JPH069257B2 - Method for producing gallium nitride compound semiconductor light emitting device - Google Patents
Method for producing gallium nitride compound semiconductor light emitting deviceInfo
- Publication number
- JPH069257B2 JPH069257B2 JP7665289A JP7665289A JPH069257B2 JP H069257 B2 JPH069257 B2 JP H069257B2 JP 7665289 A JP7665289 A JP 7665289A JP 7665289 A JP7665289 A JP 7665289A JP H069257 B2 JPH069257 B2 JP H069257B2
- Authority
- JP
- Japan
- Prior art keywords
- gallium nitride
- compound semiconductor
- emitting device
- light emitting
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Led Devices (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、マグネシウムを添加した窒化ガリウム系化合
物半導体層を有する純青色発光素子の作製方法に関する
ものである。Description: TECHNICAL FIELD The present invention relates to a method for producing a pure blue light emitting device having a gallium nitride-based compound semiconductor layer to which magnesium is added.
(従来の技術) 従来、有機金属化合物気相成長法(以下、MOVPE法
と記す)を用いて、窒化ガリウム系化合物半導体(Ga
1-XAlxN但し1>x≧0)をサファイア基板上に気
相成長させた構造の青色発光素子が研究されている。(Prior Art) Conventionally, a gallium nitride based compound semiconductor (Ga
A blue light emitting device having a structure in which 1-X Al x N, where 1> x ≧ 0) is vapor-phase grown on a sapphire substrate has been studied.
これらの材料により青色発光素子を作製する場合には、
従来絶縁層を形成するため、及び青色発光中心の形成を
狙いとして亜鉛が添加される。亜鉛添加窒化ガリウム系
化合物半導体Ga1-XAlxN(但し1>x≧0)に於け
る発光素子の発光ピーク波長は425nm付近の紫色、及
び490nm付近の青緑色領域であった。When making a blue light emitting device with these materials,
Zinc is conventionally added to form an insulating layer and for the purpose of forming a blue emission center. The emission peak wavelength of the light emitting device in the zinc-doped gallium nitride compound semiconductor Ga 1-x Al x N (where 1> x ≧ 0) was in the purple region near 425 nm and in the blue-green region around 490 nm.
(発明が解決しようとする課題) 窒化ガリウム系化合物半導体を用いて青色発光素子を作
製する場合、添加する不純物に必要となる役割は二つあ
る。一つには絶縁層の形成が可能であること、もう一つ
は添加した不純物自体或はそれが関係して青色発光中心
を形成することである。窒化ガリウム系化合物半導体に
於て一般的に用いられる亜鉛の場合、絶縁層の形成は可
能であるが、それが関係して形成される発光中心に問題
があった。即ち、形成される発光中心は前述のごとく紫
色及び青緑色領域に発光ピークがあった。明所視で目視
により青色と観測される光の波長は450nmから480nm
の範囲内であり、亜鉛添加窒化ガリウム系化合物半導体
(Ga1-XAlxN但し1>x≧0)による発光素子では
色純度の問題があった。(Problems to be Solved by the Invention) When a blue light-emitting element is manufactured using a gallium nitride-based compound semiconductor, there are two roles required for impurities to be added. One is that an insulating layer can be formed, and the other is that the added impurity itself or related to it forms a blue emission center. In the case of zinc, which is generally used in gallium nitride-based compound semiconductors, it is possible to form an insulating layer, but there is a problem in the emission center formed in relation to it. That is, the formed emission center had emission peaks in the purple and blue-green regions as described above. The wavelength of light that is visually observed to be blue in photopic vision is 450 nm to 480 nm.
However, there is a problem of color purity in the light emitting device made of a zinc-doped gallium nitride compound semiconductor (Ga 1-x Al x N, where 1> x ≧ 0).
そこで純青色発光中心が形成され、かつ絶縁層の形成が
可能な不純物を各種探索した結果、Mgがその二つの役
割を果たすことを見いだした。Therefore, as a result of various searches for impurities capable of forming a pure blue emission center and forming an insulating layer, it was found that Mg plays two roles.
(課題を解決するための手段) 本発明は水素雰囲気で大気圧に保たれた反応管内にサフ
ァイヤ等の絶縁体基板を設け、反応管の一方より有機ガ
リウム化合物、有機III族元素化合物及びアンモニアを
ガス状で導入し、基板上にて気相成長法によりGa1-XA
lxN(但し1>x≧0)の単結晶層からなるn型窒化
ガリウム系化合物半導体層を形成後、原料ガスに有機マ
グネシウム化合物をガス状で反応管内に導入し、絶縁層
及び発光層としてマグネシウム(Mg)を添加したi型
の窒化ガリウム系化合物半導体Ga1-XAlxN(但し1
>x≧0)層を作製することを特徴とする窒化ガリウム
系化合物半導体発光素子の作製方法にある。(Means for Solving the Problem) The present invention provides an insulating substrate such as sapphire in a reaction tube kept at atmospheric pressure in a hydrogen atmosphere, and an organic gallium compound, an organic group III element compound and ammonia are supplied from one side of the reaction tube. Introduced in the form of gas, Ga 1-X A on the substrate by vapor phase epitaxy
After forming an n-type gallium nitride-based compound semiconductor layer composed of a single crystal layer of l x N (where 1> x ≧ 0), an organomagnesium compound is introduced into the reaction tube in a gaseous state as a raw material gas to form an insulating layer and a light emitting layer. I-type gallium nitride-based compound semiconductor Ga 1-x Al x N (provided that 1
A method of manufacturing a gallium nitride-based compound semiconductor light emitting device, characterized in that a> x ≧ 0) layer is manufactured.
(作 用) 本発明の好ましい実施例では前記マグネシウム(Mg)
添加窒化ガリウム系化合物半導体Ga1-XAlxN(但し
1>x≧0)層に於て、添加するマグネシウム(Mg)
のIII族元素に対する濃度は絶縁層形成のため1018cm-3
以上であることが好ましい。また必要以上に高濃度に添
加された場合、他の発光中心が形成され、純青色発光の
効率が低下するため2×1020cm-3以内であることが好ま
しい。(Operation) In a preferred embodiment of the present invention, the magnesium (Mg)
Magnesium (Mg) added in the added gallium nitride-based compound semiconductor Ga 1-x Al x N (1> x ≧ 0) layer
The concentration of the group III element for the group III is 10 18 cm -3 due to the formation of the insulating layer.
The above is preferable. Further, when added in a higher concentration than necessary, other emission centers are formed and the efficiency of pure blue emission is reduced, so that it is preferably within 2 × 10 20 cm -3 .
また作製した発光素子に於て、最も大きい光強度を示す
発光波長が430nmから480nmの範囲であることが特徴
である。Further, the produced light emitting element is characterized in that the emission wavelength showing the highest light intensity is in the range of 430 nm to 480 nm.
(実施例) 以下、添付図面を参照して本発明による純青色発光素子
の作製法の実施例を説明する。しかし、図示し且つ以下
に説明する実施例は、本発明の方法を例示するものに過
ぎず、本発明を限定するものではない。(Example) Hereinafter, an example of a method for manufacturing a pure blue light emitting device according to the present invention will be described with reference to the accompanying drawings. However, the examples shown and described below are merely illustrative of the method of the present invention and are not intended to limit the present invention.
第1図は純青色発光素子を作製するために使用する窒化
ガリウム系化合物半導体のエピタキシアル結晶成長装置
の概略図である。第1図において、1は反応管、2は基
板加熱用サセプタ、3はその上に載置した基板を示し、
4は原料ガス供給管、5は反応管に連設した試料予備
室、6はターボ真空ポンプ、7,8はロータリー真空ポ
ンプを示す。9は原料ガスと水素との供給装置であっ
て、10は水素供給口、11はアンモニアガス(NH3)供
給口、12A,12B,12C,12D,12E,12F,12Gは水
素流量計、13はビスシクロペンタジエニルマグネシウム
(CP2Mg)又はビスメチルシクロペンタジエニルマ
グネシウム(MCP2Mg)の貯留槽、14はトリメチル
アルミニウム(TMA)の貯留槽、15はトリメチルガリ
ウム(TMG)の貯留槽、16〜31は流量制御弁、32〜34
は切換混合弁を示す。FIG. 1 is a schematic diagram of an epitaxial crystal growth apparatus for a gallium nitride-based compound semiconductor used for producing a pure blue light emitting device. In FIG. 1, 1 is a reaction tube, 2 is a substrate heating susceptor, 3 is a substrate placed thereon,
Reference numeral 4 is a source gas supply pipe, 5 is a sample preparatory chamber connected to the reaction pipe, 6 is a turbo vacuum pump, and 7 and 8 are rotary vacuum pumps. Reference numeral 9 is a supply device for supplying raw material gas and hydrogen, 10 is a hydrogen supply port, 11 is an ammonia gas (NH 3 ) supply port, 12A, 12B, 12C, 12D, 12E, 12F and 12G are hydrogen flow meters, 13 Is a storage tank of biscyclopentadienyl magnesium (CP 2 Mg) or bismethylcyclopentadienyl magnesium (MCP 2 Mg), 14 is a storage tank of trimethylaluminum (TMA), and 15 is a storage tank of trimethylgallium (TMG) , 16-31 are flow control valves, 32-34
Indicates a switching mixing valve.
サファイヤ等の絶縁体基板上に窒化ガリウム系化合物半
導体を気相でエピタキシアル成長させて単結晶を形成す
るには、上記の反応管1は予め真空に吸引し、水分、酸
素その他の不純物を除き大気圧の水素雰囲気として、反
応管1をヒーター35により加熱して結晶成長温度に保つ
ようにし、反応管1内に設けた基板加熱用サセプタ2上
に例えばサファイア等の結晶成長用絶縁体基板3を設置
し、高周波誘導加熱等により外部より反応管1を加熱
し、結晶成長温度に基板加熱用サセプタ2を保持しつ
つ、結晶成長効率及び不純物添加効率をあげるために設
置された原料導入管4により原料ガスを導入し、導入ガ
スを基板上で気相でエピタキシアル成長法で必要な結晶
成長層厚さになるまで結晶成長を行う。発光ダイオード
を作製するにはサファイア等の基板3の上に故意に不純
物を添加していないn型の該窒化ガリウム系化合物半導
体Ga1-XAlxN(但し1>x≧0)の単結晶を形成の
後、Mg成分をビスシクロペンタジエニルマグネシウム
(CP2Mg)又はビスメチルシクロペンタジエニルマ
グネシウム(MCP2Mg)等の有機マグネシウム化合
物をガス態で原料ガスに混合し、Mg成分を添加した窒
化ガリウム系化合物半導体Ga1-XAlxN(但し1>x
≧0)層を作製する。固体中のMg添加量の制御は、M
gとGaの流量比を切換混合弁32〜34により行い、第2
図に示すようにMg原料ガス供給量に加減により制御す
る。In order to form a single crystal by epitaxially growing a gallium nitride-based compound semiconductor on an insulating substrate such as sapphire in a vapor phase, the reaction tube 1 is previously evacuated to a vacuum to remove water, oxygen and other impurities. The reaction tube 1 is heated by the heater 35 to maintain the crystal growth temperature in an atmosphere of hydrogen at atmospheric pressure, and the crystal growth insulator substrate 3 such as sapphire is placed on the substrate heating susceptor 2 provided in the reaction tube 1. Is installed to heat the reaction tube 1 from the outside by high-frequency induction heating or the like, and to hold the substrate heating susceptor 2 at the crystal growth temperature, and to increase the crystal growth efficiency and the impurity addition efficiency. A raw material gas is introduced by means of the above method, and the introduced gas is grown in vapor phase on the substrate by the epitaxial growth method until the required crystal growth layer thickness is reached. In order to fabricate a light emitting diode, a single crystal of the n-type gallium nitride compound semiconductor Ga 1-x Al x N (where 1> x ≧ 0) in which impurities are not intentionally added on the substrate 3 such as sapphire After the formation of Mg, an Mg component is mixed with an organomagnesium compound such as biscyclopentadienyl magnesium (CP 2 Mg) or bismethylcyclopentadienyl magnesium (MCP 2 Mg) in a gas state to form a Mg component. Added gallium nitride compound semiconductor Ga 1-x Al x N (where 1> x
≧ 0) layers are produced. The amount of Mg added in the solid is controlled by M
The flow rate ratio between g and Ga is controlled by the switching mixing valves 32 to 34, and the second
As shown in the figure, control is performed by adjusting the amount of Mg source gas supplied.
第3図にMgを適量添加した場合(a:4×1019c
m-3)、及び適量以上添加した場合(b:3×1020c
m-3)の窒化ガリウムのフォトルミネッセンス(PL)
スペクトルを示す。Mgを適量添加した場合には純青色
発光が明瞭に観測されるが、ある濃度を越えると純青色
発光強度は小さくなり、長波長緑色発光が主体となる。
Mg添加量に関する詳細な実験の結果、発光色の変化す
るMg添加量が2×1020cm-3程度であることを見いだし
た。またこれらの試料を用いて発光ダイオードを作製
し、フォトルミネッセンスと同様、エレクトロルミネッ
センスに於いても同様の結果を示すことが確かめられ
た。Fig. 3 shows the case where Mg is added in an appropriate amount (a: 4 × 10 19 c
m -3 ), and when added in an appropriate amount or more (b: 3 × 10 20 c
m -3 ) gallium nitride photoluminescence (PL)
The spectrum is shown. When an appropriate amount of Mg is added, pure blue light emission is clearly observed, but when the concentration exceeds a certain level, the pure blue light emission intensity becomes small, and long-wavelength green light emission becomes the main component.
As a result of a detailed experiment on the amount of added Mg, it was found that the amount of added Mg that changes the emission color is about 2 × 10 20 cm −3 . Moreover, it was confirmed that a light emitting diode was manufactured by using these samples, and that the same result was obtained in electroluminescence as in photoluminescence.
この結果は、窒化ガリウムの例を示したがAlを含む窒
化ガリウム系化合物半導体Ga1-XAlxN(但し1>x
≧0)に於いても同様の結果を示すことが確かめられ
た。This result shows an example of gallium nitride, but gallium nitride-based compound semiconductor Ga 1-x Al x N containing Al (where 1> x
It was confirmed that the same result was exhibited when ≧ 0).
以上の結果より、添加するMgの量は2×1020cm-3以下
であることが好ましい。また添加するMg量が1018cm-3
より少なくなると発光ダイオードに於ける絶縁層の形成
が困難となるため、それ以上添加する必要がある。From the above results, the amount of added Mg is preferably 2 × 10 20 cm −3 or less. Also, the amount of Mg added is 10 18 cm -3
When the amount is smaller, it becomes difficult to form the insulating layer in the light emitting diode, and therefore it is necessary to add more than that.
窒化ガリウム系化合物半導体の気相エピタキシアル成長
に際して、Ga成分に対するMg成分の混合割合は0.1
〜10atm%であり、Gaの原料ガスとして使用するトリ
メチルガリウム(TMG)の蒸気圧は30mmHg/−15℃
である。In vapor phase epitaxial growth of gallium nitride-based compound semiconductor, the mixing ratio of Mg component to Ga component is 0.1.
~ 10atm%, vapor pressure of trimethylgallium (TMG) used as Ga source gas is 30mmHg / -15 ℃
Is.
(発明の効果) 以上の説明のように、本発明による発光素子の作製方法
によれば結晶成長用基板上にn型該窒化ガリウム系化合
物半導体Ga1-XAlxN(但し1>x≧0)単結晶から
なるn型窒化ガリウム系化合物半導体層を形成後、絶縁
層及び発光層としてマグネシウム(Mg)を添加した窒
化ガリウム系化合物半導体(Ga1-XAlxN但し1>x
≧0)層を形成することにより、純青色発光ダイオード
を作製することが可能である。従来知られている青色発
光ダイオードとよばれているものは発光波長が紫色また
は青緑色領域にかたよっているもの、或はより長波長の
発光が無視できず色純度に問題のあるものが殆どであっ
た。第3図(a)のように450nm付近に発光ピーク波
長を持ち、かつより長波長の発光が殆ど観測されない発
光スペクトルを示すダイオードは現在まで報告された例
はなかった。(Effects of the Invention) As described above, according to the method for manufacturing a light emitting device of the present invention, the n-type gallium nitride compound semiconductor Ga 1-x Al x N (where 1> x ≧ 1) is formed on the crystal growth substrate. 0) After forming an n-type gallium nitride-based compound semiconductor layer made of a single crystal, a gallium nitride-based compound semiconductor (Ga 1-X Al x N where 1> x is added as magnesium (Mg) as an insulating layer and a light-emitting layer.
By forming the ≧ 0) layer, a pure blue light emitting diode can be manufactured. Most of the conventionally known blue light emitting diodes are those whose emission wavelength is in the violet or blue-green region, or in which the emission of longer wavelength cannot be ignored and there is a problem in color purity. there were. Until now, no diode has been reported which has an emission peak wavelength near 450 nm and exhibits an emission spectrum in which emission of a longer wavelength is hardly observed as shown in FIG. 3 (a).
本発明による発光素子の作製方法を用いれば、特別な色
フィルターを使用することなく純青色発光ダイオードの
作製が可能となるため、フィルターによる損失がなく従
来のものと比較して効率の高い青色発光ダイオードの実
現が可能である。本発明により現在まで実用化の遅れて
いる青色発光ダイオードの実用化が可能となる工業上大
なる利益がある。By using the method for manufacturing a light emitting device according to the present invention, it is possible to manufacture a pure blue light emitting diode without using a special color filter. Therefore, there is no loss due to the filter, and blue light emission with higher efficiency than the conventional one It is possible to realize a diode. According to the present invention, there is a great industrial advantage that the blue light emitting diode, which has been delayed in practical use until now, can be put into practical use.
第1図は本発明を実現するための結晶成長装置の概略構
成図、 第2図はMg原料ガス供給量と窒化ガリウムに添加され
たMg量の関係を示す特性図、 第3図は本発明の発光素子において、発光波長と発光強
度フォトルミネッセンスPLとの特性図で、 (a)曲線はMgを4×1019cm-3添加した試料の室温で
のフォトルミネッセンススペクトル特性図、(b)曲線
はMgを3×1020cm-3添加した試料の室温でのフォトル
ミネッセンススペクトル特性図である。 1…結晶成長用反応管 2…基板加熱用サセプタ 3…基板 4…原料導入管 5…試料予備室 6…ターボ真空ポンプ 7,8…ロータリー真空ポンプ 9…原料ガスと水素との供給装置 10…水素供給口 11…アンモニアガス(NH3)供給口 12A〜12G…水素流量計 13…CP2Mg又はMCP2Mg等の有機Mg化合物の
貯留槽 14…トリメチルアルミニウム(TMA)の貯留槽 15…トリメチルガリウム(TMG)の貯留槽 16〜31…流量制御弁 32〜34…切換混合弁 35〜36…排出口 37〜40…流量制御弁FIG. 1 is a schematic configuration diagram of a crystal growth apparatus for realizing the present invention, FIG. 2 is a characteristic diagram showing the relationship between the amount of Mg source gas supplied and the amount of Mg added to gallium nitride, and FIG. 3 is the present invention. In the light emitting device of FIG. 1, a characteristic diagram of emission wavelength and emission intensity photoluminescence PL, (a) curve is a photoluminescence spectrum characteristic diagram at room temperature of a sample to which Mg is added at 4 × 10 19 cm −3 , (b) curve FIG. 3 is a photoluminescence spectrum characteristic diagram of a sample to which Mg is added at 3 × 10 20 cm −3 at room temperature. DESCRIPTION OF SYMBOLS 1 ... Reaction tube for crystal growth 2 ... Substrate heating susceptor 3 ... Substrate 4 ... Raw material introduction pipe 5 ... Sample spare chamber 6 ... Turbo vacuum pump 7, 8 ... Rotary vacuum pump 9 ... Raw material gas and hydrogen supply device 10 ... Hydrogen supply port 11 ... Ammonia gas (NH 3 ) supply port 12A to 12G ... Hydrogen flow meter 13 ... CP 2 Mg or MCP 2 Mg or other organic Mg compound storage tank 14 ... Trimethylaluminum (TMA) storage tank 15 ... Trimethyl Gallium (TMG) storage tank 16-31 ... Flow control valve 32-34 ... Switching mixing valve 35-36 ... Discharge port 37-40 ... Flow control valve
Claims (3)
サファイヤ等の絶縁体基板を設け、反応管の一方より有
機ガリウム化合物、有機III族元素化合物及びアンモニ
アをガス状で導入し、基板上にて気相成長法によりGa
1-XAlxN(但し1>x≧0)の単結晶層からなるn
型窒化ガリウム系化合物半導体層を形成後、原料ガスに
有機マグネシウム化合物をガス状で反応管内に導入し、
絶縁層及び発光層としてマグネシウム(Mg)を添加し
たi型の窒化ガリウム系化合物半導体Ga1-XAlxN
(但し1>x≧0)層を作製することを特徴とする窒化
ガリウム系化合物半導体発光素子の作製方法。1. An insulating substrate such as sapphire is provided in a reaction tube kept at atmospheric pressure in a hydrogen atmosphere, and an organic gallium compound, an organic group III element compound and ammonia are introduced in a gaseous state from one side of the reaction tube to form a substrate. Ga by vapor phase growth method above
N consisting of a single crystal layer of 1-X Al x N (where 1> x ≧ 0)
After forming the type gallium nitride compound semiconductor layer, an organomagnesium compound is introduced into the reaction tube in a gaseous state as a source gas,
An i-type gallium nitride-based compound semiconductor Ga 1-x Al x N added with magnesium (Mg) as an insulating layer and a light emitting layer
A method for manufacturing a gallium nitride-based compound semiconductor light emitting device, characterized in that a layer (where 1> x ≧ 0) is manufactured.
ム系化合物半導体Ga1-XAlxN(但し1>x≧0)層
に於て、添加するマグネシウム(Mg)のIII族元素に
対する濃度が1018cm-3から2×1020cm-3の範囲内である
請求項1記載の窒化ガリウム系化合物半導体発光素子の
作製方法。2. In the magnesium (Mg) -doped gallium nitride-based compound semiconductor Ga 1-x Al x N (where 1> x ≧ 0) layer, the concentration of magnesium (Mg) added to the Group III element is 10 or less. The method for producing a gallium nitride-based compound semiconductor light-emitting device according to claim 1, wherein the range is from 18 cm -3 to 2 x 10 20 cm -3 .
度を示す発光波長が430nmから480nmの範囲内である
ことを特徴とする請求項1記載の窒化ガリウム系化合物
半導体発光素子の作製方法。3. The method for producing a gallium nitride-based compound semiconductor light-emitting device according to claim 1, wherein the produced light-emitting device has an emission wavelength exhibiting the highest light intensity in the range of 430 nm to 480 nm. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7665289A JPH069257B2 (en) | 1989-03-30 | 1989-03-30 | Method for producing gallium nitride compound semiconductor light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7665289A JPH069257B2 (en) | 1989-03-30 | 1989-03-30 | Method for producing gallium nitride compound semiconductor light emitting device |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1303195A Division JP2767392B2 (en) | 1995-01-30 | 1995-01-30 | Method for manufacturing gallium nitride based compound semiconductor light emitting device |
JP13616696A Division JP2916613B2 (en) | 1996-05-30 | 1996-05-30 | Method for manufacturing gallium nitride based compound semiconductor light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02257678A JPH02257678A (en) | 1990-10-18 |
JPH069257B2 true JPH069257B2 (en) | 1994-02-02 |
Family
ID=13611335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7665289A Expired - Lifetime JPH069257B2 (en) | 1989-03-30 | 1989-03-30 | Method for producing gallium nitride compound semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH069257B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8934513B2 (en) | 1994-09-14 | 2015-01-13 | Rohm Co., Ltd. | Semiconductor light emitting device and manufacturing method therefor |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5281830A (en) * | 1990-10-27 | 1994-01-25 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride group compound |
US5290393A (en) * | 1991-01-31 | 1994-03-01 | Nichia Kagaku Kogyo K.K. | Crystal growth method for gallium nitride-based compound semiconductor |
JPH088217B2 (en) † | 1991-01-31 | 1996-01-29 | 日亜化学工業株式会社 | Crystal growth method for gallium nitride-based compound semiconductor |
US5633192A (en) * | 1991-03-18 | 1997-05-27 | Boston University | Method for epitaxially growing gallium nitride layers |
EP0576566B1 (en) * | 1991-03-18 | 1999-05-26 | Trustees Of Boston University | A method for the preparation and doping of highly insulating monocrystalline gallium nitride thin films |
JP2657743B2 (en) * | 1992-10-29 | 1997-09-24 | 豊田合成株式会社 | Nitrogen-3 group element compound semiconductor light emitting device |
KR100374479B1 (en) * | 2000-01-07 | 2003-03-04 | 엘지전자 주식회사 | method for growing nitride semiconductor |
JP2006193348A (en) | 2005-01-11 | 2006-07-27 | Sumitomo Electric Ind Ltd | Group iii nitride semiconductor substrate and its manufacturing method |
US8778078B2 (en) | 2006-08-09 | 2014-07-15 | Freiberger Compound Materials Gmbh | Process for the manufacture of a doped III-N bulk crystal and a free-standing III-N substrate, and doped III-N bulk crystal and free-standing III-N substrate as such |
JP5629340B2 (en) * | 2013-03-04 | 2014-11-19 | フライベルガー・コンパウンド・マテリアルズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングFreiberger Compound Materials Gmbh | Doped III-N bulk crystal and free-standing doped III-N substrate |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3922475A (en) * | 1970-06-22 | 1975-11-25 | Rockwell International Corp | Process for producing nitride films |
JPS5471590A (en) * | 1977-11-17 | 1979-06-08 | Matsushita Electric Ind Co Ltd | Gan light emitting element and production of the same |
JPS63188935A (en) * | 1987-01-31 | 1988-08-04 | Toyoda Gosei Co Ltd | Vapor growth system for gallium nitride compound semiconductor |
-
1989
- 1989-03-30 JP JP7665289A patent/JPH069257B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3922475A (en) * | 1970-06-22 | 1975-11-25 | Rockwell International Corp | Process for producing nitride films |
JPS5471590A (en) * | 1977-11-17 | 1979-06-08 | Matsushita Electric Ind Co Ltd | Gan light emitting element and production of the same |
JPS63188935A (en) * | 1987-01-31 | 1988-08-04 | Toyoda Gosei Co Ltd | Vapor growth system for gallium nitride compound semiconductor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8934513B2 (en) | 1994-09-14 | 2015-01-13 | Rohm Co., Ltd. | Semiconductor light emitting device and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JPH02257678A (en) | 1990-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2593960B2 (en) | Compound semiconductor light emitting device and method of manufacturing the same | |
RU2315135C2 (en) | Method of growing nonpolar epitaxial heterostructures based on group iii element nitrides | |
JPH069257B2 (en) | Method for producing gallium nitride compound semiconductor light emitting device | |
JP3100644B2 (en) | Semiconductor light emitting device and method of manufacturing the same | |
JP2773597B2 (en) | Semiconductor light emitting device and method of manufacturing the same | |
CN1077607C (en) | Method and installation for GaN growth by light radiation-heated metallic organic chemical gas-state deposition | |
JP4036436B2 (en) | Method for growing quantum well structures | |
JPH069258B2 (en) | Method for producing gallium nitride compound semiconductor light emitting device | |
JPH09251957A (en) | Manufacturing method for 3-5 group compound semiconductor | |
US20060128122A1 (en) | Mbe growth of a semiconductor layer structure | |
JPH0940490A (en) | Production of gallium nitride crystal | |
JPH08293473A (en) | Epitaxial wafer and compound semiconductor light emitting element and their manufacture | |
JP2767392B2 (en) | Method for manufacturing gallium nitride based compound semiconductor light emitting device | |
JPH09107124A (en) | Method for manufacturing iii-v compound semiconductor | |
JPH0992881A (en) | Compound semiconductor device | |
JP2916613B2 (en) | Method for manufacturing gallium nitride based compound semiconductor light emitting device | |
JPH0997921A (en) | Manufacture of iii-v compd. semiconductor | |
JPH0964419A (en) | Iii-v compound semiconductor and light emitting element | |
JPH09148626A (en) | Manufacture of iii-v group compound semiconductor | |
JP2519232B2 (en) | Method for producing compound semiconductor crystal layer | |
JP2681094B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JPH04328823A (en) | Manufacture of epitaxial wafer for light emitting diode | |
JPH088460A (en) | Method of manufacturing p-type algan semiconductor | |
JP2002154900A (en) | Method for growing crystal of gallium nitride-based compound semiconductor and gallium nitride-based compound semiconductor | |
JP4009043B2 (en) | Method for producing p-type group III nitride semiconductor |