the supply cylinder 17 are fed into the guide chamber 15. The louvers 18 are swirled into the classification chamber 14 so as to flow into the classification chamber 14. Information room 1
The louver 18 and the air flowing in 5 are crushed.
It is necessary to distribute them evenly in order to accurately classify. Further, the flow path to reach the louver 18 needs to be shaped so that concentration due to centrifugal force does not easily occur. In the example of FIG. 1, the supply cylinder 17 is connected in the upward direction perpendicular to the horizontal plane of the classification chamber 14, but the invention is not limited to this.

【0019】この様にして、本発明装置に用いる気流分
級機部では、ルーバー18を介してエアーと粉砕物とが
分級室14へ供給される為、分級室14へ供給される際
にエアーと粉砕物とは従来の方式より著しい分散の向上
が達成される。又、ルーバー間隔は任意に調整出来る。
又、本発明装置に用いる気流分級機部では、本体ケーシ
ング11の下部にも円周方向に配列する分級ルーバー1
9を設け、外部から分級室14へ旋回流を起こす為の分
級エアーを分級ルーバー19を介して取り入れている。
In this way, in the airflow classifier section used in the apparatus of the present invention, since air and pulverized material are supplied to the classification chamber 14 via the louver 18, air is supplied when the air is supplied to the classification chamber 14. A significant improvement in dispersion is achieved with the milled material compared to conventional methods. The louver spacing can be adjusted arbitrarily.
Further, in the air flow classifier section used in the device of the present invention, the classification louvers 1 arranged in the lower part of the main body casing 11 in the circumferential direction as well.
9 is provided, and classification air for generating a swirling flow from the outside to the classification chamber 14 is taken in through the classification louver 19.

【0020】分級室14の底部には、中央部が高くなっ
た円錐状(傘状)の分級板20を設け、該分級板20の
外周囲に粗粉排出口21を形成する。又、分級板20の
中央部には微粉排出口に接続した微粉排出シュート22
を設け、該微粉排出シュート22の下端部をL字形に屈
曲させ、この屈曲端部を下部ケーシング12の側壁より
外部に位置させる様にする。更に、微粉排出シュート2
2はサイクロンや集塵機の様な微粉回収手段を介して吸
引ファンに接続されており(図示なし)、該吸引ファン
により分級室14に吸引力を作用させて、該分級ルーバ
ー19の間より分級室14に流入する吸引エアーによっ
て、分級に要する旋回流を起こしている。
At the bottom of the classifying chamber 14, a conical (umbrella) classifying plate 20 having a raised central portion is provided, and a coarse powder discharge port 21 is formed on the outer periphery of the classifying plate 20. Further, a fine powder discharge chute 22 connected to a fine powder discharge port is provided at the center of the classifying plate 20.
Is provided, the lower end of the fine powder discharge chute 22 is bent into an L shape, and the bent end is located outside the side wall of the lower casing 12. Furthermore, fine powder discharge chute 2
Reference numeral 2 is connected to a suction fan (not shown) via a fine powder collecting means such as a cyclone or a dust collector, and the suction force is applied to the classification chamber 14 by the suction fan, so that the classification louver 19 is provided with a classification chamber. The swirling flow required for classification is caused by the suction air flowing into 14.

【0021】本発明装置に用いられる気流分級機部は、
上記の様な構造を有する為、粉砕物を供給筒17から案
内室15にエアーと供に供給すると、この粉砕物を含む
エアーは、案内室15から各ルーバー18の間を通過し
て、分級室14へと旋回しながら均一の濃度で分散しな
がら流入される。分級室14内に旋回しながら流入され
た粉砕物は、次に、微粉排出シュート22に接続した吸
引ファンにより発生する、分級室14の下部にある分級
ルーバー19の間より流入する吸引エアー流に乗って更
に旋回を増し、各粒子に作用する遠心力によって粗粉と
微粉とに効率よく遠心分離される。この時、分級室14
内の外周部を旋回する粗粉は、粗粉排出口21より排出
されて、下部のホッパー13から排出される。又、分級
板20の上部傾斜面に沿って中心部へと移行する微粉
は、微粉排出シュート22から微粉回収手段(23、2
4)へと排出される。
The air flow classifier section used in the apparatus of the present invention is
Due to the above-mentioned structure, when the pulverized material is supplied from the supply cylinder 17 to the guide chamber 15 together with the air, the air containing the pulverized material passes from the guide chamber 15 between the louvers 18 and is classified. It is flowed into the chamber 14 while being swirled while being dispersed with a uniform concentration. The pulverized material that has flowed into the classification chamber 14 while swirling is then converted into a suction air flow that is generated by a suction fan connected to the fine powder discharge chute 22 and that flows between the classification louvers 19 at the bottom of the classification chamber 14. Riding is further increased, and the centrifugal force that acts on each particle efficiently separates into coarse powder and fine powder. At this time, the classification room 14
The coarse powder swirling around the inner peripheral portion is discharged from the coarse powder discharge port 21 and then discharged from the lower hopper 13. Further, the fine powder that moves to the central portion along the upper inclined surface of the classification plate 20 is collected from the fine powder discharge chute 22 (23, 2).
It is discharged to 4).

【0022】本発明装置に用いられる気流分級機部で
は、分級室14に粉砕物と共に流入されるエアーは、全
て旋回流となって流入する為、分級室14内で旋回する
粒子の中心向きの速度は、遠心力に比べ相対的に小さく
なり、分級室14において分離粒子径の小さな分級が行
われ、粒子径の非常に小さな微粉を微粉排出シュート2
2に排出させることが出来る。しかも、粉砕物が、略均
一な濃度で分級室14に流入されてくる為、精緻な分布
の微粉体を得ることが出来る。
In the air stream classifier section used in the apparatus of the present invention, all the air that flows into the classifying chamber 14 together with the pulverized material flows in a swirling flow, so that the air flowing in the classifying chamber 14 is directed toward the center of the particles. The speed becomes relatively smaller than the centrifugal force, and the separation particle size is small in the classifying chamber 14, and the fine powder having a very small particle size is discharged into the fine powder chute 2.
2 can be discharged. Moreover, since the pulverized material flows into the classification chamber 14 at a substantially uniform concentration, it is possible to obtain a fine powder having a fine distribution.

【0023】本発明の微粉砕装置は、以上説明した様な
衝突式気流粉砕機部と分級機部とを図1に示す様に連結
させたものである。即ち、分級機部の粗粉排出口21を
衝突式気流粉砕機部の被粉砕物供給口1に連結させ、且
つ、衝突式気流粉砕機部の粉砕物排出口8を気流分級機
部の粉砕物供給筒17に連結させることにより、衝突式
気流粉砕機部で効率よく粉砕された粉砕物が気流分級機
部に導入され、粒子径の非常に小さな、しかも精緻な分
布の微粉体のみが微粉排出シュート22から回収され、
それ以外の粗粉は、衝突式気流粉砕機部に再度導入され
て再粉砕され、粒子径の非常に小さな、しかも精緻な分
布の微粉体となるまで繰り返し粉砕が続けられる。
The fine crushing apparatus of the present invention comprises a collision type air flow crusher section and a classifier section as described above, which are connected as shown in FIG. That is, the coarse powder discharge port 21 of the classifier unit is connected to the crushed object supply port 1 of the collision type airflow crusher unit, and the crushed product discharge port 8 of the collision type airflow crusher unit is crushed by the airflow classifier unit. By connecting to the substance supply cylinder 17, the pulverized product efficiently pulverized by the collision type airflow pulverizer section is introduced into the airstream classifier section, and only fine powder having a very small particle size and a fine distribution is obtained. Recovered from the discharge chute 22,
The other coarse powders are reintroduced into the collision type airflow pulverizer section and pulverized again, and the pulverization is repeated until a fine powder having a very small particle size and a fine distribution is obtained.

【0024】又、粉砕室5内の分級エッヂ6により分級
された細粉は、不図示の経路により微粉排出シュート2
2に接続させて、微粉排出シュート22から粉砕された
微粉体と同時に回収してもよいし、23′、24′に示
す微粉回収手段により、独立に回収してもよい。尚、本
発明の衝突式気流粉砕装置において、粉砕原料は、適宜
の導入手段により図1の原料導入口1又は25から導入
される。
The fine powder classified by the classifying edge 6 in the crushing chamber 5 is a fine powder discharge chute 2 through a route not shown.
It may be connected to No. 2 and collected at the same time as the pulverized fine powder from the fine powder discharge chute 22, or may be independently collected by the fine powder collecting means 23 'and 24'. In the collision-type airflow crushing apparatus of the present invention, the crushed raw material is introduced from the raw material introduction port 1 or 25 of FIG. 1 by an appropriate introduction means.

【0025】[0025]

【発明の効果】以上の様に、本発明の微粉砕装置の衝突
式気流粉砕機部は、従来のそれに比べ、加速管への原料
供給方法が工夫されている為、被粉砕物はより強く分散
され、加速されて粉砕室へと導入される。更に、粉砕室
の背圧が低いことから、被粉砕物をより速く衝突部材に
衝突させることが可能である。その上、粉砕室内で細粉
及び粗粉に分離出来ることから、過粉砕防止につなが
り、所定の精緻な粒径に粉砕することが出来る。これら
の結果、粉砕効率を向上させることが可能となる。
As described above, in the collision type air flow crusher section of the fine crushing apparatus of the present invention, the material to be crushed is stronger because the raw material supply method to the accelerating tube is devised compared to the conventional one. It is dispersed, accelerated and introduced into the grinding chamber. Furthermore, since the back pressure in the crushing chamber is low, it is possible to cause the crushed object to collide with the collision member more quickly. Moreover, since fine powder and coarse powder can be separated in the crushing chamber, it is possible to prevent excessive crushing, and it is possible to crush to a predetermined fine particle size. As a result, it becomes possible to improve the pulverization efficiency.

【0026】又、本発明の衝突式気流粉砕装置の衝突式
気流粉砕機部は、粉砕室形状の工夫や被粉砕物の強分散
による粉塵濃度の低下により、衝突部材ならびに加速管
と粉砕室における被粉砕室の融着や摩耗も、従来の衝突
式気流粉砕機に比べ大幅に低減されて、安定稼働させる
ことが出来る。又、本発明の衝突式気流粉砕装置の気流
分級機部では、分級室において分離粒子径の小さな分級
が行われ、粒子径の非常に小さな、しかも精緻な分布の
微粉体を得ることが出来る。従って、本発明の衝突式気
流粉砕装置は、効率よく粉砕原料の粉砕が出来、粉砕さ
れた微粉体の回収も精度よく出来る。
Further, the collision type airflow crusher section of the collision type airflow crushing device of the present invention has a structure of the crushing chamber and a reduction in dust concentration due to strong dispersion of the material to be crushed. Fusing and wear of the chamber to be crushed are also greatly reduced compared to the conventional collision type air flow crusher, and stable operation can be achieved. Further, in the airflow classifier section of the collision type airflow pulverizing apparatus of the present invention, classification with a small separation particle size is performed in the classification chamber, and it is possible to obtain a fine powder having a very small particle size and a fine distribution. Therefore, the collision type airflow pulverizing apparatus of the present invention can efficiently pulverize the pulverizing raw material and can also accurately collect the pulverized fine powder.

【0027】[0027]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の微粉砕装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a pulverizing apparatus of the present invention.

【図2】本発明の衝突式粉砕機の概略断面図である。FIG. 2 is a schematic sectional view of a collision type crusher of the present invention.

【図3】図2における粉砕室の拡大図である。FIG. 3 is an enlarged view of the crushing chamber in FIG.

【図4】図2におけるA−A′断面図である。4 is a cross-sectional view taken along the line AA ′ in FIG.

【図5】図2におけるB−B′拡大断面図(a)及びそ
の変形例(b)である。
5 is an enlarged cross-sectional view (a) taken along line BB ′ in FIG. 2 and a modification (b) thereof.

【図6】図2におけるC−C′断面図である。6 is a sectional view taken along line CC ′ in FIG.

【図7】図2におけるD−D′断面図である。FIG. 7 is a sectional view taken along the line DD ′ in FIG.

【図8】従来の衝突式気流粉砕機の概略的断面図であ
る。
FIG. 8 is a schematic cross-sectional view of a conventional collision type airflow crusher.

【図9】従来の気流分級機の概略的断面図である。FIG. 9 is a schematic cross-sectional view of a conventional airflow classifier.

【0028】[0028]

【符号の説明】[Explanation of symbols]

1:粉砕原料供給口 2:高圧気体貯槽 3:加速管 4:衝突部材 5:粉砕室 6:分級エッヂ 7:微粉排出口 8:粉砕物排出口 9:高圧気体の入口 10:エアーノズル 11:分級機本体ケーシング 12:分級機下部ケーシング 1: Grinding raw material supply port 2: High pressure gas storage tank 3: Accelerator tube 4: Collision member 5: Grinding chamber 6: Classification edge 7: Fine powder discharge port 8: Ground material discharge port 9: High pressure gas inlet 10: Air nozzle 11: Classifier body casing 12: Lower classifier casing

【0029】13:粗粉排出ホッパー 14:分級室 15:案内室 16:上部カバー 17:供給筒 18:ルーバー 19:分級ルーバー 20:分級板 21:粗粉排出口 22:微粉排出シュート 23、23′:微粉回収手段 24、24′:微粉回収手段 25:粉砕原料導入口13: Coarse powder discharge hopper 14: Classification chamber 15: Guide chamber 16: Upper cover 17: Supply cylinder 18: Louver 19: Classification louver 20: Classification plate 21: Coarse powder discharge port 22: Fine powder discharge chute 23, 23 ′: Fine powder collecting means 24, 24 ′: Fine powder collecting means 25: Ground material introduction port

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 搬送エアーと共に粉体供給筒から導入さ
れた粉砕物が、細粉と粗粉とに分離される分級機部と、
高圧気体により粉砕原料を搬送加速する為の加速管と、
該加速管から噴出する粉体を衝突力により粉砕する為の
衝突部材を具備する粉砕室を有し、該衝突部材が加速管
出口に対向して粉砕室内に設けられている衝突式気流粉
砕機部とを具備した微粉砕装置において、粉砕原料を供
給する加速管から粉体を圧力導入又は吸引導入してコア
ンダ効果により細粉を分割捕集し、粗粉を衝突部材によ
り粉砕せしめることを特徴とする微粉砕装置。
1. A classifier section in which a pulverized product introduced from a powder supply cylinder together with carrier air is separated into fine powder and coarse powder,
An accelerating tube for accelerating the crushed raw material by high pressure gas,
A collision-type airflow crusher having a crushing chamber equipped with a collision member for crushing the powder ejected from the accelerating tube by a collision force, the collision member being provided in the crushing chamber facing the accelerating tube outlet. In a fine pulverizing device equipped with a part, fine powder is divided and collected by a Coanda effect by introducing pressure or suction from an accelerating pipe supplying a pulverizing raw material, and coarse powder is pulverized by a collision member. Fine crushing equipment.
JP5303244A 1993-11-10 1993-11-10 Pulverizer Pending JPH07132241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5303244A JPH07132241A (en) 1993-11-10 1993-11-10 Pulverizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5303244A JPH07132241A (en) 1993-11-10 1993-11-10 Pulverizer

Publications (1)

Publication Number Publication Date
JPH07132241A true JPH07132241A (en) 1995-05-23

Family

ID=17918616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5303244A Pending JPH07132241A (en) 1993-11-10 1993-11-10 Pulverizer

Country Status (1)

Country Link
JP (1) JPH07132241A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110586288A (en) * 2018-09-07 2019-12-20 上海市市政规划设计研究院有限公司 Method and device for dispersing viscous material
CN118398948A (en) * 2024-06-27 2024-07-26 天津赛德美新能源科技有限公司 Method for obtaining low-carbon lithium iron phosphate powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110586288A (en) * 2018-09-07 2019-12-20 上海市市政规划设计研究院有限公司 Method and device for dispersing viscous material
CN118398948A (en) * 2024-06-27 2024-07-26 天津赛德美新能源科技有限公司 Method for obtaining low-carbon lithium iron phosphate powder

Similar Documents

Publication Publication Date Title
KR930004539B1 (en) Gas current classifying separator
KR910004253A (en) Impingement air pulverizer and pulverization method
JP3185065B2 (en) Collision type air crusher
JP3091281B2 (en) Collision type air crusher
JP3091289B2 (en) Collision type air crusher
JPH07132241A (en) Pulverizer
JP2967304B2 (en) Classification crusher
JP3114040B2 (en) Collision type air crusher
JP3182039B2 (en) Crusher
JP3108820B2 (en) Collision type air crusher
JPH0523611A (en) Collision type pneumatic grander
JP2020104032A (en) Pulverizer and pulverizing and classifying device
JPH0667492B2 (en) Jet airflow crusher
JPH01207152A (en) Gaseous flow classifier
JPH07185383A (en) Circulation type pulverizing and classifying machine
JP2942405B2 (en) Collision type air crusher
JPH0534977A (en) Production of electrostatic charge image developing toner
JP2811621B2 (en) Method and apparatus for supplying raw material powder to airflow classifier
JP6660701B2 (en) Crusher
US8777139B2 (en) Pulverizer, pulverization method, toner production method, and toner
JPH0760194A (en) Pneumatic classifier and pneumatic classifying method
JPH01207178A (en) Pneumatic classifying machine
JPH02303559A (en) Gas flow classifier
JPH051073B2 (en)
JPH04326953A (en) Impact type pneumatic grinder