Nothing Special   »   [go: up one dir, main page]

JPH07111160A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH07111160A
JPH07111160A JP4034211A JP3421192A JPH07111160A JP H07111160 A JPH07111160 A JP H07111160A JP 4034211 A JP4034211 A JP 4034211A JP 3421192 A JP3421192 A JP 3421192A JP H07111160 A JPH07111160 A JP H07111160A
Authority
JP
Japan
Prior art keywords
battery
case
secondary battery
positive electrode
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4034211A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoshida
吉田  浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP4034211A priority Critical patent/JPH07111160A/en
Publication of JPH07111160A publication Critical patent/JPH07111160A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To retard the drop in discharge capacity attendant on the progress of charge/discharge cycles by using a clad metal having an aluminium layer on the inside as a positive case. CONSTITUTION:A battery case (positive case) 1 also serving as a positive terminal is manufactured by blanking and forming a clad plate of a 5mum aluminium plate and a 200mum stainless steel plate with a press. A battery is sealed by climping inward the opening edge of the case 1 against the inner circumference of a sealing plate 2 also serving as a negative terminal through a gasket 4. The organic electrolyte secondary battery using the clad material having the aluminium layer on the inside as the battery case 1 material has higher discharge capacity retainability in repeated charge/discharge cycle compared with conventional batteries.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器の駆動用電源
もしくはメモリ保持電源としての高エネルギー密度でか
つ高い安全性を有する非水電解質二次電池に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having a high energy density and a high safety as a power source for driving electronic equipment or a memory holding power source.

【0002】[0002]

【従来の技術とその課題】電子機器の急激なる小形軽量
化に伴い、その電源である電池に対して小形で軽量かつ
高エネルギー密度で、更に繰り返し充放電が可能な二次
電池の開発への要求が高まっている。これら要求を満た
す二次電池として、非水電解質二次電池が最も有望であ
る。
2. Description of the Related Art With the rapid miniaturization and weight reduction of electronic equipment, the development of a secondary battery that is smaller, lighter in weight and high in energy density, and that can be repeatedly charged and discharged with respect to the power source battery The demand is increasing. Non-aqueous electrolyte secondary batteries are the most promising secondary batteries that meet these requirements.

【0003】非水電解質二次電池の正極活物質には、二
硫化チタンをはじめとしてリチウムコバルト複合酸化
物、スピネル型リチウムマンガン酸化物、五酸化バナジ
ウムおよび三酸化モリブデンなどの種々のものが検討さ
れている。なかでも、リチウムコバルト複合酸化物(Li
xCoO2 )およびスピネル型リチウムマンガン酸化物(Lix
Mn2 O4 ) は、4V(Li/Li+ ) 以上のきわめて貴な電位
で充放電を行うため、正極として用いることで高い放電
電圧を有する電池が実現できる。
Various positive electrode active materials for non-aqueous electrolyte secondary batteries such as titanium disulfide, lithium cobalt composite oxide, spinel type lithium manganese oxide, vanadium pentoxide and molybdenum trioxide have been investigated. ing. Among them, lithium cobalt composite oxide (Li
xCoO 2 ) and spinel type lithium manganese oxide (Lix
Since Mn 2 O 4 ) charges and discharges at an extremely noble potential of 4 V (Li / Li + ) or more, a battery having a high discharge voltage can be realized by using it as a positive electrode.

【0004】非水電解質二次電池の負極活物質は、金属
リチウムをはじめとしてリチウムの吸蔵・放出が可能な
Li−Al合金や炭素材料など種々のものが検討されて
いるが、なかでも炭素材料は、安全性が高くかつサイク
ル寿命の長い電池が得られるという利点がある。
As a negative electrode active material for a non-aqueous electrolyte secondary battery, various materials such as metallic lithium, Li-Al alloys capable of inserting and extracting lithium, and carbon materials have been studied. Among them, carbon materials are particularly preferable. Has the advantage that a battery with high safety and long cycle life can be obtained.

【0005】しかし正極に、高電圧で作動するリチウム
コバルト複合酸化物(LiX CoO2 ),スピネル型リチウ
ムマンガン酸化物(LixMn2 O4 ) などを用い、正極缶の
材質としてステンレス(SUS304)鋼を用いた2020型コイン
電池は、充放電を繰り返すと放電容量が急激に減少し
た。これは、貴な電位を有する正極によって正極缶が酸
化されたことに起因するものと考えられる。
However, a lithium cobalt composite oxide (Li X CoO 2 ) or spinel type lithium manganese oxide (LixMn 2 O 4 ) which operates at high voltage is used for the positive electrode, and stainless steel (SUS304) steel is used as the material for the positive electrode can. The discharge capacity of the 2020 type coin battery that used was drastically reduced after repeated charging and discharging. It is considered that this is because the positive electrode can was oxidized by the positive electrode having a noble potential.

【0006】そこで、耐酸化性能をさらに向上した正極
缶の開発が求められていた。
Therefore, there has been a demand for the development of a positive electrode can having further improved oxidation resistance.

【0007】[0007]

【課題を解決するための手段】本発明は、リチウムイオ
ンを吸蔵放出する物質からなる正極と、負極とリチウム
イオンを含むイオン導電体を電解質とする二次電池にお
いて、正極ケースとしてアルミニウム層を内側に有する
クラッド金属を用いることで上記問題点を解決しようと
するものである。
The present invention relates to a positive electrode made of a substance which absorbs and releases lithium ions, and a secondary battery which uses a negative electrode and an ionic conductor containing lithium ions as an electrolyte. It is intended to solve the above-mentioned problems by using the clad metal contained in 1.

【0008】[0008]

【作用】本発明の非水電解質二次電池は、従来の非水電
解質二次電池に比較して充放電サイクルを繰り返した場
合の放電容量の保持特性が優れているという作用があ
る。これは、本発明の非水電解質二次電池に用いた新し
いケースの材質によって、正極缶の酸化が抑制されたこ
とに起因するものと考えられる。
The non-aqueous electrolyte secondary battery of the present invention has an effect of excellent discharge capacity retention characteristics after repeated charge / discharge cycles as compared with the conventional non-aqueous electrolyte secondary battery. It is considered that this is because the oxidation of the positive electrode can was suppressed by the material of the new case used for the non-aqueous electrolyte secondary battery of the present invention.

【0009】[0009]

【実施例】以下に、好適な実施例を用いて本発明を説明
する。
EXAMPLES The present invention will be described below with reference to preferred examples.

【0010】まず、正極活物質のリチウムコバルト複合
酸化物(LiCoO2 )をつぎのように合成した。塩基性炭酸
コバルトを温度650℃で24時間、空気中で熱分解し
て四三酸化コバルト (Co3 O4 ) を合成した。炭酸リチ
ウムとこの四三酸化コバルトとをリチウム:コバルト原
子比が1:1になるように混合して温度700℃で16
時間、空気中で熱分解した。
First, a lithium cobalt composite oxide (LiCoO 2 ) as a positive electrode active material was synthesized as follows. Basic cobalt carbonate was pyrolyzed in air at a temperature of 650 ° C. for 24 hours to synthesize cobalt trioxide (Co 3 O 4 ). Lithium carbonate and this cobalt trisodium oxide were mixed at a lithium: cobalt atomic ratio of 1: 1 at a temperature of 700 ° C. for 16
Pyrolyzed in air for hours.

【0011】そして、正極板を次のように試作した。前
記の方法で得られたリチウムコバルト複合酸化物82重
量部に対してポリフッ化ビニリデン6.5重量部、グラ
ファイト(ロンザ製SFG6)10重量部、ケッチェンブラ
ック1.5重量部および溶剤としてのN-メチル-2- ピロ
リドンを適量添加してよく混練し正極合剤ペーストを調
製した。このペーストを100メッシュのアルミ金網
(線径0.1mm )に均一に塗布し、温度85℃で10時間
熱風乾燥、次いで温度250℃で30分焼き付けした
後、直径16mmの円板に打ち抜いてリチウムコバルト複合
酸化物電極を試作した。この電極の理論容量は、活物質
(LiCoO2 ) 1モル当り、0.5モルのリチウムが吸蔵・
放出されるとすると、約18mAh である。
Then, a positive electrode plate was prototyped as follows. 6.5 parts by weight of polyvinylidene fluoride, 10 parts by weight of graphite (SFG6 manufactured by Lonza), 1.5 parts by weight of Ketjenblack and N as a solvent are added to 82 parts by weight of the lithium cobalt composite oxide obtained by the above method. An appropriate amount of -methyl-2-pyrrolidone was added and kneaded well to prepare a positive electrode mixture paste. This paste was evenly applied to a 100 mesh aluminum wire mesh (wire diameter 0.1 mm), dried with hot air at a temperature of 85 ° C. for 10 hours, then baked at a temperature of 250 ° C. for 30 minutes, punched into a disk with a diameter of 16 mm, and lithium cobalt. A composite oxide electrode was prototyped. The theoretical capacity of this electrode is
0.5 mol of lithium is occluded per mol of (LiCoO 2 ).
If released, it is about 18 mAh.

【0012】負極板は、次のように試作した。炭素粉末
(熱分解炭素)92重量部に対してポリフッ化ビニリデ
ン8重量部および溶剤としてのN-メチル-2- ピロリドン
を適量添加してよく混練し、負極合剤ペーストを調製し
た。このペーストを100メッシュの銅金網(線径0.1m
m )に均一に塗布し、温度85℃で10時間熱風乾燥、
次いで温度250℃で30分焼き付けした後、直径16mm
の円板に打ち抜いて負極板を試作した。この電極の充放
電容量は、約18mAh である。
A negative electrode plate was manufactured as follows. A negative electrode mixture paste was prepared by adding 8 parts by weight of polyvinylidene fluoride and N-methyl-2-pyrrolidone as a solvent in appropriate amounts to 92 parts by weight of carbon powder (pyrolytic carbon) and kneading the mixture well. This paste is 100 mesh copper wire mesh (wire diameter 0.1m
m) and evenly dry with hot air at 85 ℃ for 10 hours,
Then, after baking at 250 ℃ for 30 minutes, the diameter is 16mm
A negative electrode plate was manufactured by punching into a circular plate. The charge / discharge capacity of this electrode is about 18 mAh.

【0013】また、電解液にはプロピレンカーボネイト
(以下ではPCと表記する)とジメチルカーボネイト(以
下ではDMC と表記する)とを体積比7:3で混合した溶
媒に、1モル/lの過塩素酸リチウム(LiClO4 )を溶解
させた有機電解液(以下ではLiClO4 (1M)/PC+DMC(1:1)
と表記する)を用いた。電解液は、前記の正,負極板お
よびセパレーターに合計約200マイクロリッターだけ
注液して用いた。
Further, 1 mol / l of perchloric acid was added to a solvent prepared by mixing propylene carbonate (hereinafter referred to as PC) and dimethyl carbonate (hereinafter referred to as DMC) at a volume ratio of 7: 3 in the electrolytic solution. Organic electrolyte in which lithium oxide (LiClO 4 ) is dissolved (below LiClO 4 (1M) / PC + DMC (1: 1)
Will be used). The electrolyte was used by injecting only about 200 microliters in total into the positive and negative electrode plates and the separator.

【0014】図1は、電池の縦断面図である。この図に
おいて1は、厚み5μmのアルミと厚み200μmのス
テンレス(SUS304)とのクラッド鋼板をプレスによって打
ち抜き加工した正極端子を兼ねるケース、2は厚み25
0μmのステンレス(SUSU304) 鋼板を打ち抜き加工した
負極端子を兼ねる封口板であり、その内壁には負極3が
当接されている。5は有機電解液を含浸したポリプロピ
レンからなるセパレーター、6は正極であり正極端子を
兼ねるケース1の開口端部を内方へかしめ、ガスケット
4を介して負極端子を兼ねる封口板2の内周を締め付け
ることにより密閉封口している。
FIG. 1 is a vertical sectional view of a battery. In this figure, 1 is a case that also functions as a positive electrode terminal and is formed by punching a clad steel plate of aluminum with a thickness of 5 μm and stainless steel (SUS304) with a thickness of 200 μm by a press, and 2 is a thickness of 25.
It is a sealing plate that also functions as a negative electrode terminal made by punching out a 0 μm stainless steel (SUSU304) steel plate, and the negative electrode 3 is in contact with the inner wall thereof. 5 is a separator made of polypropylene impregnated with an organic electrolytic solution, 6 is a positive electrode, and the opening end of the case 1 also serving as a positive electrode terminal is swaged inward, and the inner periphery of the sealing plate 2 also serving as a negative electrode terminal is inserted through a gasket 4. It is closed and sealed by tightening.

【0015】上記の正極板,負極板,電解液および正極
缶を用いた本発明の有機電解液二次電池を(A)と呼
ぶ。また、正極缶の材質として厚み25μmのステンレ
ス(SUS304)鋼板を用いた以外は、本発明の有機電解液電
池(A)と同様の構成とした従来の電池を(ア)と呼
ぶ。
The organic electrolyte secondary battery of the present invention using the above positive electrode plate, negative electrode plate, electrolytic solution and positive electrode can is referred to as (A). A conventional battery having the same structure as the organic electrolyte battery (A) of the present invention is referred to as (A) except that a 25 μm thick stainless steel (SUS304) steel plate is used as the material of the positive electrode can.

【0016】次に、これらの電池を2.0mAの定電流
で、端子電圧が4.2V に至るまで充電して、つづい
て、同じく2.0mAの定電流で、端子電圧が2.7V に
達するまで放電する充放電サイクル寿命試験(温度45
℃)にかけた。
Next, these batteries were charged at a constant current of 2.0 mA until the terminal voltage reached 4.2 V, and then at the same constant current of 2.0 mA, the terminal voltage became 2.7 V. Charge-discharge cycle life test (temperature 45
℃).

【0017】サイクル試験の結果を、図2に示す。本発
明の電池(A)は、充放電サイクル数が100回に至る
まで放電容量の著しい低下がみられない。しかし、比較
のための従来の電池(ア)は、充放電サイクルの進行に
伴う放電容量の低下が著しい。
The results of the cycle test are shown in FIG. The battery (A) of the present invention shows no significant decrease in discharge capacity until the number of charge / discharge cycles reaches 100 times. However, in the conventional battery (A) for comparison, the discharge capacity significantly decreases with the progress of the charge / discharge cycle.

【0018】このように正極缶の材質としてアルミニウ
ム層を内側に有するクラッド材を用いた本発明の有機電
解液二次電池は、従来の有機電解液二次電池よりも、充
放電サイクルを繰り返した場合の放電容量の保持特性が
著しく向上した。
As described above, the organic electrolyte secondary battery of the present invention using the clad material having the aluminum layer inside as the material of the positive electrode can has repeated charge / discharge cycles more than the conventional organic electrolyte secondary battery. In this case, the retention characteristic of the discharge capacity was significantly improved.

【0019】なお、上記実施例ではアルミニウムとステ
ンレス(SUS304)とのクラッド材を用いる場合を説明した
が、SUSU304 の代わりにSUS316,SUSU430, 鉄,クロム,
ニッケル,銅など種々のものを用いても同様な結果が得
られる。また、上記ステンレスなどの上面にニッケルな
どをメッキしたアルミ−ステンレス−ニッケルなども有
効に用いることができる。
In the above embodiment, the case where the clad material of aluminum and stainless steel (SUS304) is used is explained. However, instead of SUSU304, SUS316, SUSU430, iron, chromium,
Similar results can be obtained by using various materials such as nickel and copper. Further, aluminum-stainless-nickel or the like having nickel or the like plated on the upper surface of the above stainless steel or the like can also be effectively used.

【0020】上記実施例では正極活物質としてリチウム
コバルト複合酸化物を用いる場合を説明したが、二硫化
チタンをはじめとして二酸化マンガン、スピネル型リチ
ウムマンガン酸化物(LixMn2 O4 ) 、五酸化バナジウム
および三酸化モリブデンなどの種々のものを用いること
ができる。また、負極として炭素材料を用いたが、本発
明の正極を使用するにあたり、負極活物質は基本的に限
定されず従来の非水電解液二次電池に用いられている負
極活物質、たとえば純リチウム、リチウム合金などを用
いることができる。
In the above examples, the case where the lithium cobalt composite oxide is used as the positive electrode active material has been described. However, titanium disulfide, manganese dioxide, spinel type lithium manganese oxide (LixMn 2 O 4 ), vanadium pentoxide and Various materials such as molybdenum trioxide can be used. Although a carbon material was used as the negative electrode, the negative electrode active material is basically not limited when using the positive electrode of the present invention, and the negative electrode active material used in the conventional non-aqueous electrolyte secondary battery, for example, pure Lithium, a lithium alloy, or the like can be used.

【0021】さらに、リチウムイオン伝導性物質である
電解液や固体のイオン導電体も基本的に限定されず、従
来の有機電解液二次電池に用いられているものを用いる
ことが出来る。たとえば、有機溶媒としては非プロトン
溶媒であるエチレンカーボネイトなどの環状エステル類
およびテトラハイドロフラン,ジオキソランなどのエー
テル類があげられ、これら単独もしくは2種以上を混合
した溶媒を用いることが出来る。固体のイオン導電体と
しては、リチウムイオン導電性を有するものであれば用
いることが出来る。その代表的なものとして、ポリエチ
レンオキサイドなどがあげられる。
Further, the electrolytic solution which is a lithium ion conductive substance and the solid ionic conductor are basically not limited, and those used in the conventional organic electrolytic solution secondary battery can be used. Examples of the organic solvent include cyclic esters such as ethylene carbonate which is an aprotic solvent and ethers such as tetrahydrofuran and dioxolane. These can be used alone or in a mixture of two or more kinds. As the solid ionic conductor, any substance having lithium ion conductivity can be used. A typical example thereof is polyethylene oxide.

【0022】また、このような非水溶媒あるいは固体の
イオン導電体に溶解される支持電解質も基本的に限定さ
れるものではない。たとえば、 LiAsF6 , LiClO4 ,Li
BF4,LiPF6 ,LiCF3 SO3 などの1種以上を用いること
ができる。
Also, the supporting electrolyte dissolved in such a non-aqueous solvent or solid ionic conductor is not basically limited. For example, LiAsF 6 , LiClO 4 , Li
One or more of BF 4 , LiPF 6 and LiCF 3 SO 3 can be used.

【0023】なお、前記の実施例に係る電池はいずれも
ボタン形電池であるが、円筒形,角形またはペーパー形
電池に本発明を適用しても同様の効果が得られる。
Although the batteries according to the above-mentioned embodiments are all button type batteries, the same effect can be obtained by applying the present invention to cylindrical, prismatic or paper type batteries.

【0024】[0024]

【発明の効果】以上のごとく、本発明の非水電解液二次
電池は、充放電サイクルの進行にともなう放電容量の低
下が少ない。
As described above, in the non-aqueous electrolyte secondary battery of the present invention, the decrease in discharge capacity with the progress of charge / discharge cycles is small.

【図面の簡単な説明】[Brief description of drawings]

【図1】非水電解質二次電池の一例であるボタン電池の
内部構造を示した図。
FIG. 1 is a diagram showing an internal structure of a button battery which is an example of a non-aqueous electrolyte secondary battery.

【図2】試験電池のサイクルと放電容量を示した図。FIG. 2 is a diagram showing cycles and discharge capacities of test batteries.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 負極 4 ガスケット 5 セパレーター 6 正極 1 Battery Case 2 Sealing Plate 3 Negative Electrode 4 Gasket 5 Separator 6 Positive Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウムイオンを吸蔵放出する物質からな
る正極と、負極と、リチウムイオンを含むイオン導電体
よりなる電解質を備えた非水電解質二次電池であって、 正極ケースとしてアルミニウム層を内側に有するクラッ
ド金属を用いたことを特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode made of a substance which absorbs and releases lithium ions, a negative electrode, and an electrolyte made of an ion conductor containing lithium ions, wherein an aluminum layer is used as a positive electrode case inside. A non-aqueous electrolyte secondary battery using the clad metal as defined in 1.
JP4034211A 1992-01-24 1992-01-24 Secondary battery Pending JPH07111160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4034211A JPH07111160A (en) 1992-01-24 1992-01-24 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4034211A JPH07111160A (en) 1992-01-24 1992-01-24 Secondary battery

Publications (1)

Publication Number Publication Date
JPH07111160A true JPH07111160A (en) 1995-04-25

Family

ID=12407829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4034211A Pending JPH07111160A (en) 1992-01-24 1992-01-24 Secondary battery

Country Status (1)

Country Link
JP (1) JPH07111160A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135079A (en) * 1997-08-29 1999-05-21 Sumitomo Electric Ind Ltd Battery jar for secondary battery
JP2006147159A (en) * 2004-11-16 2006-06-08 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181365A (en) * 1988-12-29 1990-07-16 Kanebo Ltd Organic electrolyte battery
JPH05174873A (en) * 1991-12-24 1993-07-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery resistant to overcharging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181365A (en) * 1988-12-29 1990-07-16 Kanebo Ltd Organic electrolyte battery
JPH05174873A (en) * 1991-12-24 1993-07-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery resistant to overcharging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135079A (en) * 1997-08-29 1999-05-21 Sumitomo Electric Ind Ltd Battery jar for secondary battery
JP2006147159A (en) * 2004-11-16 2006-06-08 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
EP0573040B1 (en) A positive electrode for lithium secondary battery and its method of manufacture, and a nonaqueous electrolyte lithium secondary battery employing the positive electrode
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2001015146A (en) Battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP3717544B2 (en) Lithium secondary battery
JPH11283623A (en) Lithium ion battery and its manufacture
JP2000082498A (en) Nonaqueous electrolyte secondary battery
JP2705529B2 (en) Organic electrolyte secondary battery
JPH06310126A (en) Nonaquous electrolytic secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JP3219928B2 (en) Non-aqueous electrolyte secondary battery
JPH08180875A (en) Lithium secondary battery
JP3348175B2 (en) Organic electrolyte secondary battery
JP3432922B2 (en) Solid electrolyte secondary battery
JPH0855637A (en) Nonaqueous electrolytic secondary battery
JPH07111160A (en) Secondary battery
JP2845069B2 (en) Organic electrolyte secondary battery
JP2000012026A (en) Nonaqueous electrolyte secondary battery
JPH10112307A (en) Nonaqueous electrolyte secondary battery
JP3227771B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2003031266A (en) Flat nonaqueous secondary battery
JPH08148141A (en) Manufacture of electrode for lithium secondary battery
JP3331608B2 (en) Non-aqueous electrolyte secondary battery